项式定理知识点和各种题型归纳带答案
- 格式:doc
- 大小:771.00 KB
- 文档页数:7
二项式定理知识点及题型归纳总结知识点精讲一、二项式定理()nn n r r n r n n n n n nb a C b a C b a C b a C b a 01100+⋯++⋯++=+--()*Nn ∈.展开式具有以下特点: (1)项数:共1+n 项.(2)二项式系数:依次为组合数nn n n n C C C C ,⋯,,,21.(3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地,()nn n n n n x C x C x C x +⋯+++=+22111.二、二项式展开式的通项(第1+r 项)二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ⋯=.其中rn C 的二项式系数.令变量(常用x )取1,可得1+r T 的系数.注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r rn rn b aC -是第1+r 项,而不是第r 项;②在通项公式r r n r n r b a C T -+=1中,含n r b a C T rn r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数二项式系数仅指nn n n n C C C C ,⋯,,,21而言,不包括字母b a ,所表示的式子中的系数.例如:()nx +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而rx 的系数应该是r n r n C -2(即含r x 项的系数).(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=.②二项展开式中间项的二项式系数最大.如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2最大;如果二项式的幂指数n是奇数,中间项有两项,即为第21+n 项和第121++n 项,它们的二项式系数21-n n C 和21+n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和011+12n nnn n n C C C ++⋯+==() .奇数项二项式系数和等于偶数项二项式系数和,02413512n n n n n n n C C C C C C -+++⋯=+++⋯=即 .②系数和求所有项系数和,令1x =;求变号系数和,令1x =-;求常数项,令0x =。
二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。
二项式定理一、基本知识点1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n nn 2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项(3)二项式系数:),,2,1,0(n r C rn=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T rr n r nr ==-+ 3、展开式的特点(1)系数 都是组合数,依次为C 1n ,C 2n ,C nn ,…,C nn(2)指数的特点①a 的指数 由n 0( 降幂)。
②b 的指数由0 n (升幂)。
③a 和b 的指数和为n 。
(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。
4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值21-n nC =21+n nC(3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即mn n m n C C -=nn n k n n n n C C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++∴0213n-1n n n n C +C +=C +C +=2二项式定理的常见题型一、求二项展开式1.“n b a )(+”型的展开式 例1.求4)13(xx +的展开式;a2. “n b a )(-”型的展开式 例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算c C C C nn n n n n n 3)1( (279313)21-++-+-;二、通项公式的应用 1.确定二项式中的有关元素例4.已知9)2(x x a -的展开式中3x 的系数为49,常数a 的值为2.确定二项展开式的常数项 例5.103)1(xx -展开式中的常数项是3.求单一二项式指定幂的系数 例6. 92)21(xx -展开式中9x 的系数是三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,2x 的系数等于例8.72)2)(1-+x x (的展开式中,3x 项的系数是四、利用二项式定理的性质解题 1. 求中间项 例9.求(103)1xx -的展开式的中间项;。
二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。
高中数学-二项式定理知识点总结及例题分析一、 基本知识点1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 方法分析1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项(第n +12项与第⎝⎛⎭⎫n +12+1项)的二项式系数相等并最大. 2.二项展开式系数最大项的求法:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.例题讲解考点一求二项展开式中的项或项的系数 1 (1)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20(2)二项式⎝⎛⎭⎪⎫x -13x n的展开式中第4项为常数项,则常数项为( )A .10B .-10C .20D .-20解析: (1)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2(-2y )3=-20x 2y 3,故x 2y3的系数为-20.(2)由题意可知常数项为T 4=C 3n (x )n -3⎝⎛⎭⎪⎪⎫-13x 3=(-1)3C 3n x 3n -156,令3n -15=0,可得n =5.故所求常数项为T 4=(-1)3C 35=-10,选B.答案: (1)A (2)B 变式练习1.若二项式⎝⎛⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B .54 C .1 D .242.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数次幂的项数是( ) A .0 B .2 C .4 D .6 3.⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36 D .384.(2014·山东卷)若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.5.(2014·皖南八校联考)(x 2-4x +4)5的展开式中x 的系数是________. 答案1C 2.B 3.D 42 5-5120 考点二 二项式系数及项的系数问题(1)(2014·辽宁五校联考)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是A .360B .180C .90D .45(2)(2014·河北衡水中学五调)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+a 3+…+a 7=________.解析: (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10,通项公式为T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102rx 5-52r ,所以r =2时,常数项为180.(2)∵T r +1=C r 7x7-r(-m )r,0≤r ≤7,r ∈Z ,∴C 37(-m )3=-35,∴m =1,令x =1,a 0+a 1+…+a 7=(1-1)7=0,令x =0,a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=1.答案: (1)B (2)1变式练习1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b=80,则n 的值为( )A .8B .4C .3D .22.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3考点三 二项式定理的应用、设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .1 1D .12 解析: 512 012+a =(52-1)2 012+a =522 012+C 12 012×522 011×(-1)+…+C 2 0112 012×52×(-1)2 011+(-1)2 012+a 能被13整除,只需(-1)2 012+a =1+a 能被13整除即可.∵0≤a <13,∴a =12,故选D.答案: D。
二项式定理知识点及常考题型一、 两项展开式的特定项1. 展开式:011222()n n n n k n k k n nn n n n n a b C a C a b C a b C a b C b ---+=++++++;等号右边的多项式叫做()na b +的二项展开式,展开式中一共有1n +项.2. 通项公式:1k n k kk n T C a b -+=;3.指数运算:①a mn =√a m n (a >0,m ,n ∈N ∗,且n >1) ②a−mn =1a m n(a >0,m ,n ∈N ∗,③a r a s =a r +s (a >0,r ,s ∈Q); ④(a r )s =a rs (a >0,r ,s ∈Q); ⑤(ab)r =a r b r (a >0,b >0,r ∈Q).例1.(2022·山东济宁·一模)612x x ⎛⎫- ⎪⎝⎭的二项展开式中的常数项为___________.(用数字作答) 【答案】160- 【解析】 【分析】先求出二项式展开式的通项公式,然后令x 的次数为零,求出r ,从而可求出常数项 【详解】二项式612x x ⎛⎫- ⎪⎝⎭展开式的通项公式为66621661(2)(1)2rr r r rr r r T C x C x x ---+⎛⎫=-=-⋅ ⎪⎝⎭,令620r -=,得3r =,所以612x x ⎛⎫- ⎪⎝⎭的二项展开式中的常数项为33636(1)2160C --⋅=-,故答案为:160-变式1-1.(2022·浙江·模拟预测)设,a b ∈R ,若二项式()3ax by +的展开式中第二项的系数是1,则二项式()6ax by +的展开式中第三项的系数是( ) A .13B .1C .53D .5【答案】C【解析】 【分析】由二项展开式的公式展开可得二项式()3ax by +的展开式中第二项的系数231a b =,再由二项式()6ax by +的展开式中第三项的系数为4215a b ,代入即可得解. 【详解】由二项式()3ax by +的展开式中第二项122223()3T C ax by a bx y ==,所以231a b =,二项式()6ax by +的展开式中第三项242424236()()15T C ax by a b x y ==,所以422151515()33a b ==.故选:C变式1-2.(2022·山东临沂·一模)二项式612x x ⎫+⎪⎭的展开式中系数为无理数的项数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】 【分析】2 【详解】展开式通项公式为666221661(2)()2rrrrr r r T C x C x x---+==,0,1,2,3,4,5,6r =, 当0,2,4,6r =时,62r -是整数,1,3,5r =时,62r-是不是整数,系数是无理数,共有3项. 故选:B .作业1.(2022·四川·成都七中高三开学考试(理))在12332x x 的二项展开式中,第______项为常数项. 【答案】7 【解析】 【分析】直接利用二项式的通项公式,令x 的指数为0,求出r 即可. 【详解】解:12332x x 的二项展开式的通项为12212311231231()(22rrr r r r r T C x C x x --+⎛⎫==- ⎪⎝⎭,令12203r-=,解得6r =,即6r =时,二项展开式为常数项,即第7项是常数项. 故答案为:7.二、三项展开式的特定项方法一:将其中两项看作一个整体进行展开,再层层剥开; 方法二:利用排列组合,根据所求进行不同的组合形式,再相加。
专题28二项式定理归类目录【题型一】二项式通项公式.............................................................................................................1【题型二】积型求某项.....................................................................................................................3【题型三】展开式二项式系数和...................................................................................................4【题型四】展开式各项系数和.........................................................................................................5【题型五】赋值法求部分项系数和.................................................................................................7【题型六】换元型赋值求系数与系数和.........................................................................................8【题型七】求系数最大项...............................................................................................................10【题型八】杨辉三角形应用...........................................................................................................11【题型九】三项展开式...................................................................................................................13培优第一阶——基础过关练...........................................................................................................15培优第二阶——能力提升练...........................................................................................................17培优第三阶——培优拔尖练.. (19)【题型一】二项式通项公式【典例分析】二项式5的展开式中常数项为()A .80B .80-C .40-D .40【答案】B【分析】求出展开式的通项,再令x 的指数等于0,即可得出答案.【详解】解:二项式5的展开式的通项为()15556155C 2C kkkk kkk T x --+⎛=⋅-=- ⎝,令15506k-=,则3k =,所以常数项为()3352C 80-=-.故选:B.1.将二项式8的展开式中所有项重新排成一列,有理式不相邻的排法种数为()A .37A B .6366A A C .6367A A D .7377A A 【答案】C【分析】先利用二项式定理判断其展开式中有理式的项数,再利用插空法进行排列即可.【详解】根据题意,得816324418811C C C 22k k kk k kkk k k T x x x ----+⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,因为08k ≤≤且*N k ∈,当0k =时,16344k-=,即1T 为有理式;当4k =时,16314k-=,即5T 为有理式;当8k =时,16324k-=-,即9T 为有理式;当{}1,2,3,5,6,7k ∈时,163Z 4k-∉,即k T 为无理式;所以8展开式一共有9个项,有3个有理式,6个无理式,先对6个无理式进行排列,共有66A 种方法;再将3个有理式利用“插空法”插入这6个无理式中,共有37A 种方法;利用分步乘法计数原理可得,一共有6367A A 种方法.故选:C.2.在72x x ⎛⎫- ⎪⎝⎭的展开式中,1x 的系数是()A .35B .35-C .560D .560-【答案】C【分析】利用二项式展开式的通项公式,求得展开式中1x的系数.【详解】二项式72x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()7727722rr rr r r C x C x x --⎛⎫⋅⋅-=-⋅⋅ ⎪⎝⎭,令7214r r -=-⇒=,所以72x x ⎛⎫- ⎪⎝⎭的展开式中1x 的系数为()44721635560C -⋅=⨯=.故选:C3..在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -【答案】D【分析】直接根据二项展开式的通项求第四项即可.【详解】在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()()333323334662C 2C 160T x x x x ⎛⎫=-=-=- ⎪⎝⎭.故选:D.【题型二】积型求某项【典例分析】已知()511a x x ⎛⎫++ ⎪⎝⎭的展开式中31x 的系数为10,则实数a 的值为()A .12-B .12C .2-D .2【答案】B【分析】因为()555111111a x a x x x x ⎛⎫⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合二项展开的通项公式运算求解.【详解】511x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为515511C 1C rrr r r r T x x -+⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4,5r =,∵()555111111a x a x x x x ⎛⎫⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3455C C 10510a a +=+=,解得12a =,故选:B.【变式训练】1..()()8x y x y -+的展开式中36x y 的系数为()A .28B .28-C .56D .56-【答案】B【分析】由二项式定理将8()x y +展开,然后得出8()()x y x y -+,即可求出36x y 的系数.【详解】由二项式定理:8()()x y x y -+080171808888()(C C C )x y x y x y x y =-+++080171808080171808888888(C C C )(C C C )x x y x y x y y x y x y x y =+++-+++090181818081172809888888(C C C )(C C C )x y x y x y x y x y x y =+++-+++观察可知36x y 的系数为6523888887876C C C C 2821321⨯⨯⨯-=-==-⨯⨯⨯.故选:B.2.在()()2311x x +-展开式中,含4x 项的系数是()A .5-B .5C .1-D .1【答案】D【分析】由题意可得()()()()233211121x x x x x +-=++-,再对()31x -借助于二项展开式分析运算.【详解】∵()()()()233211121x x x x x +-=++-,且()31x -的展开式的通项为()()3133C 11C ,0,1,2,3rrr r r rr T x x r -+=⨯⨯-=-=,则含4x 项的系数是()()32323321C 11C 1⨯-+⨯-=.故选:D.3.()412x x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为()A .2B .6C .8D .12【答案】D【分析】先将()412x x x ⎛⎫++ ⎪⎝⎭展开,再求,41x x ⎛⎫+ ⎪⎝⎭展开式的通项,即可求出答案.【详解】()4442=11+12x x x x x x x x ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,41x x ⎛⎫+ ⎪⎝⎭展开式的通项为:4421441C C rr r r r r T x x x --+⎛⎫== ⎪⎝⎭,当420r -=即2r =时,242C =12⋅,所以()412x x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为12.故选:D.【题型三】展开式二项式系数和【典例分析】.()101x -的展开式中所有奇数项的二项式系数和为().A .128B .256C .512D .1024【答案】C【分析】根据奇数项的二项式系数和为22n计算可得;【详解】解:()101x -的展开式中所有奇数项的二项式系数和为1025122=,故选:C .【变式训练】1.已知2(n x的展开式中,各二项式系数和为64,则x 7的系数为()A .15B .20C .60D .80【答案】C【分析】由二项式系数和求得n ,再利用通项可得x 7的系数.【详解】由二项式系数和为264n =,解得6n =,通项为()512622166C C 2rr rr r r r T x x --+==,令51272-=r ,得2r =,则x 7的系数为226260C =.故选:C.2.已知()2*2nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中各项的二项式系数之和为64,则其展开式中3x 的系数为()A .240-B .240C .160-D .160【答案】C【分析】由二项式系数的性质求出n ,写出二项展开式的通项公式,令x 的指数为3,即可得出答案.【详解】由展开式中各项的二项式系数之和为64,得264n =,得6n =.∵622x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()621231662C 1C ·2·1rrrr r r rr r T x x x --+⎛⎫=-=- ⎪⎝⎭,令1233r -=,则3r =,所以其展开式中3x 的系数为()3336C 21160⨯⨯-=-.故选:C.3.已知二项式212mx x ⎛⎫+ ⎝⎭的展开式的二项式系数之和为64,则展开式中含x 3项的系数是()A .1B .32C .52D .3【答案】D【分析】由二项式系数的和的公式解得m 的值,运用二项展开式的通项公式解出r 的值,进而可得3x 项的系数.【详解】由题意知,264m =,解得:6m =,所以621()2x x +的二项展开式的通项公式为663166211C C 22rr r r rr r T x x x --+⎛⎫=⋅= ⎪⎝⎭,令6-3r =3,得r =1,故含3x 项的系数为161132C =.故选:D.【题型四】展开式各项系数和【典例分析】在3nx⎛⎝的展开式中,各项系数与二项式系数和之比为64,则该展开式中的常数项为()A .15B .45C .135D .405【答案】C【分析】令1x =可得展开式各项系数和,再由二项式系数和为2n ,即可得到方程,求出n ,再写出二项式展开式的通项,令x 的指数为0,即可求出r ,再代入计算可得;【详解】解:对于3nx ⎛ ⎝,令1x =,可得各项系数和为4n ,又二项式系数和为2n,所以6426422nn n ===,解得6n =,所以63x ⎛+ ⎝展开式的通项为()36662166C 3C 3rr r r r r r T x x ---+=⋅=⋅,令3602r -=,解得4r =,所以42056C 3135T x =⋅=;故选:C1..0x ∀≠,101x x ⎛⎫+ ⎪⎝⎭可以写成关于221x x ⎛⎫+ ⎪⎝⎭的多项式,则该多项式各项系数之和为().A .240B .241C .242D .243【答案】D【分析】利用换元法,将101x x ⎛⎫+ ⎪⎝⎭转化为()52t +,从而利用赋值法即可求得该多项式各项系数之和.【详解】因为222112x x x x ⎛⎫+=++ ⎪⎝⎭,令221t x x =+,则()5105221122x x t x x ⎡⎤⎛⎫⎛⎫+=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令1t =,则()5523243t +==,所以该多项式各项系数之和为243.故选:D.2.已知二项式1nx ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为()A .405-B .405C .81-D .81【答案】A【分析】根据二项式定理,写出通项公式,求出指定项的系数.【详解】令1x =,可得所有项的系数之和为2325n n =⇔=,则11(5)(52)5522155(1)3C (1)3C r r r r rr rr rr r Tx xx------+=-=-,由题意5312r-=,即1r =,所以展开式中含x 项的系数为4153C 405-=-.故选:A .3.已知5312a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为4,则该展开式中的常数项为()A .200B .280C .200-D .280-【答案】D【分析】根据题意将1x =代入,由各项系数的和为4可求得a 的值,再根据二次项展开式求出512x x ⎛⎫- ⎪⎝⎭的通项()5521512C rr r rr T x --+=-,分别与x 和33x相乘得到常数项,可求出r 的值,再合并即可得到结果.【详解】由题意,令1x =,得到展开式的各项系数和为1a +,所以14a +=,解得3a =.所以55553331311312222a x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-=-+- ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,512x x ⎛⎫- ⎪⎝⎭展开式的通项为()5521512C r r r rr T x --+=-,令521r -=-,解得3r =;令523-=r ,解得1r =,所以展开式中的常数项为()()35335115512C 312C 280---⨯+⨯-⨯=-.选项D 正确,故选D.【题型五】赋值法求部分项系数和【典例分析】若()6652460126x y a y a xy a x y a x +=+++⋅⋅⋅+,则()()220246135a a a a a a a +++-++的值为()A .0B .32C .64D .128【答案】A【分析】先利用赋值法求得0123456a a a a a a a -+-+-+和0123456a a a a a a a ++++++的值,进而求得()()220246135a a a a a a a +++-++的值.【详解】1x =,1y =-时,01234560a a a a a a a =-+-+-+1x =,1y =时,012345664a a a a a a a =++++++()()220246135a a a a a a a +++-++()()012345601234560640a a a a a a a a a a a a a a =-+-+-+++++++=⨯=,故选:A.【变式训练】1.已知()727012752x a a x a x a x -=++++,则0127a a a a ++++=()A .128B .2187C .78125D .823543【答案】D【分析】由展开式通项公式可得系数0246a a a a 、、、小于0,系数1357a a a a 、、、大于0,由赋值法令=1x -,所求值即为()7-5-1-2⨯⎡⎤⎣⎦.【详解】()752x -的展开式中第1k +项为()()()77771777C 52C 52=kkkk k kk k k k T x x a x ----+-=-=-,故系数()777C 52kk kk a --=-,即当k 为奇数时,系数0246a a a a 、、、小于0,当k 为偶数时,系数1357a a a a 、、、大于0.()7012701234567-823543----5-1-2a a a a a a a a a a a a ++++=++++=⨯=⎡⎤⎣⎦.故选:D2.()4234012341x a a x a x a x a x +=++++,则01234a a a a a -+-+=()A .1B .3C .0D .3-【答案】C【分析】根据展开式,利用赋值法取=1x -即得.【详解】因为()4234012341x a a x a x a x a x +=++++,令=1x -,可得()401234110a a a a a -+-+=-=.故选:C.3.已知()()4529012912x x a a x a x a x -+=++++,则2468a a a a +++=()A .40B .8C .16-D .24-【答案】D【分析】设45()(1)(2)f x x x =-+,根据二项式展开式可得0(0)a f =、02468(1)(1)2f f a a a a a -+++++=,即可求解.【详解】设45()(1)(2)f x x x =-+,则50(0)232a f ===,0129(1)0a a a a f ++++==4012349(1)216a a a a a a f -+-+--=-==,所以02468(1)(1)82f f a a a a a -+++++==,所以246883224a a a a +++=-=-.故选:D.【题型六】换元型赋值求系数与系数和【典例分析】已知()()()()20232202301220232111x a a x a x a x -=+++++++,则0122023a a a a ++++=()A .40462B .1C .20232D .0【答案】A【分析】首先利用换元,转化为()20232202301220233t a a t a t a t -=++++,再去绝对值后,赋值求和.【详解】令1t x =+,可得1x t =-,则()()20232023220230122023213t t a a t a t a t --=-=++++⎡⎤⎣⎦,二项式()20233t -的展开式通项为()202312023C 3rr rr T t -+=⋅⋅-,则()20232023C 31(02023rr rr a r -=⋅⋅-≤≤且N)r ∈.当r 为奇数时,0r a <,当r 为偶数时,0r a >,因此,()2023404601220210122023312a a a a a a a a ++++=-+--=+=.故选:A .1.已知10111012C C n n =,设()()()()201223111n nn x a a x a x a x -=+-+-++-,下列说法:①2023n =,②20233n a =-,③0121n a a a a ++++=,④展开式中所有项的二项式系数和为1.其中正确的个数有()A .0B .1C .2D .3【答案】C【分析】根据组合数的性质求得n ,根据二项式展开式的通项公式、赋值法、二项式系数和的知识求得正确答案.【详解】101110122023n =+=,①对.()20232202301220232023(23)(1)(1)(1211)x a a x a x a x x -=+-+-+=--⎡⎤⎦+-⎣,所以02023202320232023C 22n a a =⋅==,②错.令2x =得0121n a a a a ++++=,③对.展开式中所有项的二项式系数和为20232,④错.所以正确的说法有2个.故选:C2.已知36C C n n =,设()()()()201223111n n n x a a x a x a x -=+-+-+⋅⋅⋅+-,则12n a a a ++⋅⋅⋅+=()A .1-B .0C .1D .2【答案】D【分析】利用组合数的性质可求得n 的值,再利用赋值法可求得0a 和012n a a a a +++⋅⋅⋅+的值,作差可得出所求代数式的值.【详解】因为36C C n n =,所以由组合数的性质得369n =+=,所以()()()()929012923111x a a x a x a x -=+-+-+⋅⋅⋅+-,令2x =,得()90129223a a a a ⨯-=+++⋅⋅⋅+,即01291a a a a +++⋅⋅⋅+=.令1x =,得()902131a ⨯-==-,所以()()12901290112a a a a a a a a +++=+⋅⋅⋅⋅++⋅=⋅+---=,故选:D.3..已知(1)n x -的二项展开式的奇数项二项式系数和为64,若()2012(1)1(1)(1)n n n x a a x a x a x -=+++++⋯++,则1a 等于()A .192B .448C .192-D .448-【答案】B【分析】根据奇数项二项式系数和公式求出n ,再利用展开式求1a .【详解】(1)n x -的二项展开式的奇数项二项式系数和为64,1264n -∴=,即7n =;则77(1)[(1)2]x x -=+-的通项公式为717C (1)(2)k k kk T x -+=+-,令71k -=,则6k =,所以6617C (2)448a =⨯-=.故选:B【题型七】求系数最大项【典例分析】已知22nx ⎫+⎪⎭的展开式中,第3项的系数与倒数第3项的系数之比为116,则展开式中二项式系数最大的项为第()项.A .3B .4C .5D .6【答案】C【分析】先求出二项式展开的通项公式,分别求出第3项的系数与倒数第3项的系数,由题意得到关于n 的方程,即可确定其展开式二项式系数最大项.【详解】22nx ⎫⎪⎭的展开式通项公式为52122C C 2rn r n r r r rr n n T x x --+⎛⎫==⋅⋅ ⎪⎝⎭,则第3项的系数为22C 2n ⋅,倒数第3项的系数为22C 2n n n --⋅,因为第3项的系数与倒数第3项的系数之比为116,所以22422C 212C 216n n n n ---⋅==⋅,所以2226C 2C 2n n n n --⋅=⋅,解得8n =,所以展开式中二项式系数最大的项为第5项,故选:C 【变式训练】1.已知2nx ⎫⎪⎭的展开式中只有第5项是二项式系数最大,则该展开式中各项系数的最小值为()A .448-B .1024-C .1792-D .5376-【答案】C【分析】先根据二项式系数的性质可得=8n ,再结合二项展开式的通项求各项系数()82C r rr a =-,分析列式求系数最小项时r 的值,代入求系数的最小值.【详解】∵展开式中只有第5项是二项式系数最大,则=8n∴展开式的通项为()83821882C 2C ,0,1,...,8rr rr rr r T x r x --+⎛⎫=-=-= ⎪⎝⎭则该展开式中各项系数()82C ,0,1,...,8r rr a r =-=若求系数的最小值,则r 为奇数且+2200r r r r a a a a --≤-≤⎧⎨⎩,即()()()()+2+28822882C 2C 02C 2C 0r r r r r r r r -----≤---≤⎧⎪⎨⎪⎩,解得=5r ∴系数的最小值为()55582C 1792a =-=-故选:C.2.已知m 为正整数,()2m x y +展开式的二项式系数的最大值为a ,()21m x y ++展开式的二项式系数的最大值为b ,且137a b =,则m 的值为()A .4B .5C .6D .7【答案】C【分析】根据二项式系数的性质确定,a b ,由关系137a b =列方程求m 的值.【详解】由题意可知221C ,C m mm m a b +==,137a b =,22113C 7C m mm m +∴=,即()()()2!21!137!!!1!m m m m m m +=⋅⋅+,211371m m +∴=⨯+,解得6m =.故选:C .3.已知()*(1),n mx n m +∈∈N R 的展开式只有第5项的二项式系数最大,设2012(1)n n n mx a a x a x a x +=++++,若18a =,则23n a a a +++=()A .63B .64C .247D .255【答案】C【分析】根据二项式系数的性质求出n ,根据18a =求出m ,再由赋值法求解即可.【详解】因为展开式只有第5项的二项式系数最大,所以展开式共9项,所以8n =,718C 8a m =⋅=,∴1m =,∴8280128(1)x a a x a x a x +=++++,令1x =,得8012382256a a a a a +++++==,令0x =,得01a =,∴2325681247n a a a +++=--=.故选:C .【题型八】杨辉三角形应用【典例分析】“杨辉三角”是中国古代数学文化的瑰宝之一,它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论正确的是()A .222234510C C C C 165+++⋅⋅⋅+=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【答案】C【分析】A 选项由11C C C m m m n n n -++=及22222322234510334510C C C C C C C C C 1++++=+++++-即可判断;B 选项由二项式系数的增减性即可判断;C 选项由11C C C m m m n n n -++=及6767C C =即可判断;D 选项直接计算比值即可判断.【详解】由11C C C m m m n n n -++=可得22222322234510334510C C C C C C C C C 1++++=+++++-32223445101111109C C C C 1C 11164321⨯⨯=++++-=-=-=⨯⨯,故A 错误;第2022行中第1011个数为1010101120222022C C <,故B 错误;666766767678778889C C C C C C C C C ++=++=+=,故C 正确;第34行中第15个数与第16个数之比为14153434343321343320C :C :15:203:4141311514131⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯,故D 错误.故选:C.【变式训练】1.将三项式展开,得到下列等式:20(1)1a a ++=212(1)1a a a a ++=++22432(1)2321a a a a a a ++=++++2365432(1)367631a a a a a a a a ++=++++++⋯观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它正上方与左右两肩上的3个数(不足3个数时,缺少的数以0计)之和,第k 行共有21k +个数.则关于x 的多项式()2253(1)a ax x x +-++的展开式中,8x 项的系数()A .()2151a a +-B .()2151a a ++C .()21523a a ++D .()21523a a +-【答案】D【分析】直接利用广义杨辉三角和数据的组合的应用求出结果.【详解】根据广义杨辉三角的定义:()5210987654321151530455145301551a a a a a a a a a a a a ++=++++++++++;故()5210987654321151530455145301551x x x x x x x x x x x x ++=++++++++++;关于x 的多项式()()52231a ax x x +-++的展开式中8x 项的系数为()()22315301523aa a a -⨯+⨯=+-.故选:D .2.当N n ∈时,将三项式()21nx x ++展开,可得到如图所示的三项展开式和“广义杨辉三角形”:若在()()5211ax x x +++的展开式中,8x 的系数为75,则实数a 的值为()A .1B .1-C .2D .2-【答案】C【分析】根据广义杨辉三角形可得出()521x x ++的展开式,可得出()()5211ax x x +++的展开式中8x 的系数,即可求得a 的值.【详解】由广义杨辉三角形可得()521098765432151530455145301551xx x x x x x x x x x x ++=++++++++++,故()()5211ax x x +++的展开式中,8x 的系数为153075a +=,解得2a =.故选:C.3.如图,在由二项式系数所构成的杨辉三角形中,若第n 行中从左至右第14与第15个数的比为2:3,则n 的值为___________.【答案】34【分析】根据杨辉三角形中数据的规律可以写出第n 行中从左至右第14与第15个数的表达式,根据比例结果可计算得n 的值.【详解】由题意可知,根据数字规律可以看出第n 行中从左至右第m 个数为1C m n -所以,第n 行中从左至右第14与第15个数分别是13C n 和14C n ;即1314C 2C 3nn =,由组合数计算公式!C !()!m nn m n m =-可得142133n =-,计算的34n =;故答案为:34.【题型九】三项展开式【典例分析】下列各式中,不是()422a a b +-的展开式中的项是()A .78aB .426a bC .332a b -D .3224a b -【答案】D【分析】根据题意多项式展开式中,有一个因式选2a ,有2个因式选b -,其余的2个因式选2a ,有1个因式选b -,剩下的3个因式选2a ,分别计算所得项,即可得到结果.【详解】()422a a b +-表示4个因式22a a b +-的乘积,在这4个因式中,有一个因式选2a ,其余的3个因式选2a ,所得的项为()3132743C 2C 8a aa ⨯⨯=,所以78a 是()422a a b +-的展开式中的项,在这4个因式中,有2个因式选b -,其余的2个因式选2a ,所得的项为()()222224242C C 6b a a b ⨯-⨯⨯=,所以426a b 是()422a a b +-的展开式中的项,在这4个因式中,有1个因式选b -,剩下的3个因式选2a ,所得的项为()()313343C C 232b a a b ⨯-⨯=-,所以332a b -是()422a a b +-的展开式中的项,在这4个因式中,有2个因式选b -,其余的2个因式中有一个选2a ,剩下的一个因式选2a ,所得的项为()()2212132421C C C 224b a a a b ⨯-⨯⨯⨯⨯=,所以3224a b -不是()422a a b +-的展开式中的项.故选:D.三项展开式的通项公式:1.411()x y x y+--的展开式的常数项为A .36B .36-C .48D .48-【答案】A【分析】先对多项式进行变行转化成441()1x y xy ⎛⎫+- ⎪⎝⎭,其展开式要出现常数项,只能第1个括号出22x y 项,第2个括号出221x y 项.【详解】∵4444111()1x y x y x y x y x y xy xy ⎛⎫⎛⎫⎛⎫++--=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴411x y x y ⎛⎫+-- ⎪⎝⎭的展开式中的常数项为22244222(C (C 361))x y x y ⨯=.故选:A.2.在()621x x +-的展开式中,含3x 项的系数为()A .30-B .10-C .30D .50【答案】B【分析】把()621x x +-看成6个()21x x +-相乘,利用分类加法计数原理和分步乘法计数原理,即可得到结果.【详解】()621x x +-是6个()21x x +-相乘,需要依次从每个()21x x +-的三项(1,x ,2x -)中选出一项后相乘,就可得到展开式中的一项.得到3x 项的方法有两类:第一类是,6个()21x x +-的1个()21x x +-里选出x ,1个()21x x +-里选出2x -,其余()21x x +-里选出1,相乘得3x -,这类方法,共可得到114654CC C 30⨯⨯=个3x -,合并同类项后即得到330x -;第二类是,6个()21x x +-的3个()21x x +-里选出x ,其余()21x x +-里选出1,相乘得3x ,这类方法,共可得到3363C C 20⨯=个3x ,合并同类项后即得到320x .再将上述两项合并,得333302010x x x -+=-,因此3x 项的系数为10-.故选:B.3.()823x y z ++的展开式中,共有多少项?()A .45B .36C .28D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项;故选:A.培优第一阶——基础过关练1.()()412x x --的展开式中,3x 项的系数为()A .2B .14C .48D .2-【答案】B 【分析】3x 项由()41x -的2x 项与x 的积和()41x -的3x 项和2-的积组成,再结合二项式定理得出系数.【详解】()41x -展开式的通项为()441C rr rx--,在()()412x x --中,3x 项由()41x -的2x 项与x 的积和()41x -的3x 项和2-的积组成,故可得3x 的系数为()()()2121441C 11C 214-⨯+-⨯-=.故选:B .2.6⎛⎫ ⎪⎝⎭的展开式中3x 的系数为()A .160-B .64-C .64D .160【答案】C【分析】在二项展开式的通项公式中令x 的幂指数为3,求出r 的值,即可求得3x 的系数.【详解】6的展开式的通项公式为663166C (C 2(1)r r r r rr r r T x ---+==⋅-⋅,令33r -=,则0r =,故展开式中3x 的系数为0606C 2(1)64⋅-=.故选:C.3.已知1021001210(1)-=++++x a a x a x a x ,则()01210+++=a a a a ()A .10-B .10C .1D .1-【答案】D【分析】赋值法分别求0a 和1210a a a +++即可.【详解】令0x =可得01a =,令1x =可得012100a a a a ++++=即121001a a a a +++=-=-,所以()012101a a a a +++=-.故选:D.4.在4(1)(12)()a x y a ++∈N 的展开式中,记m n x y 项的系数为(),f m n ,若()()0,11,06f f +=,则a 的值为()A .0B .1C .2D .3【答案】B【分析】利用二项式定理展开公式求解.【详解】()01140,1C C 2,a f =⋅()1041,0C C ,a f =⋅所以()()0,11,0246f f a +=+=解得1a =,故选:B.5.()61x a y x ⎛⎫-+ ⎪⎝⎭的展开式中,含14x y -项的系数为15-,则=a ()A .1B .1-C .1±D .2±【答案】C【分析】先求出()6a y +的通项公式,然后整理出14x y -项的系数,根据系数相等可得答案.【详解】()6a y +的展开式的通项公式为66C rrr ay -,令4r =,可得6246C 15r r ra y a y -=;所以含14x y -项的系数为215a -,即21515a -=-,解得1a =±.故选:C.6.511(12)x x ⎛⎫+- ⎪⎝⎭的展开式中,常数项是()A .9-B .10-C .9D .10【答案】A【分析】由二项式定理的通项公式计算可得结果.【详解】∵555111(12)(12)(12)x x x x x ⎛⎫+--=+- ⎪⎝⎭,5(12)x -第1r +项为:155C (2)C (2)r r r r r r T x x +=-=-,(0,1,,5)r =,51(12)x x -的第1k +项为:11551C (2)C (2)k k kk k k T x x x-+=-=-,(0,1,,5)k =∴展开式中的常数项()()001155C 2C 21109T =-+-=-=-.故选:A.7.已知()na b +的展开式中只有第7项的二项式系数最大,则n =()A .11B .10C .12D .13【答案】C【分析】当n 为偶数时,展开式中第12n+项二项式系数最大,当n 为奇数时,展开式中第12n +和32n +项二项式系数最大.【详解】∵只有第7项的二项式系数最大,∴172n+=,∴12n =.故选:C8.若()()()()()42201223222nn x x x a a x a x a x -+=+-+-++-,则564a a a +=()A .15B .25C .35D .45【答案】D【分析】将23x x +中含有x 的项都写成2x -的形式,即可得解.【详解】()()()()()442223222107x x x x x x ⎡⎤+⎣⎦-+=---+()()()654272102x x x =-+-+-,所以6541,7,10a a a ===,所以56445a a a +=.故选:D.培优第二阶——能力提升练1.8x ⎛⎝的展开式中,以下为有理项的是()A .第3项B .第4项C .第5项D .第6项【答案】AC【分析】根据给定二项式求出其展开式的通项,再求出通项中x 的幂指数为整数的所对项数即可.【详解】8x ⎛⎝的展开式的二项式通项为138822188C C ,0,1,2,3,4,5,6,7,8r r r rr r T xx x r ---+⎛⎫=== ⎪⎝⎭,令823r -为整数,求得0r =,2,4,6,8,所以对应第1,3,5,7,9项为有理项,故选:AC2.在62x x ⎛⎫+ ⎪⎝⎭的展开式中,下列说法正确的是()A .常数项为160B .第3项二项式系数最大C .所有项的二项式系数和为62D .所有项的系数和为63【答案】ACD【分析】先求62x x ⎛⎫+ ⎪⎝⎭的通项公式可得选项A 的正误,利用n 的值可得选项B 、C 的正误,所有项的系数和可以利用赋值法求解【详解】62x x ⎛⎫+ ⎪⎝⎭展开式的通项为66261662C 2C rr r r r r r T x xx ---+⎛⎫=⋅= ⎪⎝⎭,由260r -=,得3r =,所以常数项为3362C 160=,A 正确;二项式展开式中共有7项,所以第4项二项式系数最大,B 错误;由6n =及二项式系数和的性质知,所有项的二项式系数和为62,C 正确;令1x =,得()660126213a a a a +++⋯+=+=,所有项的系数和为63,D 正确;故选:ACD.3.若2022220220122022(1)x a a x a x a x -=++++,则()A .01a =B .12022a =C .1220221a a a +++=-D .012320221a a a a a -+-++=【答案】AC【分析】对ACD ,由赋值法可判断;对B ,由二项式展开项通项公式可求.【详解】对A ,令0x =得01a =,A 对;对B ,由二项式展开项通项公式可得第2项为()1120212202211C 120222022T x x a x a =-=-=⇒=-,B 错对C ,令1x =得0122022122022001a a a a a a a a +++=++=-+⇒=-+,C 对;对D ,令=1x -得0123220222022a a a a a -+-++=,D 错.故选:AC.4.下列说法中正确的有()A .2799C C =B .233445C C C +=C .123C C C C 2n n n n n n ++++=D .()41x +展开式中二项式系数最大的项为第三项【答案】ABD【分析】根据组合数的性质即可判断AB ;根据二项式之和即可判断C ;对于D ,先求出展开式的通项,不妨设第1k +项的系数最大,则有144144C C C C kk k k -+⎧≥⎨≥⎩,从而可得出答案.【详解】对于A ,由组合数的性质可得2799C C =,故A 正确;对于B ,由组合数的性质可得233445C C C +=,故B 正确;对于C ,因为0123C C C C C 2n n n n n n n +++++=,所以1231C C C C 2n n n n n n ++++=-,故C 错误;对于D ,()41x +展开式的通项为14C kkk T x +=,不妨设第1k +项的二项式系数最大,则144144C C C C kk k k -+⎧≥⎨≥⎩,解得2k =,所以()41x +展开式中二项式系数最大的项为第三项,故D 正确.故选:ABD.5.()521x y ++展开式中24x y 的系数为________(用数字作答).【答案】30【分析】求出()521⎡⎤++⎣⎦x y 的通项令2r =时得()3245C 1+x y ,再求出()31x +展开式中2x 的系数可得答案.【详解】()521⎡⎤++⎣⎦x y 展开式通项为()55211C -+=+rr r r T x y ,{}0,1,2,3,4,5r Î,当2r =时()32425C 1=+T x y ,由()301223333331C +C +C +C +=x x x x 得2x 的系数为3,故24x y 的系数为25C 330⨯=.故答案为:30.6.已知()01311(1)22nn n x a a x a x ⎛⎫+=+++++ ⎪⎝⎭,写出满足条件①②的一个n 的值__________.①*3,n n ≥∈N ;②3,0,1,2,,i a a i n ≥=.【答案】8,9,10或11.(答案不唯一)【分析】令1x t +=,得到1C ,0,1,2,,2ii i na i n ⎛⎫== ⎪⎝⎭,再由3,0,1,2,,i a a i n ≥=求解.【详解】解:令1x t +=,得01112nn n t a a t a t ⎛⎫+=+++ ⎪⎝⎭,1C ,0,1,2,,2ii i n a i n ⎛⎫∴== ⎪⎝⎭,由条件②知32323234343411C C ,,22811,11C C ,22n n n n a a n a a ⎧⎧⎛⎫⎛⎫≥⎪⎪ ⎪ ⎪≥⎪⎪⎝⎭⎝⎭⇒⇒≤≤⎨⎨≥⎛⎫⎛⎫⎪⎪≥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎩.又*,n n ∈∴N 的值可以为8,9,10或11.(答案不唯一)故答案为:8,9,10或11.(答案不唯一)7.若()()542345321x a bx cx dx ex fx x -=+++++++,其中a ,b ,c ,d ,e ,f 为常数,那么b c d f +++=______.【答案】109【分析】利用赋值法求a b c d e f +++++和a ,利用二项式展开式通项公式求e ,由此可得结果.【详解】因为()()542345321x a bx cx dx ex fx x -=+++++++,令1x =,得316a b c d e f -=++++++,整理得:19a b c d e f +++++=-,令0x =,得961a -=+,97a =-,因为()52x -的展开式的通项公式为()515C 2rr rr T x -+=⋅-,所以()532x -的展开式中含4x 项的系数为()153C 2⋅-,又()41x +的展开式中含4x 项的系数为44C ,所以()153C 21e ⋅-=+,31e =-,将a 、e 代入即可求得109b c d f +++=.故答案为:109.8.0x ∀≠,101x x ⎛⎫+ ⎪⎝⎭可以写成关于221x x ⎛⎫+ ⎪⎝⎭的多项式,则该多项式各项系数之和为_________.【答案】243【分析】利用换元法,将101x x ⎛⎫+ ⎪⎝⎭转化为()52t +,从而利用赋值法即可求得该多项式各项系数之和.【详解】因为222112x x x x ⎛⎫+=++ ⎪⎝⎭,令221t x x =+,则()5105221122x x t x x ⎡⎤⎛⎫⎛⎫+=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令1t =,则()5523243t +==,所以该多项式各项系数之和为243.故答案为:243培优第三阶——培优拔尖练1.已知集合{}2019,12,6,10,5,1,0,1,8,15H =---,记集合H 的非空子集为1M 、2M 、L 、1023M ,且记每个子集中各元素的乘积依次为1m 、2m 、L 、1023m ,则121023m m m +++的值为___________.【答案】1-【分析】构造函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++,设该函数展开式中所有项系数之和为T ,则1210231m m m T +++=-,利用赋值法可求得结果.【详解】设集合H 的十个元素分别为1a 、2a 、L 、10a .1210121391012389101210121023m a a a a a a a a a a a a a a a a m m a a =+++++++++++++++.设函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++展开式中所有项系数之和为T ,则1210231m m m T +++=-,因为()10T f ==,所以11T -=-.故答案为:1-.【点睛】关键点点睛:本题主要考查的集合子集的判定,构造函数求解,属于难题.本题的关键是根据二项定理的推导过程构造出函数()()()()()()()()()()201912610511815f x x x x x x x x x x x =+++---+++,这种转化思想是本题的难点.2.设0i a i =(,1,2,…,2022)是常数,对于∀x ∈R ,都有()()()()()20220122022112122022x a a x a x x a x x x =+-+--++---(),则012345202120222!3!4!2020!2021!a a a a a a a a -+-+-+-+-=________.【答案】2021【分析】先令1x =,求得0a 的值,再将给定的恒等式两边求关于x 的导数,然后令1x =,从而可得所求的值.【详解】因为()()()()()()20220122022112122022xa a x a x x a x x x =+-+--++---,则令1x =可得01a =.又对()()()()()()20220122022112122022xa a x a x x a x x x =+-+--++---两边求导可得:()()()()()2021122022202212122022x a a x x a x x x ''=+--++---⎡⎤⎡⎤⎣⎦⎣⎦,令()()()()12n f x x x x n =--⨯⨯-,则()()()()()()12+2n f x x x x n x x n ''=--⨯⨯--⨯⨯-⎡⎤⎣⎦,所以()()()()()1112111!n n f n n -'=-⨯⨯-=--,所以()()()12202120211232022202211112!12021!a a a a ⨯=+⨯-⨯+⨯-⨯++⨯-故123202220222!2021!a a a a =-+--,所以012345202120222!3!4!2020!2021!202212021a a a a a a a a -+-+-+-+-=-=.故答案为:2021.【点睛】本题考查函数的导数以及恒等式的系数和的求法,注意根据恒等式的特征选择合适的赋值,本题属于较难题.3.()623a b c +-的展开式中23ab c 的系数为______.【答案】-6480【分析】()()662323a b c a b c +-=+-⎡⎤⎣⎦,利用二项式定理得到()3345402T c a b =-⋅+,再展开()32a b +,计算得到答案.【详解】()()662323a b c a b c +-=+-⎡⎤⎣⎦,展开式的通项为:()()61623rrr r T C a b c -+=+-,取3r =,则()()()63333346235402T C a b c c a b -=+-=-⋅+,()32a b +的展开式的通项为:()3132mm m m T C a b -+=,取2m =,得到()22233212T C a b ab ==,故23ab c 的系数为540126480-⨯=-.故答案为:6480-.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.4.对任意正整数i ,设函数()414034log 2i f x i =-⋅的零点为i a ,数列{}n a 的前n 项和为()*n S n N ∈,则使得n S 能被2n +整除的正整数n 的个数是________.【答案】0【分析】要求零点,应先把函数()i f x 解析式中的对数化为相同底数,再求函数的零点可得2017i x a i ==,进而写出数列{}n a 的前n 项和201720172017123n S n =++++,用二项式定理和整除思想说明2017n 不能被2n +整除即可。
1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn nn n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n nn n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0nn n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=L L , 变形式1221r nn nn n n C C C C +++++=-L L 。
考向38二项式定理全归纳经典题型一:求二项展开式中的参数 经典题型二:求二项展开式中的常数项 经典题型三:求二项展开式中的有理项 经典题型四:求二项展开式中的特定项系数 经典题型五:求三项展开式中的指定项经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 经典题型七:求二项式系数最值 经典题型八:求项的系数最值经典题型九:求二项展开式中的二项式系数和、各项系数和 经典题型十:求奇数项或偶数项系数和 经典题型十一:整数和余数问题 经典题型十二:近似计算问题 经典题型十三:证明组合恒等式 经典题型十四:二项式定理与数列求和 经典题型十五:杨辉三角(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).(2022·浙江·高考真题)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理 一般地,对于任意正整数,都有:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr n T C a b -+=,其中的系数r n C (r =0,1,2,…,n )叫做二项式系数, (2)二项式()n a b +的展开式的特点: ①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:①()②(4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯ 公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是;②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项和()n b a +的二项展开式的第r +1项是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是(只需把b -看成b 代入二项式定理). 2、二项式展开式中的最值问题 (1)二项式系数的性质①每一行两端都是1,即0nn n C C =;其余每个数都等于它“肩上”两个数的和,即nn b a )(+011()(1)(1)n n n r r n r rn n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅*N n ∈122(1)1n r r n n n n x C x C x C x x +=++++++rn C r n r r n C a b -r n r r n C b a -1(1)r r n r rr n T C a b -+=-11m m m n nn C C C -+=+. ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即m n mn n C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122rn n n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅=.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来. 知识点3、二项式展开式中系数和有关问题 常用赋值举例:(1)设,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令,可得:②令11a b ==,,可得:,即:(假设为偶数),再结合①可得: .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++.③奇数项的系数和与偶数项的系数和()011222nn n n r n r rn nnn n n n a b C a C a b C a b C a b C b ---+=++++++1a b ==012n n n n n C C C =+++()012301nnn n n nn C C C C C =-+-+-02131n n n n n n n n C C C C C C -+++=+++n 0213112n n n n n n n n n C C C C C C --+++=+++=(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++=;偶数项的系数和为135(1)(1)2f f a a a --+++=. (可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配) (ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++=;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配) 若1210121()n n n n f x a a x a x a x a x --=+++++,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.1、求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围().(1)第项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程. 2、解题技巧:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-,偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.经典题型一:求二项展开式中的参数0,1,2,,k n =m1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ( ) A .2 B .-2C .8D .-82.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =( )A .-1B .1C .±1D .23.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ( )A .2B .-2C .2或-2D .4经典题型二:求二项展开式中的常数项4.(2022·广东广州·高三阶段练习)若2nx x ⎛⎝的展开式中第2项与第6项的二项式系数相等,则该展开式中的常数项为( ) A .160-B .160C .1120-D .11205.(2022·福建省漳州第一中学模拟预测)已知53a x x ⎛⎝(a 为常数)的展开式中所有项系数的和与二项式系数的和相等,则该展开式中的常数项为( ) A .-90B .-10C .10D .906.(2022·山东青岛·高三开学考试)在62x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .80B .80-C .160D .160-7.(2022·全国·高三专题练习)已知二项式1nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为64,则展开式中常数项为( ) A .120-B .20-C .15D .20经典题型三:求二项展开式中的有理项8.(2022·江苏南通·高三阶段练习)21031(2x x的二项展开式中有理项有( ) A .3项B .4项C .5项D .6项9.(2022·全国·高三专题练习(理))若65(32)n x x 的展开式中有且仅有三个有理项,则正整数n 的取值为( ) A .4B .6或8C .7或8D .810.(2022·重庆市第十一中学校高三阶段练习)已知二项式()nx n N x *⎛∈ ⎝的展开式中,二项式系数之和为64,则展开式中有理项的系数之和为( ) A .119B .168C .365D .52011.(2022·全国·高三专题练习)在243(2x x的展开式中,有理项共有( ) A .3项B .4项C .5项D .6项12.(2022·全国·高三专题练习(理))若21nx x ⎫⎪⎭展开式中只有第四项的系数最大,则展开式中有理项的项数为( ) A .1B .2C .3D .4经典题型四:求二项展开式中的特定项系数13.(2022·湖北·高三开学考试)已知二项式13nx x ⎛⎫ ⎪⎝⎭的展开式中,所有项的系数之和为32,则该展开式中x 的系数为( ) A .405-B .405C .81-D .8114.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( ) A .454B .458-C .358D .715.(2022·全国·高三专题练习)在2()n x x -的展开式中,若二项式系数的和为32,则1x的系数为( ) A .80-B .80C .40-D .4016.(2022·全国·高三专题练习(理))()()()239111x x x ++++⋅⋅⋅++的展开式中2x 的系数是( ) A .45B .84C .120D .21017.(2022·全国·高三专题练习)若()1nx +的展开式中,某一项的系数为7,则展开式中第三项的系数是( ) A .7B .21C .35D .21或35经典题型五:求三项展开式中的指定项18.(2022·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )A .5B .-5C .15D .-1519.(2022·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .1152020.(2022·全国·高三专题练习)()423x y z +-的展开式中,所有不含z 的项的系数之和为( ) A .16B .32C .27D .8121.(2022·全国·高三专题练习)()421x y x ++的展开式中22y x的系数为( )A .4B .6C .8D .1222.(2022·全国·高三专题练习)在()5223x x --的展开式中含10x 和含2x 的项的系数之和为( ) A .674-B .675-C .1080-D .148523.(2022·全国·高三专题练习)()635x y -的展开式中,22x y 的系数为( )A .135-B .75-C .75D .135经典题型六:求几个二(多)项式的和(积)的展开式中条件项系数 24.(2022·浙江邵外高三阶段练习)()()6x y x y +-的展开式中34x y 的系数是________.(用数字作答)25.(2022·全国·高三专题练习)()6213x x x ⎛⎫-+ ⎪⎝⎭的展开式中的常数项为__________.26.(2022·全国·清华附中朝阳学校模拟预测)232345012345(1)(23)x x a a x a x a x a x a x +-=+++++,则4a =_________.27.(2022·全国·高三专题练习)已知522a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中的各项系数和为3-,则该展开式中的常数项为______.28.(2022·河北邢台·高三开学考试)()631x x x ⎛+ ⎝展开式中的3x 项的系数是______.29.(2022·浙江·杭十四中高三阶段练习)25()y x x x y ⎛⎫⎪⎭+ ⎝+的展开式中24x y 的系数为___________.(用数字作答)30.(2022·四川·树德中学高三阶段练习(理)) 6211(1)x x ⎛⎫++ ⎪⎝⎭展开式中3x 的系数为______.31.(2022·全国·高三专题练习)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.32.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.经典题型七:求二项式系数最值33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .1034.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是( ) A .3280xB .4560xC .3280x 和4560xD .5672x 和4560x35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为( ) A .5B .6C .7D .836.(2022·全国·高三专题练习)5a x x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为( ) A .2B .3C .4D .2-经典题型八:求项的系数最值37.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.38.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项. 39.(2022·全国·高三专题练习)若4()x xn 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.经典题型九:求二项展开式中的二项式系数和、各项系数和40.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++,则1237a a a a ++++=_________.(用数字作答)41.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为( )A .2B .0C .1D .-142.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++,则20202019201820171023420202021a a a a a a ++++++=( )A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯43.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++,则( )A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑经典题型十:求奇数项或偶数项系数和44.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++x x a a x a x a x ,则1357a a a a +++=_______,1a =________.45.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.46.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)n n n x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.47.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-经典题型十一:整数和余数问题48.(2022·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.49.(2022·河北·石家庄二中模拟预测)20222除以7的余数为_______. 50.(2022·福建漳州·三模)711除以6的余数是___________.51.(2022·全国·高三专题练习)091827899995555C C C C ++++被7除的余数是____________.52.(2022·天津市第七中学模拟预测)已知n 为满足()12320222022202220222022C C C C 3T a a =+++++≥能被9整除的正整数a 的最小值,则()()221nxx x -+-的展开式中含10x 的项的系数为______.53.(2022·全国·高三专题练习)若1002100012100(21)x a a x a x a x +=++++,则()1359923a a a a ++++-被8整除的余数为___________.54.(2022·浙江·高三专题练习)设a ∈Z ,且0≤a ≤16,若42021+a 能被17整除,则a 的值为 _____.经典题型十二:近似计算问题55.(2022·河南南阳·高三期末(理))81.02≈__________(小数点后保留三位小数). 56.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.57.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.经典题型十三:证明组合恒等式58.(2022·全国·高三专题练习)(1)设m 、*n N ∈,m n ≤,求证:1111m mn n n C C m +++=+; (2)请利用二项式定理证明:()2*3213,n n n n N >+≥∈.59.(2022·江苏省天一中学高三阶段练习)已知*0()()nk k n n k f x C x n N ==∈∑.(1)若456()()2()3()g x f x f x f x =++,求()g x 中含4x 项的系数; (2)求:012112323n m m m m n C C C nC -++++++++.60.(2022·江苏·泰州中学高三阶段练习)(1)设()(12),()n f x x f x =+展开式中2x 的系数是40,求n 的值;(2)求证:11(1)0(2,)nk k n k kC n n N +*=-=≥∈∑经典题型十四:二项式定理与数列求和61.(2022·全国·高三专题练习(理))令n a 为()11n x ++的展开式中含1n x -项的系数,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为( )A .()32n n + B .()12n n + C .1n n + D .21nn + 62.(2022·全国·高三专题练习)已知等差数列{}n a 的第5项是61x x ⎛⎫- ⎪⎝⎭展开式中的常数项,则28a a +=( ) A .20B .20-C .40D .40-63.(2022·河北保定·二模)若n 为等差数列4,2,0,--中的第7项,则二项式21(2)n x x-展开式的中间项系数为( )A .1120B .1120-C .1792D .1792-64.(2022·江西新余·二模(理))已知等差数列{}n a 的第5项是6122x y x ⎛⎫-+ ⎪⎝⎭展开式中的常数项,则该数列的前9项的和为( ) A .160B .160-C .1440D .1440-经典题型十五:杨辉三角65.(2022·全国·高三专题练习)如图所示的杨辉三角中,从第2行开始,每一行除两端的数字是1以外,其他每一个数字都是它肩上两个数字之和在此数阵中,若对于正整数n ,第2n 行中最大的数为x ,第21n 行中最大的数为y ,且137x y =,则n 的值为______.66.(2022·全国·高三专题练习)“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发引一组平行线,从上往下每条线上各数之和依次为:1,1,2,3,5,8,13,…,则第10条斜线上,各数之和为______.67.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.68.(2022·全国·高三专题练习)如图,在杨辉三角形中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10, ,记此数列的前n项之和为n S,则23S 的值为__________.1.(2022·北京·高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-2.(2020·山东·高考真题)在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是( )A .56B .56-C .70D .70-3.(2020·北京·高考真题)在5(2)x 的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020·全国·高考真题(理))25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2022·天津·高考真题)523x x ⎫⎪⎭的展开式中的常数项为______.6.(2021·天津·高考真题)在6312x x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2020·天津·高考真题)在522x x ⎛ ⎝⎭的展开式中,2x 的系数是_________. 8.(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).9.(2021·浙江·高考真题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.10.(2020·浙江·高考真题)设52345123456(12)x a a x a x a x a x a x +=+++++,则5a =________;123a a a ++=________.。
二项式定理一、基本知识点1、二项式定理:0111()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1n +项(3)二项式系数:(0,1,2,,)rnr C n =叫做二项展开式中第1+r 项的二项式系数(4)系数:未知数前的常数叫做系数(注意系数不同于二项式系数)(4)通项:展开式的第1+r 项,即1(0,1,,)r n r rr nT C a b r n -+==3、展开式的特点(1)二项式系数都是组合数,依次为012,,,,,k nn n n n n C C C C C ⋅⋅⋅(2)指数的特点:① a 的指数 由0n → ( 降幂)。
② b 的指数由0n →(升幂)。
③ a 和b 的指数和为n 。
(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数,一般2n ≥。
4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=(2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值1122n n nnCC-+=(3)二项式系数的和:0122k n n nn n n n C C C C C +++⋅⋅⋅++⋅⋅⋅+= 变形式:1221k nn n n n n C C C C +++++=-奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=(4)奇数项的系数和与偶数项的系数和(注意不是二项式系数和):0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和(5)二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
高中数学二项式定理知识梳理与题型归纳知识点梳理一、定理内容二、基本概念①二项式展开式:等式右边的多项式叫作(a+b)n的二项展开式②二项式系数:展开式中各项的系数中的③项数:展开式第r+1项,是关于a,b的齐次多项式.④通项:展开式的第r+1项,记作三、几个提醒①项数:展开式共有n+1项.②顺序:注意正确选择a与b,其顺序不能更改,即:(a+b)n和(b+a)n是不同的.③指数:a的指数从n到0, 降幂排列;b的指数从0到n,升幂排列。
各项中a,b的指数之和始终为n.④系数:正确区分二项式系数与项的系数:二项式系数指各项前面的组合数;项的系数指各项中除去变量的部分(含二项式系数)。
⑤通项:通项是指展开式的第r+1项.四、常用结论由此可得贝努力不等式。
当x>-1时,有:n≥1时,(1+x)n≥1+nx;0≤n≤1时,(1+x)n≤1+nx.(贝努力不等式常用于函数不等式证明中的放缩)五、几个性质①二项式系数对称性:展开式中,与首末两项等距的任意两项二项式系数相等。
②二项式系数最大值:展开式的二项式系数中,最中间那一项(或最中间两项)的二项式系数最大。
即:③二项式系数和:二项展开式中,所有二项式系数和等于,即:奇数项二项式系数和等于偶数项二项式系数和,即:(注:凡系数和问题均用赋值法处理)④杨辉三角中的二项式系数:题型归纳一、求二项展开式二、求展开式的指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。
说明:凡二项展开式中指定项的问题,均直接使用通项公式处理.说明:对于位置指定的展开项问题,要注意用原式,底数中项的顺序不得随意调整。
说明:积的展开式问题,一般分别计算两个因式的通项。
练习:1. 求常数项1、已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45i B. 45i C. -45 D. 45解析:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。
专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a b r n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r q n r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 .2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 .6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21C .189D .189−7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150 B.150 C.-240 D.240重点题型·归类精练8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .511.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 .题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .13214.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 .15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( )A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案);19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .20.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为6421.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于3222.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .5623.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( )A .4B .5C .6D .7题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .25.6(21)x y −+展开式中含2x y 项的系数为 . 26.()()6211x xx ++−的展开式中2x 的系数为( ) A .9B .10C .24D .2527.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)28.()52x y z −+的展开式中,3x yz 的系数为 .29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .1530.若()522100121022x x a a x a x a x −+=++++,则5a = .2x 2x − 2题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).33.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .18035.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案)36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .19037.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600−B .840−C .1080−D .2040−40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294−B .826−C .840−D .854−41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .42.42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .343.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答)44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .32045.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( ) A .―4 B .84C .―280D .56047.(多选)已知()31nx n x *⎛⎫−∈ ⎪⎝⎭N 的展开式中含有常数项,则n 的可能取值为( )A .4B .6C .8D .10题型9 奇次项与偶次项的系数和48.若()62345601234561x a a x a x a x a x a x a x −=++++++,则246a a a ++=( ) A .64B .33C .32D .3149.若()()522701273321x x x a a x a x a x −−−=++++,则0246a a a a +++= .50.()()41a x x ++的展开式中x 的奇数次幂项的系数之和为32,则=a ( ) A .2− B .2C .3−D .3 51.若()()()()20232202301220231111x m a a x a x a x ++=+++++++,且()()2220230220221320233a a a a a a +++−+++=,则实数m 的值为 .题型10 等式两边求导后求和52.(多选)若()()()()102100121021111x a a x a x a x −=+−+−++−,x ∈R ,则( )A .01a =B .1012103a a a +++=C .2180a =D .9123102310103a a a a ++++=⨯53.(多选)已知多项式220121(12)(13),19m nn x x a a x a x a x a −−=+++⋅⋅⋅+=−,则( )A .12m n +=B .12324n a a a a +++⋅⋅⋅+=C .24a =−D .12323368n a a a na +++⋅⋅⋅+=−题型11 展开式系数最大的项54.在822x x ⎫⎪⎭的展开式中,①求二项式系数最大的项; ②系数的绝对值最大的项是第几项;55.212n x x ⎛⎫− ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则212nx x ⎛⎫− ⎪⎝⎭的展开式中系数最大的项的系数为 .题型12 等式两边不一致时需要换元或配凑56.已知()()()()21001210101111a a a x x x a x =+−+−+⋅⋅⋅+−+,则8a =________. 57.已知多项式()()()()10210012101111x a a x a x a x −=+++++++,则7a =( )A .-960B .960C .-480D .48058.(多选)已知923901239(25)(2)(2)(2)(2)x a a x a x a x a x −=+−+−+−++− ,则下列结论成立的是A .0191a a a +++=B .876012382226256a a a a a +++++=C .9012393a a a a a −+−+−= D .123923918a a a a ++++=题型13 赋值求系数和59.若()42340123421x a a x a x a x a x −=++++,1234a a a a +++=________.60.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x −=+−+−+−+−+−,则下列结论中正确的是( )A .01a =B .480a =C .50123453a a a a a a +++++= D .()()10024135134a a a a a a −++++=61.(多选)若202123202101232021(12)(R)x a a x a x a x a x x −=+++++∈,则( )A .01220211a a a a ++++=−B .20211352021312a a a a +++++=C .20210242020132a a a a −++++= D .123202123202112222a a a a ++++=− 62.已知5250125())(1)(1)(1)(x m a a x a x a x m R +=+−+−++−∈,若225024135()()3a a a a a a ++−++=则m =_________或_________.63.已知2323122202222312a a a a a x x x x x⎛⎫−=+++++ ⎪⎝⎭,则0121222221222a a a a ++++= A .-1B .0C .1D .2广东省二模T7改 64.已知2023220230122023(1)x a a x a x a x −=++++,(1)展开式中的二项式系数为________, (2)122023a a a =+++________,(3)2023202220210122023222a a a a =++++________,(赋值)(4)122023111a a a +++=________.(对称性)题型14 整除和余数问题 65.20233被8除的余数为( )A .1B .3C .5D .766.二项式()20235x +展开式的各项系数之和被7除所得余数为 .67.108除以49所得的余数是 . 68.20242023被4除的余数为 .69.若2022n =,则1122155C 5C 5C n n n n n n n −−−++++除以7的余数是 .70.()2023678−除以17所得的余数为 .71.(多选)若()54325101051f x x x x x x =−+−+−,则( )A .()f x 可以被()31x −整除B .()1f x y ++可以被()4x y +整除C .()30f 被27除的余数为6D .()29f 的个位数为6题型15 二项式定理与杨辉三角72.如图,在由二项式系数所构成的杨辉三角形中,第10行中最大的数与第二大的数的数值之比为(用最简分数表示).73.如图,在“杨辉三角”中从第2行右边的1开始按箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,,则此数列的前30项的和为( )A .680B .679C .816D .81574.“杨辉三角”是中国古代数学文化的瑰宝之一,它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律,如图所示,则下列关于“杨辉三角”的结论错误的是( )A .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于第9行的第8个数B .第2023行中第1012个数和第1013个数相等C .记“杨辉三角”第n 行的第i 个数为i a ,则()11123n i ni i a +−==∑D .第34行中第15个数与第16个数之比为2:3题型16 二项式定理与数列75.设数列{}n a 的前n 项和为n S ,且满足()*21N n n S a n =−∈.(1)求数列{}n a 的通项公式;(2)解关于n 的不等式:012312341C C C C C 2023nn n n n n n a a a a a +++++⋅⋅⋅+<.76.已知数列{}n a 的通项公式为121n n a −=+.求0121231C C C C nn n n n n a a a a +++++的值.77.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=−,514a =,426S =. (1)求数列{}n a 的通项公式;(2)已知011221C 3C 3C 3C 3C n n n n n n n n n n n b −−−=⋅+⋅+⋅++⋅+,求数列{}n n a b ⋅的前n 项和n T .78.(2023·黑龙江哈尔滨·哈师大附中统考三模)已知数列{}n b 的前n 项和为n S ,满足()231n n S b =−,等差数列{}n c 中1123,5,27c c c c =++=. (1)求{}n b 和{}n c 的通项公式;(2)数列{}n b 与{}n c 的共同项由小到大排列组成新数列{}n a ,求数列}{n a 的前20的积20T . 79.已知数列{}n a 前n 项和232n n n S +=,{}n b 的前n 项之积()(1)*22N n n n T n +=∈. (1)求{}n a 与{}n b 的通项公式.(2)把数列{}n a 和{}n b 的公共项由小到大排成的数列为{}n c ,求1220c c c ++⋅⋅⋅+的值. 80.(多选)已知当0x >时,111ln 11x x x ⎛⎫<+< ⎪+⎝⎭,则( ) A .188e 7>B .1111ln8237++++> C .111ln8238+++< D .018888018C C C e 888+++<81.已知()20032001C 62nnnn a −⎛⎫=⋅⋅ ⎪⎝⎭(1n =,2,⋯,95),则数列{}n a 中整数项的个数为( ) A .13 B .14C .15D .16专题8-2 二项式定理16类常考问题汇总题型1 求展开式中的指定项 题型2 求指定项的系数 题型3 二项式系数最大的项 题型4 展开式所有项系数和 题型5 展开式二项式系数和 题型6 三项展开式问题题型7 两个二项式乘积展开式的系数问题 题型8 由项的系数或系数和确定参数 题型9 奇次项与偶次项的系数和 题型10 等式两边求导后求和 题型11 展开式系数最大的项题型12 等式两边不一致时需要换元或配凑 题型13 赋值求系数和 题型14 整除和余数问题 题型15 二项式定理与杨辉三角 题型16 二项式定理与数列1、定义一般地,对于任意正整数n ,都有:()011*()n n n r n r r n nn n n n a b C a C a b C a b C b n N −−+=+++++∈这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式.式中的r n r r n C a b −做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b −+=,其中的系数(0,1,2,,)rnC r n =⋯叫做二项式系数 2、二项式()n a b +的展开式的特点:(1)项数:共有1n +项,比二项式的次数大1;(2)二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中; (3)次数:a ,b 次数和均为n(4)对称性:二项展开式中,与首末两端“等距离"的两项的二项式系数相等,即r n rn nC C −= (5)增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2nn C 最大;当n 为奇数时,二项展开式中间两项的二项式系数1122,n n nnCC−+相等,且最大3、二项展开式的通项:1(0,1,2,,)r n r rr n T C a br n −+==公式特点:(1)它表示二项展开式的第1r +项,该项的二项式系数是r n C ; (2)字母b 的次数和组合数的上标相同;4、二顶式系数和与所有项系数和,以及奇数项项与偶数项 例:对于()n x a +(1)二项式系数之和为2n ,即012342n n nn n n n n C C C C C C ++++++=;(2)所有展开式系数和为(1)n b +,展开式为:()011*()n n n r n r rn nn n n n x b C x C x b C x b C b n N −−+=+++++∈,可以表示为:()1*01()n n n x b a a x a x n N +=+++∈,令1x =即可得出所有项系数和(3)二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即02413512n n n n n n n C C C C C C −+++=+++=.知识点诠释:(1)二项式系数与展开式的系数的区别二项展开式中,第1r +项r n r r n C a b −的二项式系数是组合数r n C ,展开式的系数是单项式r n r r n C a b −的系数,二者不一定相等.(2)()n a b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且)p q r n ++=()[()]()n n r n r r r qn r q q r n n n r a b c a b c C a b c C C a b c −−−−++=++=+=(3)求解二项展开式中系数的最值策略①求二项式系数的最大值,则依据(a +b )n 中n 的奇偶及二项式系数的性质求解.②求展开式中项的系数的最大值,由于展开式中项的系数是离散型变量,设展开式各项的系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,因此在系数均为正值的前提下,求展开式中项的系数的最大值只需解不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1即得结果.题型1 求展开式中的指定项1.式子12(1)x −二项式定理展开中的第6项为 . 【答案】7792x −【解析】由()121x −,所以二项展开式的通项公式()121211C rr rr T x −+=⋅−⋅,012r ≤≤,r ∈Z , 令=5r ,可得展开式的第六项为()5775121792C x x ⋅−⋅=−. 2.二项式5312x x ⎛⎫− ⎪⎝⎭的展开式中的第3项为( )A .160B .80x −C .380x D .740x −【解析】【答案】C 【分析】根据二项式展开式公式即可求解. 【详解】因为()51531C 2kkkk T x x −+⎛⎫=⋅− ⎪⎝⎭,所以()2323533180C 2T x x x ⎛⎫=⋅−=⎪⎝⎭,故C 项正确. 3.533x x ⎛⎫+ ⎪⎝⎭的展开式中,有理项是第 项.【解析】【答案】3 【分析】求出二项式展开式的通项公式,根据有理项的含义,确定参数的值,即可得答案.【详解】533x x ⎛⎫+ ⎪⎝⎭的展开式的通项511051362155C 3C 3kkkk k k k T x x x−−−+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⋅, 其中0,1,2,3,4,5k =, 当1k T +为有理项时,1056k−为整数,结合0,1,2,3,4,5k =, 所以2k =,即有理项是展开式中的第3项4.6232x x −⎛⎫− ⎪⎝⎭的展开式中有理项的个数为 .重点题型·归类精练【答案】3【解析】展开式的通项为()2566633166C (2)(1)2C 0,1,2,,6rrr r r r rr T x x x r −−−−+⎛⎫=−=−= ⎪⎝⎭,要为有理项,则563r −为整数,故r 可取03,6,,共有3项有理项.题型2 求指定项的系数5.二项式5(2)x y −的展开式中,含2y 项的系数为 . 【答案】40【解析】二项展开式的通项为515C (2)r rr r T x y −+=−,令2r =,则2323235C (2)40T x y x y =−=.故答案为:40.6.在7(3)x −的展开式中,3x 的系数为( ) A .21− B .21 C .189 D .189−【解析】【答案】B 【分析】利用二项展开式的通项公式可得解.【详解】由二项展开式的通项公式得11772277C 3()C 3(1)r r r r r r r x x −−−=−,令132r =得6r =,所以3x 的系数为667C 3(1)21−=.7.⎝ ⎛⎭⎪⎫x -2x 6的展开式中的常数项为( )A .-150B.150C.-240D.240【答案】D【解析】 (1)⎝⎛⎭⎫x -2x 6的二项展开式的通项为T k +1=C k 6x 6-k ·⎝⎛⎭⎫-2x k =C k 6x 6-k ·(-2)k ·x -k2=(-2)k C k 6x 6-32k .令6-32k =0,解得k =4,故所求的常数项为T 5=(-2)4·C 46=240.8.在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.【答案】162 5【解析】该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5. 【答案】162 5题型3 二项式系数最大的项9.已知二项式()21nx −的展开式中仅有第4项的二项式系数最大,则n = . 【答案】6【解析】因为二项式()21nx −的展开式中仅有第4项的二项式系数最大,根据二项展开式的性质,可得中间项的二项式系数最大,所以展开式一共有7项, 所以n 为偶数且32n=,可得6n =. 10.()32+nx 展开式中,只有第4项的二项式系数最大,则n 的值为( ) A .8B .7C .6D .5【解析】【答案】C【分析】根据二项式系数的性质知中间一项第4项二项式系数最大即可得解 【详解】因为只有一项二项式系数最大,所以n 为偶数,故142n+=,得6n =.故选:C11.1nx x ⎫⎪⎭的展开式中只有第六项的二项式系数最大,则第四项为 .【答案】12120x【解析】因为展开式中只有第六项的二项式系数最大,即162n+=,所以10n =,所以317324101C 120T x x x ⎛⎫== ⎪⎝⎭.12.在()1nx +的展开式中,若第7项系数最大,则n 的值可能等于 . 【答案】11、12、13【解析】在()1nx +的展开式中,每项的系数等于其二项式系数, ①当只有第7项系数最大时,即只有6C n 最大时,则n =12;②当第6项和第7项的系数相等且最大时,即56n n C C =最大时,则n =11;③当第7项和第8项的系数相等且最大时,即67C C n n =最大时则n =13,综合①②③可得n 的值可能等于11、12、13, 故答案为:11、12、13.题型4 展开式所有项系数和13.若32nx x 的展开式中的第4项为常数项,则展开式的各项系数的和为( )A .112B .124C .116D .132【答案】D【解析】32nx x 的第4项为:())3353133223111C C 22n n n nT x x x −−−+⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭. 因其为常数项,则5n =.令1x =,可得展开式的各项系数的和为5111232⎛⎫−=⎪⎝⎭. 14.在54(1)(12)x x ++−的展开式中,所有项的系数和等于 ,含3x 的项的系数是 . 【分析】用赋值法,令1x =求所有项的系数和;分析含3x 的项的构成,直接求得.【详解】解:423450123455(1)(12)a a x a x a x a x a x x x =+++++++−所以令1x =代入得:401235554(11)(12)2133a a a a a a =++++−+++=+=; 而333333354(2)22a C x C x x x =+−=−故答案为:33;22−.15.若8231x a x ⎛⎫+ ⎪⎝⎭展开式中所有项的系数和为 256 ,其中a 为常数,则该展开式中4x −项的系数为【分析】由1x =结合所有项的系数和得出1a =,再由二项展开式的通项求解即可.【详解】因为 8231x a x ⎫⎪⎭展开式中所有项的系数和为 256 ,所以)81256a =,解得1a =,由题意得 82311x x ⎛⎫+ ⎪⎝⎭展开式中4x −项的系数与8311x ⎛⎫+ ⎪⎝⎭展开式中的6x −项的系数相同.8311x ⎛⎫+ ⎪⎝⎭展开式的通项()318C 0,1,2,,8r r r T x r −+==,令36r −=−,得2r =,所以展开式中 4x −项的系数为28C 28=. 16.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x x x −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=,即有223T x x ⨯=, 令322k −=,则12k =,舍去; 故展开式中2x 的系数为3.题型5 展开式二项式系数和17.(多选)已知3241nx x ⎛⎫+ ⎪ ⎪⎝⎭展开式中的第三项的系数为45,则( ) A .9n =B .展开式中所有系数和为1024C .二项式系数最大的项为中间项D .含3x 的项是第7项【解析】【答案】BCD 【分析】由二项式定理相关知识逐项判断即可.【详解】3241n x x 展开式的第三项为:2422232232223412431C C C n n n n nnT x xx xx −−−==⋅=,所以第三项的系数为:2C 45n =,所以10n =,故A 错误;所以103241x x ,所以令1x =得展开式中所有系数和为1021024=,故B 正确; 展开式总共有11项,则二项式系数最大的项为中间项,故C 正确;通项公式为(102101130323412411010101C CC rr r r rr rr r T x xxxx −−−+==⋅=,令1130312r −=,解得6r =,所以含3x 的项是第7项.故D 正确; 故选:BCD.18.在32nx x ⎛ ⎝的二项展开式中,各项的二项式系数之和为128,则展开式中7x 的系数为 (用数字填写答案); 【答案】280【解析】依题意可得2128n =,则7n =,所以732x x ⎛ ⎝展开式的通项为()()()7217732177C 2C 21rr r r r r r r T x xx −−−+⎛==− ⎝(07r ≤≤且N r ∈), 令72172r −=,解得4r =,所以()4437757C 21280T x x =⨯⨯−=,所以展开式中7x 的系数为280.19.若31nx x ⎛⎫− ⎪⎝⎭的展开式的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中41x 的系数为 .【答案】56 【分析】通过二项式系数和求出4n =,然后求出831x x ⎫⎪⎭展开式的通项公式,最后求出指定项的系数即可.【详解】由31nx x ⎫⎪⎭的展开式的二项式系数之和为16,得216n =,所以4n =,则831x x ⎫⎪⎭的展开式的通项公式为848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭,令8443r −=−,解得=5r ,故231nx x ⎫⎪⎭的展开式中41x 的系数为58C 56=. 故答案为:5620.(多选)在()521x −的展开式中,则( ) A .二项式系数最大的项为第3项和第4项 B .所有项的系数和为0 C .常数项为1−D .所有项的二项式系数和为64 【分析】根据二项式系数015555C ,C ,,C 的性质即可判断AD ;根据项的系数之和为(1)f 即可判断B ;根据二项式展开式的通项公式即可判断C.【详解】A :所有项的二项式系数为015555C ,C ,,C ,最大的为25C 和35C ,对应的是第3项和第4项,故A 正确;B :设5()(21)f x x =−,所有项的系数为015,,,a a a , 所以5015(1)(211)1a a a f +++==⨯−=,故B 错误;C :二项式展开式的通项公式为55C (2)(1)(0,1,2,3,4,5)rr r x r −−=, 令50r −=,解得=5r ,所以常数项为5055C 2(1)1⋅⋅−=−,故C 正确; D :所有项的系数之和为0155555C +C C 232++==,所以D 错误.故选:AC21.若2na x x ⎛⎫+ ⎪⎝⎭的二项展开式的第一项为532x ,最后一项为51x −,则下列结论正确的是( )A .5n =B .展开式的第四项的二项式系数等于40−C .展开式中不含常数项D .展开式中所有项的系数之和等于32【解析】【答案】AC 【分析】通过()551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭计算可判断A ;直接求第四项的二项式系数可判断B ;求出展开式的通项,观察后可判断C ;令1x =,计算可判断D. 【详解】选项A :依题意有()0551C 232,C nnnnna x x x x ⎛⎫==− ⎪⎝⎭,解得5,1n a ==−,所以A 正确;选项B :展开式的第四项的二项式系数应为35C 10=,故B 错误;选项C :512x x ⎛⎫− ⎪⎝⎭的展开式的通项()()55521551C 21C 2rr r r r r rr T x x x −−−+⎛⎫=⋅−=− ⎪⎝⎭, 由于r ∈N ,所以520r −≠,因此展开式中不含常数项,故C 正确;选项D :令1x =,可得展开式中所有项的系数之和等于512111⎛⎫⨯−= ⎪⎝⎭,故D 错误.故选:AC.22.若()*31N nx n x ⎛⎫−∈ ⎪⎝⎭的展开式中所有项的二项式系数之和为16,则231nx x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为( ) A .6B .8C .28D .56【解析】【答案】C 【分析】根据31nx x ⎫⎪⎭的展开式中所有项的二项式系数之和求出n 的值,从而写出231nx x ⎫⎪⎭的展开式的通项公式,再令x 的指数为0,即可求解常数项.【详解】由()*31N nx n x ⎫∈⎪⎭的展开式中所有项的二项式系数之和为16,得216n =,所以4n =,则二项式831x x ⎫⎪⎭的展开式的通项公式为(848331881C C rr rrrr T x x x −−+⎛⎫== ⎪⎝⎭(08r ≤≤且N r ∈),令8403r−=,解得2r =, 所以238C 28T ==,故831x x ⎫⎪⎭的展开式中的常数项为2823.在322nx x ⎛⎫+ ⎪⎝⎭的二项展开式中,各二项式系数之和为n a ,各项系数之和为n b ,若1056n n a b +=,则n =( ) A .4B .5C .6D .7【解析】【答案】B 【分析】依题意可得2n n a =,令1x =得到4n n b ,从而求出n .【详解】由32nx x ⎛⎫+ ⎪⎝⎭,令1x =可得各项系数之和为4n n b ,又各二项式系数之和为2n n a =,因为1056n n a b +=,则421056n n +=,解得232n =或233n =−(舍去), 所以5n =.题型6 三项展开式问题24.若0m ≠,且()622312112312x x m a a x a x a x a x −+=++++⋅⋅⋅+,则m 的值为 .【答案】6−【解析】由题意得()62x x m −+的展开式中的常数项与一次项系数相等,则()6156C 1m m =−,解得6m =−或0(舍去).25.6(21)x y −+展开式中含2x y 项的系数为 . 【解析】6(21)x y −+展开式中,含2x y 的项是:()221264C C 2120x y x y −=−.故答案为:120−26.()()6211x x x ++−的展开式中2x 的系数为( )A .9B .10C .24D .25【答案】B 解析:()()()()()66662211111x xx x x x x x ++−=−+−+−,所以2x 的系数为()()22106661110C C C −+−+=;故选B27.3212x x ⎛⎫−+ ⎪⎝⎭中常数项是 .(写出数字)【答案】11【解析】3212x x ⎛⎫−+ ⎪⎝⎭的展开式中当2x ,1x −,2对应的次数分别为0,0,3和1,2,0时即为常数,所以常数项为212331C 23811x x ⎛⎫−+=+= ⎪⎝⎭.28.()52x y z −+的展开式中,3x yz 的系数为 . 【答案】40−【解析】()52x y z −+的展开式通项为()515C 2rr rr A x y z −+=−+, ()2ry z −+的展开式通项为()()1C 2C 2r kr kkk k r k k k rr B y z y z −−−+=⋅−=⋅−,其中05k r ≤≤≤,k 、N r ∈,所以,()52x y z −+的展开式通项为()51,15C C 2r kr kr r k k r k r T x y z −−−++=−,由题意可得5311r r k k −=⎧⎪−=⎨⎪=⎩,解得21r k =⎧⎨=⎩,因此,()52x y z −+的展开式中3x yz 的系数为()2152C C 240⨯−=−.29.已知()22121nx x x x ⎛⎫−++ ⎪⎝⎭的展开式中各项系数和为27,则4x 项的系数为( )A .3B .6C .9D .15【分析】先由展开式中各项系数和为27,求出3n =,直接求出展开式,得到4x 项的系数.【详解】由题意可得:令x =1可得()12111271n ⎛⎫−++= ⎪⎝⎭,解得:3n =.所以原式为()()()333222221121211x x x x x x x x x x ⎛⎫−++=⨯++−++ ⎪⎝⎭.要求4x 项,只需求出()321x x ++展开式中2x 和5x 项.()()()()()()()()()312332120212223233331C 1C 1C 1C 1x x x x x x x x x x ++=+++++++()()()3224613131x x x x x x =++++++ 65432367631x x x x x x =++++++所以()322121x x x x ⎛⎫−++ ⎪⎝⎭的展开式中,4x 项为45411239x x x x −⨯=.30.若()522100121022x x a a x a x a x −+=++++,则5a = .【解析】【答案】592− 【分析】由组合数以及分类加法和分步乘法计数原理即可得解.【详解】()5222x x −+表示5个因数()222x x −+的乘积.而5a 为展开式中5x 的系数,设这5个因数()222x x −+中分别取2x 、2x −、2这三项分别取,,i j k 个,所以5i j k ++=,若要得到含5x 的项,则由计数原理知,,i j k的取值情况如下表:2x 2x − 2i 个j 个k 个 0 5 0 1 3 1 212由上表可知)()()()()531132143315554532222232320240592C C C C C a −−=−+⋅−⋅+⋅−⋅=−+−+−=−.故答案为:592−.题型7 两个二项式乘积展开式的系数问题31.()()4212x x −+的展开式中2x 的系数为 (用数字作答).【答案】8−【解析】由题意得:()42x +展开式的通项为:414C 2rrr r T x−+=,当42r −=时,即:2r =,得:222234C 224T x x ==, 当40r −=时;即:4r =,得:40454C 216T x ==,所以得:()()4212x x −+展开式中含2x 项为:22216248x x x −=−,所以2x 的系数为:8−.32.81()y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为 (用数字作答).【答案】-28【分析】()81y x y x ⎛⎫−+ ⎪⎝⎭可化为()()88y x y x y x +−+,结合二项式展开式的通项公式求解.【详解】因为()()()8881=y y x y x y x y x x ⎛⎫−++−+ ⎪⎝⎭,所以()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x −=−,()81y x y x ⎛⎫−+ ⎪⎝⎭的展开式中26x y 的系数为-28故答案为:-2833.712(1)x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为( )A .7−B .7C .77D .77−【答案】B【解析】()71x −的展开式通项为()()177C 1C rrr rr r T x x +=⋅−=−⋅,故()7121x x ⎛⎫+− ⎪⎝⎭的展开式中2x 的系数为()()23237721C 1C 7⨯−+−= 34.6211(2)2x x ⎛⎫+− ⎪⎝⎭展开式中2x 的系数为( )A .270B .240C .210D .180【解析】【答案】A 【分析】由题意可得所求的展开式中2x 的系数为6(2)x −展开式二次项系数与四次项系数的一半的和.【详解】6(2)x −展开式的通项公式为()61612C rr r rr T x −+=−, 则原展开式中2x 的系数为()()24422466112C 12C 2702−⨯+⨯−⨯=.35.6(2)(2)x y x y −+的展开式中25x y 的系数是 .(用数字填写答案) 【答案】108−【解析】666(2)(2)(2)22()x y x y x x y y y x −++=−+,所以展开式中含25x y 的项有556C 2x xy 和()24462C 2y x y −, 所以25x y 的系数为542662C 2C 212120108−⨯=−=−,故答案为:108−36.()3532()x x a −+的展开式中的各项系数和为243,则该展开式中4x 的系数为( )A .130−B .46C .61D .190【答案】A【解析】令1x =,则5(1)243a +=,解得2a =.所以()3532(2)x x −+展开式中4x 的系数是:414553C 2(2)C 2130⨯⨯+−⨯⨯=−. 37.将多项式26576510a x a x a x a x a +++++分解因式得25(2)(1)x x −+,则5a =( )A .16B .14C .6−D .10−【解析】【答案】C 【分析】将()51x +展开,观察345,x x x , 的系数,对应()22x −的展开相乘,相加得到答案.【详解】解析:由题意,()()()()255221441x x x x x −+=−++,52232551a x x C x =⋅⋅14541x C x −⋅⋅055546C x x +⨯=−,所以56a =−,故选:C.题型8 由项的系数或系数和确定参数 38.设()2340123412nn n x a a x a x a x a x a x −=++++++,若0417a a +=.则n = .【答案】4【解析】()12nx −展开式的通项公式为:()C 2rr n x −,分别令0,4r r ==,01a ∴=,4416C n a =, 则0417a a +=,即4116C 17n +=,解得:4n =.故答案为:4.39.()5223x x a −+的展开式的各项系数之和为1,则该展开式中含7x 项的系数是( ) A .600− B .840− C .1080− D .2040−【答案】D【分析】利用赋值法令1x =由各项系数之和为1可求得2a =,由通项可得展开式中含7x 项的系数是2040−. 【详解】因为()5223x x a −+的展开式的各项系数之和为1, 令1x =,得5(1)1a −+=,解得2a =,所以()52232x x −+的展开式中含7x 项为()()()()32332122375253C 2C 32C 2C 32040x x x x x −⨯+−=−,所以该展开式中含7x 项的系数是2040−.40.已知()12nx +的展开式中前3项的二项式系数之和为29,则3123nx x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中1x 的系数为( ) A .294− B .826− C .840− D .854−【答案】D【分析】第一步:根据已知求得n ,第二步:分类求展开式中1x的系数,第三步:求和即可得解. 【详解】由题知,121C C 29n n ++=,解得7n =或8n =−(舍去).则72x x ⎫⎪⎭的展开式的通项()73721772C 2C rr r r rr r T x x x −−+⎛⎫=−=− ⎪⎝⎭,当313x +中取3时,72x x ⎫⎪⎭的展开式中取含1x 的项,令7312−=−r ,解得3r =,()37332C 840⨯−=−; 当313x +中取31x 时,72x x ⎫⎪⎭的展开式中取含2x 的项,令7322r −=,解得1r =,()172C 14−=−. 所以3123nx x x ⎛⎫+ ⎪⎝⎭的展开式中1x 的系数为84014854−−=−. 故选:D .41.若()421ax x −+的展开式中5x 的系数为56−,则实数=a .【答案】2【解析】()()442211ax x x ax ⎡⎤−+=+−⎣⎦,所以()421x ax ⎡⎤+−⎣⎦的展开式的通项为:()()()()2221444C C C C C rr tttrr t r t r tr r r T x ax x ax a x−−+=−=−=−, 其中0,1,2,3,4;0,1,r t r ==,令25r t −=,所以1,3t r =⎧⎨=⎩或34t r =⎧⎨=⎩, 当13t r =⎧⎨=⎩时,5x 的系数为()3143C C 12a a ⋅⋅−=−, 当34t r =⎧⎨=⎩时,5x 的系数为()343344C C 4a a ⋅⋅−=−, 因为5x 的系数为56−,所以312456a a −−=−,即33140a a +−=,即()()22270a a a −++=,所以2a =.42.42x x ⎛⎫⎪⎝⎭−的展开式中的常数项与321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项相等,则a 的值为( )A .3−B .2−C .2D .3【解析】【答案】D【分析】计算出两个二项式的常数项,从而得到关于a 的方程,解出即可. 【详解】42x x ⎛⎫ ⎪⎝⎭−的展开式中的常数项为22424C ()24x x −=,321x a x ⎛⎫−+ ⎪⎝⎭展开式中的常数项032233321C C 3a x a x ⎛⎫+−=− ⎪⎝⎭, 所以3324a −=,即3a =43.已知31(2)ax x x ⎛⎫+− ⎪⎝⎭(a 为常数)的展开式中所有项的系数和为0,则展开式中2x 的系数为 (用数字作答) 【答案】3− 【分析】令1x =,则()()3112a +−即为展开式中所有项的系数和,可计算出a 的值,结合二项展开式的通项公式计算即可得.【详解】令1x =,则()()31120a +−=,即1a =−,则对31x x ⎛⎫−+ ⎪⎝⎭,有()()33321331C C 1kk k k kk k T x xx −−−+⎛⎫=−=− ⎪⎝⎭, 令321k −=,即1k =,有()21123C 13T x x =−=−,即有223T x x ⨯=−,令322k −=,则12k =,舍去; 故展开式中2x 的系数为3−.44.5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,则该展开式中常数项为( )A .40B .160C .0D .320【解析】【答案】C 【分析】取1x =代入计算得到1a =,确定512x x ⎛⎫− ⎪⎝⎭展开式的通项,分别取3r =和2r =计算得到答案.【详解】5122a x x x x ⎛⎫⎛⎫+− ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为3,令1x =,可知23a +=,1a =,故5551111221222x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+−=−+− ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,512x x ⎛⎫− ⎪⎝⎭展开式的通项为()()55521551C 2C 21rr r r r rr r T x xx −−−+⎛⎫=⋅⋅−=⋅⋅− ⎪⎝⎭, 分别取3r =和2r =得到常数项为:()()32353252552C 21C 210−−⨯⋅⋅−+⋅⋅−= 45.(多选)在()()5312x x a −−的展开式中,各项系数的和为1,则( )A .3a =B .展开式中的常数项为32−C .展开式中4x 的系数为160D .展开式中无理项的系数之和为242−【解析】【答案】BC【分析】先根据各项系数和结赋值法得2a =判断A ,然后结合二项式展开式的通项公式求解常数项、含4x 的系数及无理项系数之和判断BCD. 【详解】根据题意令1x =,得())5312x x a −的展开式中各项系数和为()511a −−=,则2a =,A 错误;则())()()553312122x x ax x −=−⋅,又)52x 的展开式的通项为()52152C k k k k T x −+=−,0,1,,5k =,所以展开式中的常数项为()55512C 32⨯−=−,B 正确;含4x 的项为()3334522C 160x x x −=⋅−,其系数为160,C 正确;展开式中无理项的系数之和为()()()()()024*********C 2C 2C 14080121⎡⎤−−+−+−=−++=−⎣⎦,D 错误. 故选:BC.46.已知()2nx y −的展开式中第4项与第5项的二项式系数相等,则展开式中的52x y 项的系数为( )。
排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。
知识篇知识结构与拓展高二数学2021年5月二"#定理常考题型及解法■四川省成都经济技术开发区实验中学校杜海洋一、知识点总结!二项式定理!+#"=+%#+•…+ C;"&#%+--------C$#$($#N$"2.基本概念①二项展开式:上式右边的多项式叫作"+#"的二项展开式$②二项式系数:展开式中各项的系数C;(%=0,1,2,・#,$)$③项数:共$+1项,是关于"与#的齐次多项式$④通项:展开式中的第%+1项叫作二项式展开式的通项,用&%+%=#%"$%#%表<$3.注意关键点①项数:展开式中总共有$+1项$②顺序:注意正确选择其顺序不能更改&与!是不同的$③指数:"的指数从$逐项减到0,是降S排列'的指数从$逐项升到$,是升需排列$每一项的次数和等于$$④系数:注意正确区分二项式系数与项的系数,二项式系数依次是C$&CC$C$,项的系数是"与#的系数(包括二项式系数"%.常用的结论令"=1,#=工,=C$+C%'+ C''2---------+C$'%++C$"$令"=1,#=—',(1—"C$—C$'+ C'2--------C%'%+---------(—1"C$'$!#N$"$5.性质①二项式系数的对称性$与首末两端“相等距离”的两个二项式系数相等,即C$"C$,…,C$"C$($②二项式系数和$令a=b=1,则二项式系数的和为C$+ C1+C2+…+C$+…+C$"2$,变形式为C1+C$--------C$+-----------C$"2$—1$③奇数项的二项式系数和等于偶数项的二项式系数和$在二项式定理中,令a=1,b=—1,则c$—C1+c2—c(-------+(—1$$c$"(1—1$$ "0,从而得到C$+C2+C:…+C%+…" C1+C$--------C%+1+…"2*2$"2$1$④奇数项的系数和与偶数项的系数和$$$0,1$12$22$$,$a +…+C$a0'$"a$+a'1+a?'2+…+ a$'$$同理,''"1,贝U a$+a1+a2+a(…+a$=(a+1$$$①令'"—1,贝U a$—a1+a2—a3+…+a "(a—1$$$②①+②得,a$+a2+a4…= (a+1$$+(a—1$$(奇数项的系数和$2①一②得,a1+a(+a5…" a+1$$—Q"(偶数项的系数和$$⑤二项式系数的最大项$如果二项式的S指数$是偶数时,则中间一项的二项式系数C2取得最大值$如果二项式的S指数$是奇数时,则中间两项的二项式系数C亍,c T同时取得最大值$⑥系数的最大项$求(a+b'$$的展开式中最大的项,一般采用待定系数法,设展开式中各项系数分别为A1,A2,…,A$+1,设第%+1项系数最大,Jn"""知识篇知识结构与拓展丁今虫""""""高二数学 2021年5月应有*从而解出%的值$% + 2&二、二项式定理常见考题的解法题型一:二项式定理的正逆用伸I ! 设(1+工"="$ + "%工 + "'工2 +24°. 2_° —r 得「n(n — 1)(n — 2)2"3 — 2" 2 " 4 彳得 ,n(n — 1) n(n — 1)(n — 2)(n — 3)"2 •2 • 2 °解得n "5$(2)(方法 一)(1+ 3 )5"C 5 + C 1 3 + #2(3)2+c 5 (3)3 +c 5 (3) + c 5 (3)5 —"+# 3$由于"& ##n $ & 因此 &""#5 + 3#2+-#5= 1 + 30 + 45 "76 & #"#1 +3#3 + -#5 "44$故"2—3#2 = 762 —3 X 442 " — 32$(方法二)(1+ 3)5 " #5 + #1 3 +#2(3)2+#5 (3)3 +#5 (3) + #5 ( 3)5 = "+ # 3, (1 — 3)5 " #5 + #: (— 3) +#2(— 3)2 + #3 ( — 3)3 + #5 ( — 3) + #5(— 3)5 = #0 — #5 3 + #2 ( 3 )2 — #3(3"+ #5(3) —#5(3)5 $由于",##N $,因此,(1 — 3)5 ""—#3,故"2 — 3#2 " (1 + 3)5 - (1— 3)5 =(1 —3)5"—32$练习1 若#' + #'2 +-------+ C 能被7整除,则 'n 的值可能为()$A*h =4 , n "31*工=4 , n " 4#. ' = 5,n = 4D. ' = 6,n = 5---"”,已知"(=2"'"4$(1) 求n 的值;(2) 设(1+ (" ="+# (,其中"&#N $,求"2 *— 3#2 的值 $解析:(1)由(1 + 工"=#n + c ++--------, n %4 ,可得:n(n — 1)(n — 2),, "4 " #n =n(n — 1) )n — 2) )n — 3)解析:#' + #'2 + …+ #$h " = (1+工)"—1 $当工=5 ,n = 4 时,(1+h )$ —1 = 6 — 1 =35X37能被7整除,故选#$题型二:利用通项公式求的系数I "(2 ' + 1)6的展开式中'的系数是()$A. 120B. 60 #.30 D. 15解析:二项式(2 ' + 1)6的展开式的通6 %项为 丁%+1=C % (2 ')6 % =26 %#%'丁 $6 — %令-2 = 1,解得 % = 4$ 则(2 /T + 1)6的展开式中'的系数是22#6 = 60,选B $练习2 若---1)展开式中含一2项''2的系数与含A 项的系数之比为一5,则n 等于)$A. 4B. 6解析:(工一1)#. 8 D. 10展开式的通项为:(2')%+1&ri令 n —2% = —2,解得 % = ^^ $故含1项的系数为(一1)宁2宁#甘CCn +~ 4令 n —2% = —4,解得 % = —2— $-In + 4 n 4 n +含=项的系数为(一1)丁2丁#了ccn +2 n 2 n +2将n = 4,6,8,10代入检验得n = 6,故选B题型三:利用通项公式求常数项i #如果32—2)的展开式中含有非零常数项,则正整数n 的最小值为( )$A. 10B. 6 #.5 D. 3解析:展开式的通项为&%+1=#;(3工2)%・知识篇知识结构与拓展高二数学2021年5月5由题意得2$—5%"$&$"2%(%=0,1, 2,…,"一1"故当%"2时,正整数$的最小值为5,选C$练习3(2006年山东卷)已知('2—')的展开式中第三项与第五项的系数之比为3—肓,其中4"—1,则展开式中常数项是("A.—45i B45iC.—45D*45解析:第三项的系数为一C2,第五项的系数为#4,由第三项与第五项的系数之比为3,解得$"10$当%"0,4,8时,该项为含'的整数次S 的项,所以展开式中含'的整数次S的项的系数之和为C8+C4+C8"72$题型五:奇数项的二项式系数和等于偶数项的二项式系数和%已知(1一'"5"a$+a'+a2'2 +a3'3+a4'4+a5'5,贝U(a$+a?+a4)(a]+ a3+a5)的值等于$解析:令'"1,可得a$+a1+a2+a3+ a4+a5=0$CD再令'"一1,可得a$一a1+a2一a3+ a4a52532$②则&%+1C;$①+②,变形得a$+a2+a4"16$①一②,变形得a1+a3+a5"—16$故(a$+a2+a4)(a1+a3+a5)的值等于—256$中,所有的奇数项的系数和为1024,求它展开式的中间项$解析:因为c$+C2+C4…+C%+…" C1+C3+---------C%+1+…"2$1,所以2$1" 1024,解得$"11$所以第6项、第7项为中间两项,&5+1"(—i"C;0'2$令40—5%"0,解得%"8$故所求的常数项为(—i)8C8$"45,选2$题型四:先利用通项公式,再讨论或确定有理数项!$二项式(2+逅'"的展开式中系数为有理数的项共有!)$A.6项B.7项C.8项D-项解析+3'"展开式的通项为&%+1" 25%%25%%2233C%$'%,项的系数为2233C%$$要使系数为有理数&需是6的倍数,所以%"0,6,12,18,24,30,36,42,48$故展开式中系数为有理数的项共有-项,选2$练习%(二+'"的展开式中含'462'15$丁)462'&6+1的整数次幕的项的系数之和为_____$(用数字作答)解析:&%+1"#8('"题型六:最(小)大系数,最大项!&在二项式('一1)11的展开式中,系数最小的项的系数为_____$(结果用数值表示)解析:在二项式('一1)11的展开式中,通项公式为&%+1"#11・工11%・(一1)%,要使此项的系数最小,需%为奇数,且c;1最大$根据二项式系数的性质可得,当%"5或6时, C;1最大,故系数最小的项为第6项(%"5),等于一C11"—462,答案为一462$练习'在(1+2')10的展开式中系数最大的项是多少?解析:假设&%+1项最大$J>"""""诃"知识篇知识结构与拓展丁今虫"""王""高二数学2021年5月因为&%+1=#0・2'%,所以*+1+1i%+11010。
二项式定理考点与题型归纳一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)❶;(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n❷.2.二项式系数的性质(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量[例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40.(2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. (3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )r x 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06 ·(-1)0·C 24+C 16 ·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3.(2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k .令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240.2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________.解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝ ⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x .(2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1.答案:-3或13.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n-2n +C n-1n+C n n=121,则12n·(n-1)+n+1=121,即n2+n-240=0,解得n=15(舍去负值),所以展开式中二项式系数最大的项为T8=C715(3x)7和T9=C815(3x)8.答案:C715(3x)7和C815(3x)8考点三二项展开式的应用[典例精析]设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解析]由于51=52-1,512 018=(52-1)2 018=C02 018522 018-C12 018522 017+…-C2 0172 018521+1,又13整除52,所以只需13整除1+a,又0≤a<13,a∈Z,所以a=12.[答案]D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( )A.-32B.32C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7 ·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7 ·(-2)r ·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3B.-3C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n , 由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8),要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2. (3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r 82-(r -1)C r -18=9-r 2r≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r ≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x 8-2r ,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1. 5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式定理常见题型(总9页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见二项式定理题型总结一、二项式展开式中某一项的求解方法:1.特定项:使用展开式通项例1:已知的展开式中所有项的系数和为.(1)求的展开式中二项式系数最大的项;(2)求的展开式中的常数项.解析:(1)由题意,令得,即,∴展开式中二项式系数最大的项是第项,即.(2)展开式的第项为,由得.由得.∴展开式中的常数项为.例2:已知的展开式的各项系数和比二项式系数和大.(1)求的值;(2)求展开式中所有有理项.解析:(1)由题意,二项式的展开式的各项系数和比二项式系数和大,可得,解得.(2)展开式的通项为,当时是整数,故展开式中所有有理项为:,,.例3:写出的展开式中:(1)二项式系数最大的项;(2)项的系数绝对值最大的项;(3)项的系数最大的项和系数最小的项;解析:(1)二项式系数最大的项为中间两项:(2)展开式的通项为因为项的系数的绝对值为,所以项的系数的绝对值等于该项的二项式系数,其最大的项也是中间两项,·(3)由(2)知中间两项系数绝对值相等,又第6项系数为负,第7项系数为正,故项的系数最大的项为,项的系数最小的项为.例4:(1)求的展开式中的系数;(2)求的展开式中的系数.解析:(1)的展开式的通项是,令,解得.则含的项为第项,即;∴的系数为.(2)∵的通项为,的通项为,其中,,令,则有,;,;,.∴的系数为.二、展开式特定项求法:组合法(原理法)例1. 已知的展开式中各项系数的和为,则展开式中的系数为.(用数字作答)解析:由题意得,令,则,解得,即展开式的通项为,令,则,又二项式的展开式中项为,所以展开式中的系数为.法二:由题意得,令,则,解得,此时(2x2+x−x)x=(2x2+x−x)5,可以利用2个2x2,1个x,2个−y,进行组合,即x52(2x2)2∙x31x∙x22(−y)2=120x5x2.例2:将多项式分解因式得,为常数,若,则解析:因为通项公式为,,∴,又,∴,∴,.例3.的展开式中常数项是.解析:原二项式可化为,由于二项式的展开式,令,则当时,,此时对应的项是,所以常数项的系数为.,1个3;第2类:4个3;法二:分两类:第1类:1个x2,2个−1x所以由加法原理得:常数项为:x41∙x32(−1)2×3+34=117.三、多项式系数的和:赋值法例1:已知,求:(1);(2);(3).解析:(1)当时,,展开式右边为,∴. 当时,,∴.(2)令,,①令,,②由①-②,得,∴.(3)根据(2)中式子①+②得,.例2:若,则解析:令可得:,令,可得:,据此可得:.例3:设,则解析:令,得到,再令,得到,∴.例4:设,则代数式的值为解析:设,令,例5. 设二项展开式,则.解析:二项展开式,两边对求导可得.令,可得.由二项展开式,令,可得.∴.例6. ,则解析:将所给的等式两侧求导可得:,令可得:,令可得:,据此可得:四、多项式系数的和:组合数的性质法例1:已知,,且.求(1)展开式中各项的二项式系数之和.(2).(3).解析:设,则,相加得,即,∴.(1)展开式中各项的二项式系数之和为.(2)令,得①,令,得②,相加得(或).(3)令,得.例2:如果,求的展开式中系数最大的项.解析:由可得:,∴.即,∴.∴展开式中系数最大的项为....例3:的展开式中的系数为.(用数字作答).解析:因,故只要求中的的系数即可.因,故,则的系数是。
二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n nn n n n n C C C C C -+-++-=-=L ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nn n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),()2(1)(1),()2n n n n nn a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。
⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=L解:012233(16)6666n n nn n n n n C C C C C +=+⋅+⋅+⋅++⋅L 与已知的有一些差距,123211221666(666)6n n nn n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅L L 0122111(6661)[(16)1](71)666n n n n n n n n C C C C =+⋅+⋅++⋅-=+-=-L练:1231393 .n nn n n n C C C C -++++=L 解:设1231393n nn n n n n S C C C C -=++++L ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-L L (13)14133n n n S +--∴==题型二:利用通项公式求n x 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。
练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r rr r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。
题型三:利用通项公式求常数项; 例:求二项式210(x 的展开式中的常数项? 解:5202102110101()()2r rrrr r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C xx ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()n x x+的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C xx--==,令2120n -=,得6n =. 题型四:利用通项公式,再讨论而确定有理数项;例:求二项式9展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。
题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n nn a a a a a -+-+⋅⋅⋅+-=② 将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。
练:若n 的展开式中,所有的奇数项的系数和为1024,求它的中间项。
解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=Q L ,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462nT C x -+==⋅,611561462T x -+=⋅题型六:最大系数,最大项;例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=Q 解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。
练:在2()na b +的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。
练:在(2n x 的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C =例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。
例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+Q1111212111212124444r r r r r r r rr r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤Q ,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少?解:假设1r T +项最大,1102r r rr T C x +=⋅Q111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤Q ,7r ∴=,展开式中系数最大的项为7777810215360.T C x x == 题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。