大学物理经典系列之简谐振动
- 格式:ppt
- 大小:2.33 MB
- 文档页数:67
大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
讲 授 内 容 备 注第九章 振动引言 1. 振动的概念(1)机械振动物体在某一确定位置附近作来回往复的运动称为机械振动。
如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动。
(2)广义振动概念广义地说,一切物理量,包括非机械量的温度、电量、场强等量在一定值附近反复变化的过程均是振动。
例如:交流电压、电流的变化、无线电波电磁场的变化等等。
因此振动是自然界及人类生产实践中经常发生的一种普遍运动形式,其基本规律是光学、电学、声学、机械、造船、建筑、地震、无线电等工程技术中的重要基础知识。
2. 机械振动的特点(1)有平衡点。
(2)且具有重复性,即具有周期性。
3. 机械振动的分类 (1)按振动规律分: 简谐、非简谐、随机振动。
(2)按产生振动原因分: 自由、受迫、自激、参变振动。
(3)按自由度分: 单自由度系统、多自由度系统振动。
(4)按振动位移分: 角振动、线振动。
(5)按系统参数特征分: 线性、非线性振动。
第一节 机械振动、振幅、周期和相位一、简谐振动1、概念 在右面的演示中,观察一小球的小角度摆动,小球上的指针在下面沿摆动垂直方向匀速移动的纸条上将划出一条余(正)弦曲线。
物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或正弦函数〕的规律随时间变化,这种运动就叫简谐振动。
简谐振动(simple harmonic vibration )是一种最简单最基本的振动,一切复杂振动均可看作多个简谐振动的合成,简谐振动是研究振动的基础。
2、简谐振动的动力学特征 (1)线性回复力以弹簧振子为例,它由劲度系数为k ,质量不计的轻弹簧和质量为m 的小球组成,弹簧一端固定,另一端连接小球。
当小球在无摩擦的水平面上受到弹簧弹性限度内的弹性力作用下,小球将作简谐振动,小球受到的弹性力: x k F-=,或 kx F -=这种力与位移成正比而反向,具有这种特征的力称为线性回复力。
可见当物体只在线性回复力或力矩作用下的运动必是简谐振动。
动contents •简谐振动•阻尼振动与受迫振动•振动的合成与分解•振动在介质中的传播•多自由度系统的振动•非线性振动与混沌目录01简谐振动简谐振动的定义与特点定义简谐振动是最基本、最简单的振动形式,指物体在跟偏离平衡位置的位移成正比,并且总是指向平衡位置的回复力的作用下的振动。
特点简谐振动的物体所受的回复力F与物体偏离平衡位置的位移x成正比,且方向始终指向平衡位置;振动过程中,系统的机械能守恒。
动力学方程根据牛顿第二定律,简谐振动的动力学方程可以表示为F=-kx,其中F为回复力,k为比例系数,x为物体偏离平衡位置的位移。
运动学方程简谐振动的运动学方程可以表示为x=Acos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相。
势能与动能在简谐振动过程中,系统的势能Ep和动能Ek都在不断变化,但它们的总和保持不变,即机械能守恒。
能量转换在振动过程中,势能和动能之间不断相互转换。
当物体向平衡位置运动时,势能减小、动能增加;当物体远离平衡位置时,势能增加、动能减小。
同方向同频率简谐振动的合成当两个同方向、同频率的简谐振动同时作用于同一物体时,它们的合振动仍然是一个简谐振动,其振幅等于两个分振动振幅的矢量和,其初相等于两个分振动初相的差。
同方向不同频率简谐振动的合成当两个同方向、不同频率的简谐振动同时作用于同一物体时,它们的合振动一般不再是简谐振动,而是比较复杂的周期性振动。
在某些特定条件下(如两个分振动的频率成简单整数比),合振动可能会呈现出一定的规律性。
相互垂直的简谐振动的合成当两个相互垂直的简谐振动同时作用于同一物体时,它们的合振动轨迹一般是一条复杂的曲线。
在某些特定条件下(如两个分振动的频率相同、相位差为90度),合振动轨迹可能会呈现出一定的规律性,如圆形、椭圆形等。
02阻尼振动与受迫振动阻尼振动的定义与分类定义阻尼振动是指振动系统在振动过程中,由于系统内部摩擦或外部介质阻力的存在,使振动幅度逐渐减小,能量逐渐耗散的振动。
大学物理简谐振动在大学物理的广袤知识海洋中,简谐振动是一个极其重要的概念。
它不仅在物理学的理论体系中占据着关键的地位,而且在实际生活和众多科学技术领域都有着广泛而深刻的应用。
简谐振动,简单来说,是一种理想化的周期性运动。
想象一下一个小球在光滑水平面上连接着一个弹簧,当小球被拉离平衡位置然后松手,它就会在弹簧的作用下做往复运动,这种运动就是简谐振动。
我们先来看看简谐振动的数学描述。
它可以用一个正弦或余弦函数来表示,形如 x =A sin(ωt +φ) ,其中 x 是位移,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
振幅 A 决定了振动的最大位移,也就是振动的“幅度”;角频率ω 则反映了振动的快慢;初相位φ 则决定了振动的起始位置。
再深入理解一下简谐振动的特点。
首先,它的加速度与位移成正比,且方向总是指向平衡位置。
这意味着,当物体偏离平衡位置越远,它受到的回复力就越大,加速度也就越大,从而促使它更快地返回平衡位置。
其次,简谐振动的能量是守恒的。
在振动过程中,动能和势能相互转化,但总能量始终保持不变。
那么,简谐振动在实际生活中有哪些例子呢?最常见的莫过于钟摆的运动。
钟摆通过重力和绳子的拉力作用,在一定角度范围内做简谐振动,从而实现准确计时。
此外,乐器中的弦振动也是简谐振动的一种表现。
比如吉他弦,当被拨动时,弦在固定的两个端点之间做简谐振动,产生特定频率的声音。
在工程技术领域,简谐振动也有着重要的应用。
例如,汽车的减震系统就利用了简谐振动的原理。
当汽车行驶在不平坦的路面上时,减震器通过弹簧和阻尼器的作用,使车身的振动尽可能接近简谐振动,从而减少颠簸,提高乘坐的舒适性和稳定性。
对于学习大学物理的同学们来说,理解和掌握简谐振动有着重要的意义。
它是进一步学习波动、光学等知识的基础。
通过研究简谐振动,我们能够培养对物理现象的观察、分析和解决问题的能力。
在解决简谐振动相关的问题时,通常需要运用牛顿第二定律、能量守恒定律等物理定律,并结合数学工具进行计算和分析。
简谐运动知识点总结大学简谐运动是物理学中的一个重要概念,它描述了物体在受到恢复力作用下做周期性运动的现象。
在现实生活中,简谐运动无处不在,例如摆动的钟表、弹簧振子、水波运动等都属于简谐运动的范畴。
下面我们将对简谐运动的相关知识点进行总结。
一、简谐运动的基本概念1. 弹簧振子:弹簧振子是较为典型的简谐振动系统,它由一根具有一定弹性的弹簧和挂在弹簧上的质点组成。
当质点偏离平衡位置时,弹簧会产生恢复力,质点受到的力将使其进行振动运动。
弹簧振子的运动规律可以用简谐运动的相关理论进行描述和分析。
2. 产生简谐运动的条件:简谐运动的产生需要满足一定条件,其中最重要的是恢复力与质点位移成正比,即F=-kx,其中F为恢复力,k为弹簧的弹性系数,x为质点的位移。
只有符合这一条件,系统才能产生简谐运动。
3. 简谐运动的特征:简谐运动具有一系列特征,包括周期性、振幅、频率和相位等。
这些特征描述了简谐运动的基本规律和运动状态。
二、简谐运动的相关物理量和表达式1. 位移、速度和加速度:在简谐运动中,质点的位移、速度和加速度都是关键的物理量。
它们可以用数学表达式来描述,其中位移x、速度v和加速度a分别满足关系式x=Acos(ωt)、v=-Aωsin(ωt)、a=-Aω²cos(ωt)。
其中A为振幅,ω为角频率,t为时间。
2. 动能和势能:简谐振动系统中,质点具有动能和势能,它们随着时间的变化而变化。
动能和势能的表达式为K=1/2mω²A²sin²(ωt)和U=1/2kx²。
3. 机械能:简谐振动系统的机械能由动能和势能组成,它保持不变。
简谐振动的机械能可以用公式E=K+U=1/2kA²表示。
三、简谐运动的图像和图象1. 位移-时间图像:简谐运动的位移-时间图像通常是正弦曲线形状,它描述了质点在振动过程中位置随时间的变化规律。
在这个图像中,横轴代表时间,纵轴代表位移,通过这个图像可以清晰地观察到振动的周期性和规律性。