当前位置:文档之家› (5)高中数学公式完全总结归纳(均值不等式)及常见题型

(5)高中数学公式完全总结归纳(均值不等式)及常见题型

(5)高中数学公式完全总结归纳(均值不等式)及常见题型
(5)高中数学公式完全总结归纳(均值不等式)及常见题型

均值不等式归纳总结

1. (1)若R b a ∈,,则ab b a 22

2

≥+

(2)若R b a ∈,,则2

2

2b a ab +≤

(当且仅当

b a =时取“=”)

2. (1)若*,R b a ∈,则ab b a ≥

+2

(2)若*

,R b a ∈,则ab b a 2≥+ (当且仅当b

a =时取“=”)

(3)若*

,R b a ∈,则2

2??

? ??+≤b a ab (当且仅当b a =时取“=”)

3.若0x >,则1

2x x +≥ (当且仅当1x =时取“=”)

若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”)

若0x ≠,则1

11

22-2x x x x

x x

+≥+

≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a

b b

a (当且仅当

b a =时取“=”)

若0ab ≠,则22-2a b a b a b b

a

b

a

b

a

+≥+≥+≤即或 (当且仅当b a =时取“=”)

5.若R b a ∈,,则2

)2

(22

2b a

b a +≤+(当且仅当b a =时取“=”)

『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的

和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值

例1:求下列函数的值域

(1)y=3x 2+1

2x 2(2)y=x+

1

x

解:(1)y=3x 2+1

2x 2≥23x 2·

1

2x 2

= 6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x ≥2

x ·1

x

=2; 当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2 ∴值域为(-∞,-2]∪[2,+∞)

解题技巧

技巧一:凑项

例 已知5

4

x <,求函数14245

y x x =-+

-的最大值。 解:因450x -<,所以首先要“调整”符号,又1

(42)45

x x --不是常数,所以对42x -要进行拆、凑项,

5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?

?231≤-+= 当且仅当1

5454x x

-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数

例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为

定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,

(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设2

30<

解:∵230<-x ∴2922322)23(22)23(42

=??

? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即??

?

??∈=23,04

3x 时等号成立。

技巧三: 分离

例3. 求2710

(1)1

x x y x x ++=

>-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,

59y ≥=(当且仅当x =1时取“=”号)。 技巧四:换元

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t=时,

59y ≥=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)()

A

y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数

例:求函数2

y =的值域。

(2)t t =≥,则2

y =1

(2)t t t ==+≥

因10,1t t t >?=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。 因为1y t t

=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故

5

2

y ≥

。 所以,所求函数的值域为5

,2

??

+∞??

??。 练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1)

231,(0)

x x y x x

++=> (2)

1

2,33

y x x x =+

>- (3)1

2sin ,(0,)sin y x x x

π=+

2.已知01x <<,求函数y 的最大值.;3.2

03

x <<

,求函数

y . 条件求最值

1.若实数满足2=+b a ,则b a 33+的最小值是 .

分析:“和”到“积”是一个缩小的过程,而且b a 33?定值,因此考虑利用均值定理求最小值,

解: b a 33和都是正数,b a 33+≥632332==?+b a b a

当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b

a 33+的最小值是6.

变式:若44log log 2x y +=,求11

x y

+的最小值.并求x,y 的值

技巧六:整体代换

多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。

2:已知0,0x y >>,且191x y

+=,求x y +的最小值。

错解

..:

0,0x y >>,且

19

1x y

+=,∴

()1912

x y x y x y ??+=++≥ ???

()min 12x y += 。

错因:解法中两次连用均值不等式,在x y +≥x y =,在

19x y +≥1

9

x y

=

即9y x =,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。 正解:

19

0,0,1x y x y >>+=,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当

9y x x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,

()min 16x y += 。

变式: (1)若+

∈R y x ,且12=+y x ,求y

x 11+的最小值

(2)已知+∈R y x b a ,,,且1=+y

b x

a ,求y x +的最小值

技巧七

已知x ,y 为正实数,且x 2+y 2

2 =1,求x 1+y 2 的最大值.

分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 2

2

同时还应化简

1+y 2

中y 2

前面的系数为 1

2

, x

1+y 2 =x

2·1+y 2

2 = 2 x ·

12 +y 2

2

下面将x ,

12 +y 2

2

分别看成两个因式: x ·

12 +y

2

2

≤x 2+(

12 +y 22 )22 =x 2+y 2

2 +12 2 =3

4

即x 1+y 2 =

2 ·x 12 +y 22 ≤ 3

4

2

技巧八:

已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab

的最小值.

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16

t

≥2

t ·16

t

=8

∴ ab ≤18 ∴ y ≥ 1

18

当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab

令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2

∴ab ≤3 2 ,ab ≤18,∴y ≥1

18

点评:①本题考查不等式

ab b

a ≥+2

)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式

ab b

a ≥+2

)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.

变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值. 解法一:若利用算术平均与平方平均之间的不等关系,a +b

2

a 2+

b 2

2

,本题

很简单

3x +2y ≤ 2 (3x )2+(2y )2 = 2 3x +2y =2 5 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。 W >0,W 2=3x +2y +2

3x ·

2y =10+2

3x ·

2y ≤10+

(3x )2·(2y )2 =10+(3x +2y )=20 ∴ W ≤20 =2 5 变式: 求函数15

()22

y x =

<<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=

0y >,所以0y <≤

当且仅当21x -=52x -,即32

x =时取等号。 故max y =

评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了

条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。 应用二:利用均值不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 1)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

例6:已知a 、b 、c R +∈,且1a b c ++=。求证:1

1

1

1118a b c ??????

---≥ ???????????

分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三

个“2”连乘,又111a b c a

a

a

-+-==≥,可由此变形入手。

解:a 、b 、c R +∈,1a b c ++=。∴111a b c a

a

a

-+-==≥。同理11b -≥,

11c -

111221118ac ab a b c a b c ??????---≥= ???????????

。当且仅当13a b c ===时取等号。 应用三:均值不等式与恒成立问题

例:已知0,0x y >>且1

91x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

解:令,0,0,x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴

+=1091y x

k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用: 例:若)2

lg(),lg (lg 21

,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,则R Q P ,,的大小关系是 .

分析:∵1>>b a ∴0lg ,0lg >>b a

2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R>Q>P 。

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

高三数学必背公式总结

高三数学必背公式总结 高三数学必背公式总结汇总 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=c*h(底面周长乘以高) S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h S圆柱侧=c*l S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 sin(2*k*兀+a)=sin(a)

tan(2*兀+a)=tana sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2*sina*cosa cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2 tan2a=(2*tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa

文科高考数学必背公式

文科高考数学必背公式

文科高考数学必背公式 高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:

任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

公式六: π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减 函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = (0,,a m n N * >∈,且1n >). 根式的性质 (1)当n a =;

高中数学必背公式

高中数学必背公式、常用结论 一.二次函数和一元二次方程、一元二次不等式 1. 二次函数 y ax 2 bx c 的图象的对称轴方程是 x b b 4a c b 2 ,顶点坐标是 2a , 。 2a 4a 2. 实系数一元二次方程 ax 2 bx c 0的解: ①若 b 2 4ac 0, 则 x 1,2 b b 2 4a c ; 2a ②若 b 2 4ac 0, 则 x 1 x 2 b ; 2a ③ 若 b 2 4a c 0,它在实数集 R 内没有实数根;在复数集 C 内有且仅有两个共轭复数根 x b(b 2 4ac)i (b 2 4ac 0) . 2a 3. 一元二次不等式 ax 2 bx c 0(a 0) 解的讨论 : 二次函数 y ax 2 bx c ( a 0 )的图象 一元二次方程 有两相异实根 有两相等实根 ax 2 bx c 0 x 1, x 2 ( x 1 x 2 ) x 1 x 2 b 无实根 a 0 的根 2a ax 2 bx c 0 x x 1 x 2 x x b (a 的解集 x 或x 2a R 0) ax 2 bx c 0 x x 1 x x 2 (a 0)的解集 二、指数、对数函数 1.运算公式 m n m m 1 ⑴分数指数幂: a n ; a n (以上 a 0, m,n N ,且 n 1 ) . a m a n ⑵ . 指数计算公式: a m a n a m n ; (a m )n a mn ;( a b)m a m b m ⑶对数公式:① a b N log a N b ; ② log a MN log a M log a N ; ③ log a M log a M log a N ; ④ log a m b n n log a b . N m

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

高中数学必修2公式

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

高中数学学业水平必背公式定理知识点默写

高中数学学业水平测试必背公式定理知识点 1、空集定义:_____________________________________; 空集是任何集合的______________。 N ____________ Z __________ Q ___________ R ___________(常用集合字母表示) 2、含n 个元素的集合其子集个数为_____________________。 3、函数定义:对定义域内任意x ,都有___________y 值与之对应,称y 是x 的函数。 4、求函数定义域三种基本形式: ①分式要求:__________________; ②根式,开偶次方根,则_______________________; ③对数式则要求__________________________。 5、①指数函数定义:__________________________________________; 其定义域为_____________;值域为_________________; 当_______________时函数单调递增;当_______________函数单调递减。 其图像恒过定点______________。 ②对数函数定义:__________________________________。 其定义域为_____________;值域为_________________; 当_______________时函数单调递增;当_______________函数单调递减。 其图像恒过定点______________。 ③幂函数定义:_______________________________________。 当0>α时,图像恒过______________和_______________;在第一象限内单调_________; 当0<α时,图像恒过______________;在第一象限内单调_________; 6、如果函数是奇偶函数,其定义域一定关于_______________对称; 如果对定义域内任意x ,当________________时,函数为奇函数; 如果对定义域内任意x ,当________________时,函数为偶函数; 7、函数单调性定义:在区间D 内任取两个值1x 、2x ,设21x x <, 如果______________,则函数在此区间内单调递增; 如果______________,则函数在此区间内单调递减。 8、空间两直线位置关系:_____________、________________、_________________; 空间两平面位置关系:________________、______________; 空间直线与平面位置关系_____________、_____________、___________________; 9、空间两直线所成角的范围:____________________; 直线与平面所成角的范围:____________________; 两异面直线所成角的范围:_____________________; 10、线面平行判定定理:_________________________________________________________; 线面平行性质定理:_________________________________________________________; 线面垂直判定定理:_________________________________________________________; 线面垂直性质定理:_________________________________________________________; 面面平行判定定理:_________________________________________________________; 面面平行性质定理:_________________________________________________________; 面面垂直判定定理:_________________________________________________________;

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

(新)高中三角函数公式大全-必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

一元一次不等式题型归纳总结经典

一元一次不等式和一元一次不等式组题型归纳 201509 姓名: 授课时间: 一.对一元一次不等式定义的理解 1.下列各式中,是一元一次不等式的是( ) A、5+4>8 B、12-x C、x 2≤5 D、x x 31 -≥0 2.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个 A 、2 B 、3 C 、4 D 、5 3.下列说法,错误的是( ) A、33-πx 的解集是1-πx B、-10是102-πx 的解 C、2πx 的整数解有无数多个 D、2πx 的负整数解只有有限多个 4.下列不等关系中,正确的是( ) A 、 a 不是负数表示为a >0; B 、x 不大于5可表示为x >5 C 、x 与1的和是非负数可表示为x +1>0; D 、m 与4的差是负数可表示为m -4<0 二.已知范围,求正确的结论 5.若a 为有理数,则下列结论正确的是( ) A. a >0 B. -a ≤0 C. a 2>0 D. a 2+1>0

6.若a >b ,且c 是有理数,则下列各式正确的是( ) ①ac >bc ②ac <bc ③ac 2>bc 2 ④ac 2≥bc 2 A.1个 B. 2个 C. 3个 D. 4个 7.若a b C、2a <2b D 、a 3>b 2 8.如果0ππn m ,那么下列结论不正确的是( ) A 、99--n m π B 、n m --φ C 、m n 1 1 φ D 、 1φm n 9.m 为任意实数,下列不等式中一定成立的是( ) A、π3m m B、π2-m 2+m C、m m -φ D、a a 35φ 10.已知πππb a 1,0-0,则a,ab,ab 2之间的大小关系是( ) A 、2ab ab a φφ B、a ab ab φφ2C、φab 2ab a φ D、2ab a ab φφ 11.若x x -=-44,则x 的取值范围是( ) A、4πx B、4≤x C、4φx D、4≥x 12.b a ,表示的数如图所示,则11---b a 的的值是( ) A、b a - B、2-+b a C、b a --2 D、b a +- 13.下列表达中正确的是() A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 14.如果不等式ax <b 的解集是x <a b ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 15.如果a <-2,那么a 与a 1 的大小关系是_______ 三.根据绝对值性质解不等式 16.如果x x 2121-=-,则x 的取值范围是 ( ) A 、21 >x B 、21≥x C 、21≤x D 、21

相关主题
文本预览
相关文档 最新文档