第二章 距离空间
- 格式:ppt
- 大小:1.09 MB
- 文档页数:43
第二章 点 集 拓 扑§2.1. n 维欧氏空间、度量空间、拓扑空间的概念定义2.1.1.) , ,(n 1ξξ =x ,nR y ∈=) , ,(n 1ηη ,定义 R R R d nn →⨯: 为 ∑=-=n12)()y ,(i i i x d ηξ. 称d 为nR 上的Euclid 距离. 易证距离d 满足:01.y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.) x ,()y ,(y d x d =;03.)z ,()y ,()z ,(y d x d x d +≤, )R z y, ,(n∈x .定义2.1.2.( 距离空间,Metrical Space ) X 为非空集合,二元函数 R X X d →⨯: 满足:01.非负性:y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.对称性:) x ,()y ,(y d x d =;03.三角不等式:)z ,()y ,()z ,(y d x d x d +≤ )R z y, ,(∈x .称d 为X 上的一个距离,)d ,(X 为距离空间或度量空间.如 X A ⊂,称)d ,(A 为距离子空间.0r ,>∈X x ,开球:} ) ,({)r ;(r x y d X y x B <∈=; 闭球:} ) ,({)r ;(r x y d X y x S ≤∈=.开集:X A ⊂.A x ∈,∃球 A x B ⊂)r ;(,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集.开球是开集;2R 中第一象限区域(不含坐标轴)是开集. 记)d ,(A 中开集全体为τ,则有如下结论. 定理2.1.1.(1)τφ∈X ,; (2) ττ∈⇒∈)( ,2121G G G G ; (3) τλτλλλ∈⇒Λ∈∈Λ∈ )( G G .例:(1) 离散空间.φ≠X ,定义 ) X y x,( yx ,1yx ,0)y ,(∈⎩⎨⎧≠==x d . 称X 为离散距离空间.(2) ] ,[b a C 空间.} b] [a, )( )({] ,[上连续函数为t x t x b a C =.] ,[y(t)y ),(b a C t x x ∈==, 定义y(t)x(t) max )y ,( -=≤≤bt a x d ,d 是距离.(3) 有界函数空间)(X B .φ≠X ,} X )( )({)(上有界函数为t x t x X B =. 定义 y(t)x (t) sup )y ,( -=∈Xt x d ,()(y ,X B x ∈),d 是距离.称)(X B 为有界函数空间. 取+=N X ,记} )( )( {)(有界 n n x l X B ξξ===∞.)(y ),(n ηξ==n x ,n n sup )y ,(ηξ-=∈Nn x d .定义2.1.3.设φ≠X ,)(X P ⊂τ 满足:(1) τφ∈X ,; (2) τ对于有限交运算封闭:ττ∈⎪⎪⎭⎫⎝⎛⇒∈= n 1 i i n 1G G , ,G ;(3) τ对于任意并运算封闭:τλτλλλ∈⎪⎪⎭⎫ ⎝⎛⇒Λ∈∈Λ∈ G )( G . 称τ为X 上的一个拓扑( Topology ),X 上安装了拓扑τ,) ,(τX 是拓扑空间( Topological Space ). 每个τ∈G 称为开集. 如 X A ⊂, 令} {ττ∈=G A G A , 称) ,(A τA 为(拓扑)子空间.例:(1) 度量空间)d ,(X 是拓扑空间,称为由距离d 诱导的拓扑τ. (2) 设 φ≠X ,}{X ,φτ=,称) ,(τX 是平凡拓扑空间. (3) 设φ≠X ,)(X P =τ,称) ,(τX 是离散拓扑空间.(4) } n, , 2, 1, ,0{ ==N X ,令}{} )\( {φτ为有限集 A X X A ⊂=,则) ,(τX 成为拓扑空间.§2.2. 拓扑空间中的基本概念设),(τX 是拓扑空间,X A ⊂.定义:(1) 若 c A 是开集,称A 为闭集. (2) A 的闭包闭F F,A F⊂∆=A (包含A 的最小闭集).(3) 若G x ∈,G 是开集,称G 为x 的一个邻域.∃∈ ,A x 邻域G ,使A G x ⊂∈,称x 为A 的内点.A 的内点全体称为A 的核(内部),记0A 为. (书15P (3)错) (4) x X, x ,∀∈⊂X A 的邻域G ,有φ≠A G ,φ≠cA G ,称x 为A 的边界点.A 的边界点全体称为A的边界,记为 A ∂.显然,0A ,A ∂,0)(c A 互不相交,o c o A A A X)( ∂=.(5) x X,A ,∀⊂∈X x 的邻域G ,有 φ≠A x G }){\(,称x 为A 的聚点.A 的聚点全体称为A 的导集,记A '. (6))A \A ('∈x ,称x 为A 的孤立点.(7) 若 A A '=,称A 为完全集(完备集). (8) 若 ()φ=oA ,称A 为疏朗集(无处稠密集). A 不在任何开集中稠密.(9)X B ,⊂A ,若B A ⊃,称A 在B 中稠密.它等价于: Ay y B ∈⊂>∀);(B 0, εε.(10)-σF 型集A : +∞==1nF n A ,n F (闭集);-δG 型集B : +∞==1n G n B ,n G (开集).(11) 设B 在A 中稠密,0ℵ≤B ,称A 为可分集.若X 可分,称X 为可分空间. (12) 若 +∞==1nEn A ,n E (疏朗),称A 为第一纲集;否则称A 为第二纲集.(13) 设)d ,(X 为度量空间,X A ⊂.若存在球 )r ;(0x B ,使)r ;(0x B A ⊂,称A 为有界集.设 0 , ,>⊂εX B A .若 Bx x B A ∈⊂)(ε;,称B 为A 的一个网-ε.若0 >∀ε,A 具有有限的网-ε B ,称A 为完全有界集.注:可取有限的网-ε A B ⊂. 如:球n R x B ⊂)r ;(0 是完全有界集.(14) 设X x n ⊂}{, 若∃X x ⊂, 使 0 x),d(x lim n =+∞→n . 称}{n x 收敛于x , 记 x x lim n =+∞→n 或)(n x x n +∞→→.极限是唯一的; 收敛点列是有界集. (15) 设 )d ,(X 为度量空间,X A ⊂.若A 中任一点列都存在收敛于X 中点的子列,称A 为列紧集.如:欧氏空间n R 中的有界集是列紧集. (16) 设X A ⊂,Λ∈λλ}{G 是开集族.若 Λ∈⊂G λλA ,称Λ∈λλ}{G 为A 的一个开覆盖.若A 的任一开覆盖Λ∈λλ}{G ,存在有限子覆盖: n1iG =⊂i A λ,称A 为紧集. 若空间X 紧,称X 为紧空间.(17) 设)d ,(X 为度量空间,εε<>>∃>∀⊂) x ,d(x N n m , 0,N 0, }{n m 时,有当,X x n ,则称}{n x 为Cauchy 序列(基本列). 若X 中每个基本列均收敛,称X 是完备的度量空间. 如:收敛点列必是基本列. nR 是完备的度量空间.以下假设),(τX 是拓扑空间. 定理2.2.1.(闭集的性质)(1) X ,φ是闭集; (2) 有限个闭集之并是闭集; (3) 任意多个闭集之交是闭集. 定理2.2.2.(1) o A 是A 的最大开子集; A 为开集 o A A =⇔.(2)A 是包含A 的最小闭集; A 为闭集A A =⇔.(3) A 为闭集A A ⊂'⇔. (4) A A A '= . (5) A A A o∂= . (6) )d ,(X 为度量空间,则X A ⊂为闭集A ⇔中取极限运算封闭.(7) A 为度量空间X 中闭集 ⇔若 A x 0)y ,(inf )A ,( ∈==∈∆则,x d x d Ay .选证:(1) 记} {Λ∈λλG 为A 的全体开子集所成之集族.则⎪⎪⎭⎫⎝⎛∈⇔∈Λ∈∃⇔∈Λ∈ G x G x , λλλλ使oA x ,于是 Λ∈=λλG A o是开集,且是A 的最大开子集. 故A 为开集A A o =⇔. (3) 若A 为闭集,则c A 为开集,且φ=cA A .由聚点定义,c c A x A x )( '∈⇒∈,即c c A A )('⊂,A A ⊂'.反之, 设A A ⊂',则cc A x A x )( '∈⇒∈, 故存在x 的某个邻域G , 满足 c A x .)}{\(∈=而φA x G ,∴ φ=A G ,即cAG x ⊂∈,说明x 是c A 的内点,c A 是开集,A 是闭集.(6) 设点列A x n ⊂}{,X x x n ∈→.若}{n x 有无穷多项互异,则A x '∈;否则A x ∈.从而总有A x ∈.由(2) 得证.例1. 0.5] [0,E );5.0 ,0(E ,)5.0 ,0[0='==则Z E ; Z E E E ]5.0 ,0[='=.由于E E ⊂'不成立,E 不是闭集.例2. 2R X =, } 0 R,x ) ,{(≥∈=y y x A . 则 A A ='; } R x,0 ) ,{(∈>=y y x A o. A A A A ='= ; } )0 ,{(R x x A ∈=∂.例3. 证明R A ⊂的导集A '是闭集. 证:需要证c) A ('是开集.x,)A ( x c '∈∀不是A 的聚点,存在x 的邻域 ) ,(δx U ,) ,(δx U 中不存在异于x 的A 中的点,故),(δx U 中的每个点均不是A 的聚点.于是 cA x U ) () ,('⊂δ,c) A (' 是开集.定理2.2.3.X A = ∀⇔ 非空开集 X G ⊂,有 φ≠G A . 证:设X A =. 若开集G 满足φ=G A . 则 c G ( ,c G A ⊂为闭).由Th2.2.2.(2) 得 c G A ⊂, 于是,φ==⊂c c X A G )(.反之,由于c cA A A )( )(且φ= 为开集,由条件,φ=c A )(,得 X A =.定理2.2.4.( 疏朗集的三种等价描述)(1) φ=oA )(; (2) ∀非空开集φ≠⇒c )A (G G ;(3) ∀非空开集G ,必含有非空开子集 G G ⊂0,满足φ=0G A .证:(1)⇒(2).若开集G 满足φ=c)A (G ,则A G ⊂, 于是φφ==⊂G ,)A (G o. (2)成立.(2)⇒(3).∀非空开集G ,令0c0G ,)A (G G = 为G 的非空开子集, 且φ=⊂cA A 0G A .(3)⇒(1).反证法.假设 φ≠oA )(,由(3),存在非空开集oA G )(0⊂,满足φ=0G A ,即c )(G A 0⊂ (闭集),c G A0⊂,c 0)A (G ⊂ (开集), 从而 φ==00)(G G A c( A ⊂0G ).矛盾. (18P 错)定理2.2.5.在度量空间中,完全有界集是有界的可分集.证:设X A ⊂为完全有界集,存在X 中有限多个球 n k x B 1)}1 ;({,使 n1)1 ;(=⊂k kx B A . 固定 X x ∈0,记 ∑=+=n10k) x ,d(x1r k . 1) x d(x , 1), ;B(x x k, A, x k k <∈∃∈∀即使, 故r ) x ,d(x ) x d(x ,) x d(x ,0k k 0<+≤ ,即 )r ;(0x B A ⊂, A 有界.对于kk 1=ε,存在有限多个以A 中点)(k j x 为中心的球⎪⎭⎫⎝⎛k 1;)(k j x B ) n , 2, ,1(k =j ,使 kn 1 )(k 1 ;=⎪⎭⎫ ⎝⎛⊂j k j x B A .记{}3, 2, 1,k ;n , 2, ,1 k)( ===j x D k j ,则 D 是A 的至多可数子集.εε<∃>∀k1 ,0.于是,()Dx j k j j k j x B x B A n 1 )(n 1 )() B(x; ;k 1 ;kk∈==⊂⊂⎪⎭⎫⎝⎛⊂εε, D 在A 中稠密,A 为可分集.定理2.2.6.在度量空间中,列紧集是完全有界集.证:反证法.假设X A ⊂是列紧集,但A 不是完全有界集,A ,0 0>∃ε没有有限的0ε-网.A A ∈∃∈∀21 x , x ,使021) ,(ε≥x x d .同理,} x ,{21x 不是A 的0ε-网,A ∈∃3 x ,使) 2 1,i ( ,) ,(03=≥εx x d i .继续下去,得到A x n ⊂}{,满足:) j i ( ,) ,(0≠≥εj i x x d .显然,点列}{n x 无收敛子列,A 非列紧.定理2.2.7.在度量空间中,A 为紧集A ⇔为列紧的闭集.证:只需证明:A 为紧集 A ⇔中每个点列均有收敛于A 中点的子列.“⇒”. 反证法.假设存在点列A x n ⊂}{无收敛于A 中点的子列.则y y y N n ,0N 0 A,y >>>∃∈∀当及δ时,有 ) ;(y δy B x n ∉.现A y y B y )} ;({∈δ为紧集A 的一个开覆盖, 存在 m1 y )} ;({k =k k y B δ 满足m1y ) ;(k =⊂k k y B A δ.令k y mk N N max 1≤≤=,则当 时,N n > m1y ) ;(k=∉k k n y B x δ. 从而 A x n ∉. 矛盾.“⇐”. 设 A 为列紧闭集,则A 为完全有界集.要证A 是紧集,只要证明,对于A 的任一开覆盖Λ∈ }{λλG ,λδλδG ) B(x ; , , x 0, ⊂Λ∈∃∈∀>∃使A . ( 因为 A 具有有限的δ-网 ).采用反证法.假设不然,存在A 的一个开覆盖Λ∈ }{λλG , 满足Λ∈∀∈∃∈∀λ , x N,n n A , 有φλ≠c n G )1;B(x n.对A x n ⊂}{, 因A 为列紧闭集,存在子列 Λ∈⊂∈→ 0λλG A x x k n . 0r , 00>∃Λ∈∃λ,使0 G )r ;B(x 00λ⊂(开集). 而当k 充分大时,有 0 G )r ;B(x )n 1;B(x 00kn λ⊂⊂. 矛盾. 定理2.2.8.设) ,(d X 是度量空间,则以下三条等价: (1) X 是完备的度量空间; (2) 非空闭集列X F n ⊂满足0y) d(x , sup lim )(lim ), 3, 2, 1,(n ,nF y x,n 1===⊂∈+∞→+∞→+n n n n F d F F ,则∃唯一的 +∞=∈1n0Fn x .(3) X 中的完全有界集是列紧集.证:(1)⇒(2). 取) 3, 2, 1,n ( =∈n n F x .当 N p ∈ 时,n p n pn F F x ⊂∈++,0)d(F ) x ,d(x n n p n →≤+,)(n +∞→. }{n x 为完备空间X 中的基本列.记 ) (n ,0+∞→→x x n ,n F 闭, +∞=∈1n 0F n x . 0x 的唯一性显然. (2)⇒(3).设X A ⊂为完全有界集,点列A x n ⊂}{.由完全有界集的定义,∃∈∀ N,k 有限个以 k 21为半径的闭球所成之集族kn m k m k S F 1}{== 覆盖A .于是,存在1)1(F S∈ 含有}{n x 中的无限多项;又存在2)2(F S ∈ ,使得)2()1(S S 含有}{n x 中的无限多项 ; . 一般地, , N k ∈∀k k F S ∈∃)( ,使得kj j k S F 1)( =∆=含有}{n x 中的无限多项. 由此知,存在}{n x 的子列}{k n x 满足k n F x k ∈,) 3, 2, ,1 ( =k .非空集列}{k F 满足k k F F ⊂+1,且 0 1)(→=k F d k .由(2),存在 +∞=∈1k 0F k x ,且)d(F ) x ,d(x k 0n k ≤0k1→=,即0n x x k →,A 为列紧集.(3)⇒(1).设}{n x 为X 中基本列,记} {N n x A n ∈=.εε<≥>∃>∀) x ,d(x N n 0,N 0, N n 时,当.从而, N1k) ;B(x=⊂k A ε, A 为完全有界集⇒ A 为列紧集. 故}{n x 有收敛子列 0n x x k → ) (+∞→k . 显然0n x x → ) (+∞→n . X 为完备空间.定理2.2.9.设) ,(d X 是完备的度量空间,则子空间X M ⊂是完备的 M ⇔是闭集. 定理2.2.10.(Baire 纲定理) 完备的度量空间X 必是第二纲集. 证:采用反证法.假设X 是第一纲集,则 n 1nE ,E+∞==n X 为疏朗集. 由Th2.2.4.(3) 知:对于∃ ,1E 直径小于1的非空闭球φ=111E S , 使S ; 对于∃ ,2E 直径小于21的非空闭球1012S S S ⊂⊂,使φ=22E S ; ; 对于∃+ ,1n E 直径小于11+n 的非空闭球φ=⊂⊂+++1n 1n 01E S , 使n n n S S S .得非空闭球套+∞1}{n S . X 完备, +∞=∈∃1n 0S n x . 这样,X N n E x n ∉∈∉00 x ),( . 矛盾.定理 2.2.11.(完备化定理) 对于度量空间) ,(d X ,必存在一个完备的度量空间)~,~(d X ,使得) ,(d X 等距于)~ ,~(d X 的一个稠密子空间.在等距意义下,空间)~,~(d X 是唯一的. 称空间)~ ,~(d X 为) ,(d X 的完备化空间.(证明的思想方法与Cantor 实数理论中,把无理数加到有理数域中的方法相同). 等距映射:) ,(1d X ,) ,(2d Y 是距离空间, 存在一一映射Y X →:ϕ 满足 ))( ),(() ,(21y x d y x d ϕϕ=)X y x,(∈∀,称ϕ为等距映射,空间X 与Y 等距.例:取nR X =,d 为欧氏距离. )r ;(0x B A = (开球,0>r ).则A 为完全有界集;X 完备,A 也是列紧集.作为距离子空间,A 不完备,其完备化距离空间为 )r ;(~0x S A = (闭球).§2.3. 连 续 映 射定义2.3.1.(连续映射)(A) ) ,(1d X 与) ,(2d Y 是距离空间,映射 . x ,:0X Y X f ∈→) ;( x 0, 0, 0δδεx B ∈>∃>∀当时,) );(((x )0εx f B f ∈,称f 在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y (B) ) ,(1τX 与) ,(2τY 是拓扑空间,映射. x ,:0X Y X f ∈→ 020 x , )( ∃∈∀τV x f 的邻域 的邻域1τ∈U ,使(V ))f U ( ,(U)1-⊂⊂即V f ,称f 为在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y 的连续映射.例1. (1) 距离空间 21d ,d R,Y ),1 ,0(==X 为欧氏距离. 则 x y sin =是)d ,()d ,(21Y X → 的连续映射(函数).(2) 取 }X ,{ ),1 ,0(1φτ==X 为X 中离散拓扑; 2 ,τR Y = 为Y 中欧氏拓扑.则 x y sin =不是Y X →的连续映射.因为,X ∈∀0 x ,对于Y 中)(0x f 的邻域 Y ) ),(21(0⊂∞+=x f V ,不存在0x 的邻域X U ⊂,使V U f ⊂)(. 定理2.3.1. 设X ,Y 是拓扑空间,Y X f →:. (A) f 连续 ⇔ f 反射开集:X (V )f 1⊂⇒⊂∀-Y V 开集 是开集;(B) f 连续 ⇔ f 反射闭集:X (F)f 1⊂⇒⊂∀-Y F 闭集 是闭集.证:(A) “⇒”.V f(x ) (V ),fx 1∈∈∀-即 .由f 在x 处连续,存在x 的邻域 X U ⊂, 使(V )f U (U)1-⊂⊂.即V f . x 是内点,(V )f 1-是开集.“⇐”. 若f 反射开集,Y V f(x ) X x ⊂∈∀的邻域及, 则 X (V)f 1⊂=-∆U 为x 的邻域,且V (V )][f f f(U)1⊂=-,故)(x f 在x 处连续.(B) 注意到 c c F f F f)]([)(11--=,证(B).定理2.3.2. 设X ,Y 是度量空间,映射Y X f →:.则f 在0x 处连续0n n X,}{ x x x →⊂∀⇔)()f( 0n x f x →⇒, )(n +∞→. (证明同数学分析)定理2.3.3. (连续函数的延拓)设E 是度量空间X 中的闭集,R E g →: 是连续函数,则存在连续函数R X f →: 满足: (1) E ),()(∈=x x g x f ; (2) )( sup )(sup ),( inf )(inf x g x f x g x f Ex Xx Ex Xx ∈∈∈∈==.(证略)定理2.3.4. (压缩映射原理,Banach 不动点定理)设)d ,(X 是完备的距离空间,映射X X T :是压缩映射, 即 y) d(x , Ty) d(Tx , 1,0 θθ≤<≤∃使 , X y x,∈∀. 则 T 有唯一的不动点X x ∈:x x T = .证:取初值 ,0X x ∈ 迭代格式:,01Tx x = ,12Tx x =, ,1 n n Tx x =+.下证}{n x 是Cauchy 序列:)Tx ,d(Tx ) x ,d(x ) ,() ,(2n 1n 1n n 11----+=≤=θθn n n n Tx Tx d x x d ) x ,d(x ) x ,d(x 02n 1n 21n θθ≤≤≤-- .) x ,d(x ) x ,d(x ) ,() ,(n n 2p n 1p n 11+-+-+-++++++≤ p n p n n p n x x d x x d()) ,( 0121x x d np n p n θθθ+++≤-+-+ ),(1),(1)1(0101x x d x x d np n θθθθθ-≤--=,∴0),(lim =++∞→n p n n x x d . 而X 完备, x x ,x n →∈∃使 X . T 连续, 故 x x T = .唯一性:若 y T y =. 由于 y 0)y ,( )y ,( )y T , ()y ,(=⇒=⇒≤=x x d x d x T d x d θ.误差估计:) x ,(1)x ,(00Tx d x d nn θθ-≤. 推论.设),(d X 是完备的距离空间,映射X X T :. 若 0n T 是X 上的压缩映射,则T 有唯一的不动点.证:0n T有唯一的不动点x :x x Tn =0.由, )() (00x T x T T x T T n n == 故x T 也是 0nT 的不动点. x x T =⇒ . 由于 T 的不动点也是0n T的不动点,故T 的不动点唯一. 压缩映射原理的应用例1.常微分方程解的存在唯一性.考虑初值问题:⎪⎩⎪⎨⎧==00)(),(x t x t x f dt dx,其中) ,(t x f 连续, 关于x 满足Lipschite 条件:0)(k,) ,() ,(2121>-≤-x x k t x f t x f . 则方程存在唯一解 )(t x x =.证:方程等价于[]⎰+=tt d x t x 00),x(f )(τττ.取 1k ,0<>δδ使.定义 ] t ,[] t ,[0000δδδδ+-+-t C t C T :为 []⎰+=tt d x t Tx 00),x(f ))((τττ,] t ,[00δδ+-∈t t .验证 T 是压缩映射:⎰-≤≤- t212100 ]),([]),([max ),(t t t d x f x f Tx Tx d τττττδ⎰-≤≤- t2100)()(max t t t d x x k τττδ021t t m ax )()( m ax 0-⋅-⋅≤≤-≤-δδτττt t t x x k ),( 21x x d k δ≤. )1(<δkT 在 ] t ,[00δδ+-t C 内具有唯一的不动点 )(t x x =:x Tx =. 重复利用定理将解延拓到实数域R 上.例2.线性方程组解的存在唯一性.线性方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-∑∑∑===nj n j j n n n j j j nj j j b x a x b x a x b x a x 1 12221111,,,满足 ∑=≤≤<=nj ji n i a111max α, 则它具有唯一解 ) x , ,(n 1 x x =.证:在nR 中定义距离:ini y y x d -=≤≤i 11x max ),(,) x , ,(n 1 x x=,n R y y ∈=)y , ,(n 1 ,则 ) ,(1d R n 完备. 作映射 n n R R T : 为 ⎪⎪⎭⎫ ⎝⎛++=∑∑==n j n j j n j j b x a b x a x x 1 n 1 j 11n 1 , ,) x , ,( . 则∑=≤≤-=nj j j j i n i y x a Ty Tx d 1 11)( max ) ,(∑=≤≤-≤nj j j j i ni y x a 1 1 max ),(max 11 1y x d a n j j i n i ⎥⎦⎤⎢⎣⎡≤∑=≤≤) ,( 1y x d α=.T 是压缩的,有唯一不动点 ) x , ,(n 1 x x =.§2.4. R 中的开集及完全集的构造开区间) ,(b a 是R 中开集 (+∞≤<≤∞-b a ). 任意多个开区间之并是开集.另一方面,设开集R G ⊂.则G r) x r,(x 0,r G , x ⊂+->∃∈∀使.记 }G x),( , inf{⊂<=ααα且x a , }G ) ,( , sup{⊂>=βββx x b 且.开区间) ,(b a 具有性质:G b G,a ,) ,(∉∉⊂G b a .称) ,(b a 为开集G 的一个构成区间.于是,G 中每一点必在G 的一个构成区间.此外,G 的任何两个不同的构成区间必不相交.而R 中两两不交的开区间至多可列个. 定理2.4.1. (开集构造定理) 每个非空开集R G ⊂可表示为至多可列个两两不交的开区间之并: +∞==1 n n )b ,(a n G .根据完全集的定义 (15P )及Th2.2.3(3) 可知,完全集(A A '=)即为无孤立点的闭集.故有如下定理. 定理2.4.2. (R 中完全集的构造) 集R A ⊂是完全集 cA ⇔ 是两两不交并且无公共端点的开区间之并.Cantor 集P . [ ] [ ] [ ] [ ] [ ]构造过程: 0 231 23231 32 97 98 1第一步:将 ]1 ,0[三等分,挖去⎪⎭⎫ ⎝⎛=32 ,311J ,留下闭区间 ⎥⎦⎤⎢⎣⎡=31 ,00I ,⎥⎦⎤⎢⎣⎡=1 ,322I . 记 11J G =.第二步:对0I ,2I 分别三等分,挖去中间的开区间⎪⎭⎫ ⎝⎛=92 ,9101J 与 ⎪⎭⎫⎝⎛=98 ,9721J . 记 21012J J G =,留下4个闭区间⎥⎦⎤⎢⎣⎡91 ,0,⎥⎦⎤⎢⎣⎡31 ,92,⎥⎦⎤⎢⎣⎡97 ,32,⎥⎦⎤⎢⎣⎡1 ,98.第三步:对留下的4个闭区间施行同样过程.将挖去的4个开区间之并记为3G .如此继续下去.记 c1 n G P ), ,1()0 ,(G ∆+∞==∞+-∞⎪⎪⎭⎫ ⎝⎛= n G . (书25P 错) 据Th2.2.4 及Th2.4.2,Cantor 集P 是疏朗集、完全集.若采用三进制无穷小数表示]1 ,0[中数,则 xG 1n ⇔∈+∞= n x 中至少有一位是1,亦即:x ⇔∈P x 可表示为由0或2作为位数过构成的无穷小数.由Th1.3.4,ℵ=⎪⎪⎭⎫ ⎝⎛=∏∞+= 2} {0,1 n P ; ]1 ,0[~P .第二章习题26P .16.设}{n K 是度量空间X 中非空单调减紧集序列,证明:φ≠+∞= 1nKn .特别地,若 0)(→n K d ,则+∞=1nKn 为单点集.证:反证法.假设φ=+∞= 1 n K n , 即 ∞+=∞+==⎪⎪⎭⎫ ⎝⎛=⊂11 n 1K n c n cn K X K . 321 ⊃⊃⊃K K K , 321 ⊂⊂⊂cc c K K K . 1K 紧 φ=⊂=⇒=⊂⇒=cn c n ki c n kkiK K K K K kkkn 1n n 11K K K .矛盾.若 0)( lim =+∞→n n K d ,)(n 0)d(K y) d(x , K ,n 1n +∞→→≤⇒∈+∞= n y x . y x =∴.33.证明: x sup }{n⎭⎬⎫⎩⎨⎧+∞<==∈∞N n n x x l 是不可分的距离空间. 证明:距离:}{n x x =,}{n y y =,n n Nn y x y x d -=∈ sup ) ,( . 假设 ∞l 可分,据15P (11), (9),它有至多可列的稠密子集.对于 41=ε,存在可列多个球+∞1)} ;({εn x B , 使+∞=∞⊂1) ;(n n x B l ε.记{} }1 ,0{ }{ n ∈==x x x A n , 则 ∏+∞=1 1} {0,n A ~,ℵ=A . 但+∞=⊂1 ) ;(n n x B A ε, 存在球) ;(0εn x B , 至少包含A 中不同的两点 A y x ∈ ,. 这样,()212) ;(1) ,(0 =≤≤=εεn x B d y x d , 矛盾. 空间 ∞l 不可分.。
【课堂新坐标】2016-2017学年高中数学 第二章 解析几何初步 学业分层测评24 空间两点间的距离公式 北师大版必修2(建议用时:45分钟)[学业达标]一、选择题1.若A (1,3,-2),B (-2,3,2),则A ,B 两点间的距离为( ) A.61 B .25C .5 D.57 【解析】 |AB |=1+22+3-32+-2-22=5.【答案】 C2.在长方体ABCD A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6【解析】 由已知可得C 1(0,2,3),∴|AC 1|=4-02+0-22+0-32=29.【答案】 B3.如图2313,在空间直角坐标系中,有一棱长为a 的正方体ABCD A 1B 1C 1D 1,A 1C 的中点E 到AB 的中点F 的距离为( )图2313A.2aB.22a C .aD.12a 【解析】 由题意得F ⎝ ⎛⎭⎪⎫a ,a2,0,A 1(a,0,a ),C (0,a,0),∴E ⎝ ⎛⎭⎪⎫a 2,a 2,a2,则|EF |= ⎝ ⎛⎭⎪⎫a -a 22+⎝ ⎛⎭⎪⎫a 2-a 22+⎝ ⎛⎭⎪⎫0-a 22=22a . 【答案】 B4.设点P 在x 轴上,它到P 1(0, 2,3)的距离为到点P 2(0,1,-1)的距离的两倍,则点P的坐标为( )A.(1,0,0) B.(-1,0,0)C.(1,0,0)或(0,-1,0) D.(1,0,0)或(-1,0,0)【解析】∵点P在x轴上,∴设点P的坐标为(x,0,0),由题意|PP1|=2|PP2|,∴x-02+0-22+0-32=2x-02+0-12+0+12,解得x=±1,∴所求点为(1,0,0)或(-1,0,0).【答案】 D5.已知点A(1,a,-5),B(2a,-7,-2)(a∈R),则|AB|的最小值是( )A.3 3 B.3 6C.2 3 D.2 6【解析】|AB|=1-2a2+a+72+-5+22=5a+12+54≥54=3 6.【答案】 B二、填空题6.点P(x,y,z)到点A(-1,2,3),B(0,0,5)两点的距离相等,则x、y、z满足______.【解析】由|PA|=|PB|,可得x+12+y-22+z-32=x2+y2+z-52,整理得2x-4y+4z-11=0.【答案】2x-4y+4z-11=07.已知正方体不在同一表面上的两顶点A(-1,2,-1),B(3,-2,3),则正方体的体积是________.【解析】设正方体棱长为a,则a2+a2+a2=|AB|=42+-42+42,所以a=4,V=43=64.【答案】648.在Rt△ABC中,∠BAC=90°,A(2,1,1),B(1,1,2),C(x,0,1),则x=________.【解析】由距离公式|AB|=2-12+1-12+1-22=2;|AC|=2-x2+1-02+1-12=2-x2+1;|BC|=1-x2+1-02+2-12=1-x2+2;∵∠BAC=90°,∴|BC|2=|AB|2+|AC|2,∴(1-x)2+2=2+(2-x)2+1,解得x=2.【答案】 2三、解答题9.如图2314,在长方体ABCDA1B1C1D1中,AD=2,DC=4,DD1=3,利用空间两点间的距离公式,求对角线AD1,AB1和AC1的长.【导学号:10690074】图2314【解】以D为坐标原点,DA,DC和DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.则D(0,0,0),A(2,0,0),D1(0,0,3),B1(2,4,3),C1(0,4,3),∴|AD1|=22+32=13,|AB1|=2-22+42+32=5,|AC1|=2-02+-42+-32=29.10.在xOy平面内的直线2x-y=0上确定一点M,使它到点P(-3,4,5)的距离最小,并求出最小值.【解】∵点M在xOy平面内的直线2x-y=0上,∴点M的坐标为(a,2a,0),则|MP|=a+32+2a-42+52=5a2-10a+50=5a-12+45,∴当a=1时,|MP|取最小值35,此时M(1,2,0).即M坐标为(1,2,0)时,|PM|最小,最小值为3 5.[能力提升]1.在空间直角坐标系中,与点A(3,1,2),B(4,-2,-2),C(0,5,1)等距离的点的个数为( )A.1 B.2C.3 D.无数【解析】 由两点间距离公式可得|AB |=26,|BC |=74,|AC |=26,易知A 、B 、C 三点不共线,故可确定一个平面.在△ABC 所在平面内可找到一点到A 、B 、C 距离相等,而过该点与面ABC 垂直的直线上的每一点到A 、B 、C 距离均相等.【答案】 D2.点P (x ,y ,z )的坐标满足x 2+y 2+z 2=1,点A (-2,3,3),则|PA |的最小值是( ) A .2 B .3 C .4D .5【解析】 x 2+y 2+z 2=1在空间中表示以坐标原点O 为球心、1为半径的球面,所以当O 、P 、A 三点共线时,|PA |最小,此时|PA |=|OA |-|OP |=|OA |-1=-22+32+32-1=4-1=3.【答案】 B3.(2016·徐州高一检测)对于任意实数x 、y 、z ,x 2+y 2+z 2+x +32+y +22+z -12的最小值为______.【解析】 结合空间直角坐标系中任意两点的距离公式,可得x 2+y 2+z 2+x +32+y +22+z -12表示的几何意义是空间内任意一点M (x ,y ,z )与原点O (0,0,0)及定点A (-3,-2,1)的距离之和,显然当O ,M ,A 三点共线时,|OM |+|MA |最小,最小值为|OA |=-3-02+-2-02+1-02=14.【答案】144.已知正三棱锥A BCD ,高为1,底面正三角形边长为3,建立适当坐标系写出A 、B 、C 、D 四点的坐标,并求侧棱AB 的长度.【解】 设O 为A 在底面BCD 上的射影,则O 为正三角形BCD 的中心. 如图以OB 所在直线为x 轴,以OA 所在直线为z 轴,以过O 与CD 平行的直线为y 轴,建立空间直角坐标系, 设CD 中点为E ,由BC =3,O 为△BCD 中心可知, |OB |=23|BE |=23·32|BC |=1,|OE |=12|OB |=12,∴B (1,0,0),E ⎝ ⎛⎭⎪⎫-12,0,0.又|CE |=|ED |=32,∴C ⎝ ⎛⎭⎪⎫-12,32,0,D ⎝ ⎛⎭⎪⎫-12,-32,0. 又∵A 在z 轴上,且|AO |=1,∴A (0,0,1). 由两点间的距离公式|AB |=1-02+0-02+0-12=2,∴各点坐标为A (0,0,1),B (1,0,0),C ⎝ ⎛⎭⎪⎫-12,32,0,D ⎝ ⎛⎭⎪⎫-12,-32,0,侧棱AB 长为 2.。
第二章点集(总授课时数 8学时)教学目的:欧氏空间n R上的测度与积分是本课程的主要研究对象。
本节讨论欧氏空间上的若干拓扑概念。
通过本节的学习,可以熟悉欧氏空间上的开集,闭集和Borel集,Cantor 集等常见的集,为后面的学习打下基础。
本章要点由n R上的距离给出邻域,内点,聚点的定义,从而给出开集,闭集的定义.由开集生成一个σ-代数引入Borel 集.Cantor 集是一个重要的集, 它有一些很特别的性质。
应使学生深刻理解本节介绍的各种集的概念并熟练应用.充分利用几何图形的直观,可以帮助理解本节的内容。
本章难点Borel集、Cantor 集的性质。
授课时数8学时————-—---———————-——-——-—-—————本章先介绍n R中的距离、极限、邻域、区间及其体积等基本概念,然后定义了内点、聚点、外点、边界点、开集、闭集等特殊点和集,并讨论了开集与闭集的性质及其构造。
最后介绍了聚点原理、有限覆盖定理.§1 度量空间,n维欧氏空间教学目的1、深刻理解n R中的距离、邻域、点列收敛等概念,弄清它们在刻划不同类型的点及点集中的作用。
2、理解距离的性质、点到集合的距离、两集合之间的距离、集合的直径等概念,理解有界集、无界集、区间及区间的体积等概念.3、了解邻域的四条性质.本节要点度量空间的概念。
本节难点度量空间的概念。
授课时数2学时——-———————————————-—————-——--—一、度量空间⨯→为一映射,且满足定义1:设X为一非空集合,d:X X R(1)(,)0d x y ≥,(,)0d x y x y =⇔= (正定性) (2)(,)(,)d x y d y x = (对称性)(3)(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称(,)X d 为度量空间。
例1:(1) 欧氏空间(,)nR d ,其中(,)d x y =(2) 离散空间(,)X d ,其中1(,)0x yd x y x y ≠⎧=⎨=⎩(3) [],a b C 空间([],a b C 表示闭区间[],a b 上实值连续函数全体), 其中(,)max |()()|a t bd x y x t y t ≤≤=-二、 邻域定义2: 称集合0{|(,)}P d P P δ<为0P 的δ邻域,并记为0(,)U P δ.0P 称为邻域的中心,δ称为邻域的半径。
.第一章实分析概要本章将简要的介绍数学分析与实变函数的一些根底知识,特别是点集的勒贝格测度与勒贝格积分理论。
这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。
第一节集合及其运算第二节实数的完备性第三节可数集与不可数集第四节直线上的点集与连续函数第五节点集的勒贝格测度与可测函数. 1.第六节勒贝格积分第一节集合及其运算1〕A∪A A,A∩A A;2〕A∪ ΦA,A∩ ΦΦ;3〕假设A⊂B,则A∪B B,A∩B A,A\BΦ;4) 设*为根本集,则A ∪ A C * , A ∩ A CΦ, ( A C)C A, A \B A ∩ B C又假设A⊂B,则A C⊃B C。
集合的运算法则:2交换律 A ∪ B B ∪ A, A ∩ B B ∩ A ;结合律( A∪B) ∪C A∪ (B∪C) A∪B∪C;( A∩B) ∩C A∩ (B∩C) A∩B∩C;分配律( A∪B) ∩C ( A∩C) ∪ (B∩C) ;( A∩B) ∪C ( A∪C) ∩ (B∪C) ;( A \ B) ∩C ( A∩C) \ (B∩C) .定理1.1 设*为根本集,Aα为任意集组,则1) ( U Aα )C I ( Aα )C (1.6)α∈I α∈I2) ( I Aα )C U ( Aα )C (1.7)α∈I α∈IA \ ( A \ B) A I B3第二节实数的完备性2.1有理数的稠密性2.2实数的完备性定理定义2.1(闭区间套)设{[a n ,b n ]}(n 1,2,L, ) 是一列闭区间,a n b n,如果它满足两个条件:1〕渐缩性,即[a1,b1]⊃[a2,b2]⊃L⊃[a n,b n]⊃L;2) 区间长度数列{b n− a n }趋于零,即lim(b n−a n)0n→∞4定理2.1 (区间套定理)设{[a n ,b n ]} 为实数轴上的任一闭区间套,其中a n与b n都是实数,则存在唯一的一个实数ξ属∞于一切闭区间[a n ,b n ](n 1,2,L) ,即ξ∈ ∩[a n ,b n ],并且n 1lim a n lim b nξn→∞n→∞利用区间套定理,可以直接推出所谓的列紧性定理〔定理 2.2〕,这个定理的名称的含义在第二章中解释。
[课时作业][A 组 基础巩固]1.下列各点在y 轴上的是( )A .(2,0,0)B .(1,0,3)C .(0,-2,0)D .(3,3,0)解析:空间中在y 轴上的点的坐标的特点是横坐标与竖坐标均为0.答案:C2.在空间直角坐标系中,P (2,3,4),Q (-2,3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .关于y 轴对称解析:根据空间中点的对称规律判断.答案:D3.已知A (2,1,1),B (1,1,2),C (2,0,1),则A ,B ,C 三点( )A .可以构成直角三角形B .可以构成锐角三角形C .可以构成钝角三角形D .不能构成任何三角形 解析:由已知得|AB |=2,|BC |=3,|AC |=1,因此满足|BC |2=|AB |2+|AC |2,故△ABC 是直角三角形.答案:A4.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,且|BP |=13|BD ′|,建立如图所示的空间直角坐标系,则点P 的坐标为( )A.⎝⎛⎭⎫13,13,13B.⎝⎛⎭⎫23,23,23C.⎝⎛⎭⎫13,23,13D.⎝⎛⎭⎫23,23,13解析:由点P 向xOy 平面作垂线,设垂足为Q ,易知Q 的坐标为⎝⎛⎭⎫23,23,0,又因为|PQ |=13|D ′D |,所以点P 的坐标为⎝⎛⎭⎫23,23,13. 答案:D5.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作yOz 平面的垂线PQ ,则垂足Q 的坐标是________.解析:Q 点在yOz 平面上,所以x 坐标为0,y 、z 坐标与P 点的y 、z 坐标相同,所以Q 点坐标为(0,2,3).答案:(0,2,3)6.已知A (1,2,3),B (5,6,-7),则线段AB 中点D 的坐标为________.解析:设D (x ,y ,z ),由中点坐标公式可得x =1+52=3,y =2+62=4,z =3-72=-2,所以D (3,4,-2).答案:(3,4,-2)7.在空间直角坐标系O -xyz 中,设点M 是点N (2,-3,5)关于坐标平面xOy 的对称点,则线段MN 的长度等于________.解析:点N (2,-3,5)关于坐标平面xOy 的对称点为M (2,-3,-5),所以|MN |=5-(-5)=10.答案:108.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.解析:设M 的坐标为(0,y,0),由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,所以y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)9.四面体P -ABC 中,P A ,PB ,PC 两两垂直,P A =PB =2,PC =1,E 为AB 的中点,建立空间直角坐标系并写出点P ,A ,B ,C ,E 的坐标.解析:以P 为坐标原点,P A ,PB ,PC 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则点P (0,0,0),A (2,0,0),B (0,2,0),C (0,0,1),E (1,1,0).10.(1)在z 轴上求一点,使它到点A (4,5,6)与到点B (-7,3,11)的距离相等;(2)已知点P 到坐标原点的距离等于23,且它的坐标分量相等,求该点坐标.解析:(1)设z 轴上一点P (0,0,z ),则|P A |=(4-0)2+(5-0)2+(6-z )2,|PB |=(-7-0)2+(3-0)2+(11-z )2,由|P A |=|PB |,得z =515, ∴所求点的坐标为⎝⎛⎭⎫0,0,515. (2)设点P 的坐标为(x ,x ,x ),则d |OP |=x 2+x 2+x 2=3x 2=23,∴x 2=4,x =±2,所求点的坐标为(2,2,2)或(-2,-2,-2).[B 组 能力提升]1.已知点A (2,3-μ,-1+v )关于x 轴的对称点为A ′(λ,7,-6),则λ、μ、v 的值为( )A .λ=-2,μ=-4,v =-5B .λ=2,μ=-4,v =-5C .λ=2,μ=10,v =8D .λ=2,μ=10,v =7解析:关于x 轴对称的点,x 轴上的坐标不变,其他是相反数,则⎩⎪⎨⎪⎧ λ=2,3-μ=-7,-1+v =6⇒⎩⎪⎨⎪⎧ λ=2,μ=10,v =7.答案:D2.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为( )A .(72,4,-1) B .(2,3,1) C .(-3,1,5)D .(5,13,-3) 解析:∵ABCD 为平行四边形,∴AC 中点O 也为BD 的中点.∵A (4,1,3),C (3,7,-5),∴O (72,4,-1). ∵B (2,-5,1),∴D (5,13,-3).答案:D3.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1).答案:(5,4,1)4.如图,已知正方体ABCD -A ′B ′C ′D ′的棱长为a ,M 为BD ′的中点,点N 在A ′C ′上,且|A ′N |=3|NC ′|,则MN 的长________.解析:以D 为原点,建立空间直角坐标系.因为正方体的棱长为a ,所以B (a ,a,0),A ′(a,0,a ),C ′(0,a ,a ),D ′(0,0,a ).由于M 为BD ′的中点,取A ′C ′中点O ′,所以M ⎝⎛⎭⎫a 2,a 2,a 2,O ′⎝⎛⎭⎫a 2,a 2,a .因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点.故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . 答案:64a5.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,|P A |=|AC |=12|AB |=4,N 为AB 上一点,|AN |=14|AB |,M 、S 分别为PB 、BC 的中点.试建立适当的空间直角坐标系,求点M 、N 、S 的坐标.解析:由线面垂直的性质可知AB 、AC 、AP 三条直线两两垂直,如图,分别以AB 、AC 、AP所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则B (8,0,0),C (0,4,0),P (0,0,4),因为M 、S 分别为PB 、BC 的中点,由中点坐标公式,可得M (4,0,2),S (4,2,0).因为N 在x 轴上,|AN |=2,所以N (2,0,0).6.直三棱柱ABC -A 1B 1C 1中,AC =2,CB =CC 1=4,E ,F ,M ,N分别是A 1B 1,AB ,C 1B 1,CB 的中点.建立如图空间直角坐标系.(1)在平面ABB 1A 1内找一点P ,使△ABP 为正三角形;(2)能否在MN 上求得一点Q ,使△AQB 为直角三角形?若能,请求出点Q 的坐标;若不能,请予以证明.解析:(1)因为EF 是AB 的中垂线,在平面ABB 1A 1内只有EF 上的点与A ,B 两点的距离相等,则P 必在EF 上,如题图,A (2,0,0),B (0,4,0),C 1(0,0,4).设P (1,2,z ),由|P A |=|AB |,得(1-2)2+(2-0)2+(z -0)2=(0-2)2+(4-0)2+(0-0)2,整理,得z2+5=20,所以z2=15.因为z∈[0,4],所以z=15.故平面ABB1A1内的点P(1,2,15),使得△ABP为正三角形.(2)假设能在MN上求得一点Q(0,2,z),使△AQB为直角三角形,则由直角三角形的性质知,|QF|=12|AB|.因为F(1,2,0),所以(0-1)2+(2-2)2+(z-0)2=12(0-2)2+(4-0)2+(0-0)2,整理,得z2+1= 5.所以z2=4.因为z>0,所以z=2.故MN上的点Q(0,2,2)使得△AQB为直角三角形.。
“泛函分析”课程学习指南本课程主要分为四部分内容:绪论,空间理论,算子理论和算子谱理论。
绪论从分析和代数中的若干问题出发,运用类比、联想、化归等方法,引入泛函分析中的一些基本概念和研究方法,诠释数学研究的基本思想。
空间理论中主要介绍距离空间,赋范空间和内积空间三类空间结构,重点讲授Hilbert空间的几何特征。
算子理论中主要介绍了Banach空间中有界线性算子的基本定理和它们的应用,即:一致有界原则,开映射定理,闭图像定理和Hahn-Banach定理,这是本门课程的核心内容。
算子谱理论中主要介绍有界线性算子的基本性质,重点讲述了有界自共轭算子和紧算子谱的性质。
为了让学生更好地理解和掌握这些内容,下面按章列出知识要点,重点难点和学习要求。
绪论1.知识要点泛函分析中十分抽象的基本概念(空间的结构、收敛性、按坐标分解等)的来源和背景2.重点难点从有限维空间到无穷维空间的过渡,数学研究的基本方法:化归,类比,归纳,联想。
3.学习要求从分析和代数中具体的实例中感悟数学研究的思想方法。
第一章距离空间1.知识要点距离空间的定义;收敛性;开集;闭集;连续映射;可分的距离空间;距离空间中的列紧集;完备的距离空间;距离空间的完备化;压缩映射原理2.重点难点一些具体的距离空间(如:[,],,,,p pC a b L l S s)的完备性,可分性及收敛的具体含义。
3.学习要求(1)掌握距离空间的定义及例;(2)掌握距离空间中点集的拓扑概念;(3)清楚具体的距离空间的拓扑性质和收敛的具体含义;(4)掌握压缩映射原理的内容及证明,并能利用压缩映射原理解决一些具体问题。
第二章赋范空间1.知识要点赋范空间和Banach空间的定义;范数与距离的关系;Riesz引理;有限维空间的几何特征;赋范空间中的级数;赋范空间的商空间2.重点难点(1)范数与距离的关系;(2)Riesz引理的内容与应用。
3.学习要求(1)掌握赋范空间的定义和典型例子;(2)能够证明一些具体空间是赋范空间及它的完备性;(3)准确掌握Riesz引理的背景,内容和应用;(4)掌握有限维空间的几何特征;(5)了解赋范空间中的级数和商空间的含义。