陶瓷基复合材料
- 格式:doc
- 大小:129.50 KB
- 文档页数:3
陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
工制备艺浆体浸渍-热压法适用于长纤维。
首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。
优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。
缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。
晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。
基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。
所用设备也不复杂设备。
过程简单。
混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。
直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。
随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。
优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。
陶瓷基复合材料(CMC)第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。
陶瓷最⼤的缺点是脆性⼤、抗热震性能差。
与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。
特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。
表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。
很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。
⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。
陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。
使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。
陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。
碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。
其它常⽤纤维是玻璃纤维和硼纤维。
陶瓷材料中另⼀种增强体为晶须。
晶须为具有⼀定长径⽐(直径o 3。
1ym,长30—lMy”)的⼩单晶体。
从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。
在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。
陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。
它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。
二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。
增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。
三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。
其中,热压烧结法和液相浸渍法是最常用的制备工艺。
四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。
为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。
五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。
六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。
目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。
同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。
七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。
然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。
同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。
因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。
陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。
陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。
本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。
首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。
陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。
这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。
其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。
陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。
其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。
因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。
最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。
在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。
在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。
在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。
总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。
随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。
陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。
陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。
一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。
其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。
二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。
其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。
高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。
高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。
化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。
三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。
其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。
此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。
在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。
此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。
综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。
由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。
陶瓷基复合材料概述陶瓷基复合材料的基本构成包括陶瓷基体和增强相。
陶瓷基体是复合材料的主要组成部分,其主要作用是提供材料的整体力学性能和化学稳定性。
常见的陶瓷基体材料包括氧化铝、碳化硅、氮化硼等。
增强相通常由纤维、微颗粒或涂层等形式存在,其主要作用是增强材料的力学性能。
常用的增强相材料包括碳纤维、硅碳纤维、碳化硅颗粒等。
陶瓷基复合材料的制备方法主要包括增强相预浸料注浆成型、陶瓷基体浸渍和化学气相沉积等。
增强相预浸料注浆成型是指将增强相(如碳纤维布或纱线)经过预处理后,浸渍在浆料中,制备成具有一定形状和大小的增强相预浸料;陶瓷基体浸渍是将陶瓷基体浸泡在含有滞留剂的浆料中,使其吸附一定量的浆料,然后经过干燥和烧结等工艺得到复合材料;化学气相沉积是利用化学反应在陶瓷基体表面生成陶瓷薄膜,然后在其表面沉积增强相。
陶瓷基复合材料具有许多优越的性能,例如高温强度、高刚度、低热膨胀系数、优良的耐腐蚀性和较高的抗摩擦性能等。
这些性能使得陶瓷基复合材料在高温、高压、强腐蚀等恶劣条件下能够更好地发挥作用。
此外,陶瓷基复合材料还具有良好的抗热冲击性能和较低的密度,使其具备轻量化设计的优势。
陶瓷基复合材料在航空航天领域有广泛的应用。
例如,在航空发动机的制造中,使用陶瓷基复合材料可以减轻发动机重量、提高燃烧效率和减少燃料消耗。
此外,在航空航天器的外壳、导向系统和推进系统中也常使用陶瓷基复合材料,以提高材料的耐高温性能和抗氧化性能。
在汽车制造领域,陶瓷基复合材料可以用于发动机部件、制动系统和排气系统等关键部位,以提高汽车的安全性能、降低能源消耗和减少尾气排放。
陶瓷基复合材料的高温性能和耐腐蚀性能使其成为替代传统金属材料的理想选择。
在能源领域,陶瓷基复合材料可以用于核能装置、燃料电池和太阳能电池等设备,以提高能量转化效率和延长设备寿命。
陶瓷基复合材料的高温稳定性和化学稳定性使其在能源应用中具有重要的地位。
此外,陶瓷基复合材料还可用于电子器件、石油化工、医疗器械和船舶制造等领域。
陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐高温、耐腐蚀、耐磨损、绝缘性能和较高的强度和硬度,因此在航空航天、汽车、机械等领域有着广泛的应用前景。
首先,陶瓷基复合材料的制备方法有多种,包括热压法、热等静压法、注射成型法等。
其中,热压法是一种常用的制备方法,通过将陶瓷粉末和增强材料粉末混合后,经过模具成型,再进行高温高压烧结而成。
这种方法制备的陶瓷基复合材料具有较高的密度和强度,适用于要求较高性能的领域。
其次,陶瓷基复合材料的增强材料多样,常见的有碳纤维、硅碳化物、氧化锆等。
这些增强材料能够有效提高陶瓷基复合材料的强度和韧性,使其具有更广泛的应用前景。
同时,通过合理选择和设计增强材料的类型和比例,可以使陶瓷基复合材料具有更优异的性能。
另外,陶瓷基复合材料的应用领域广泛,例如在航空航天领域,可以用于制造发动机零部件、导弹外壳等高温、高压、高速工作的零部件;在汽车领域,可以用于制造发动机缸套、刹车盘等耐磨损、耐腐蚀的零部件;在机械领域,可以用于制造轴承、刀具等需要耐磨损、耐高温的零部件。
最后,陶瓷基复合材料在实际应用中还面临着一些挑战,如制备工艺复杂、成本较高、易受到裂纹和断裂等。
因此,需要进一步研究和改进制备工艺,提高制备效率和降低成本,同时加强对陶瓷基复合材料的性能评价和监测,以确保其在各个领域的可靠应用。
综上所述,陶瓷基复合材料具有广阔的应用前景和发展空间,通过不断的研究和创新,相信它将在未来的材料领域发挥越来越重要的作用。
陶瓷基复合材料陶瓷基复合材料是一种将陶瓷作为基体,同时添加其他材料形成的复合材料。
它具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
本文将重点介绍陶瓷基复合材料的特点、制备方法和应用。
陶瓷基复合材料的特点有以下几个方面。
首先,它具有很高的耐高温性能。
陶瓷基复合材料可以在高温下长时间工作,不会烧结或软化,因此在航空航天和汽车引擎等高温环境中得到广泛应用。
其次,它具有优异的耐磨性。
陶瓷基复合材料的硬度和抗磨损性能远远超过金属材料,可以用于制造耐磨件,如轴承、机械密封件等。
此外,它还具有较高的抗腐蚀性能和较低的摩擦系数,可以用于制造化学装置和摩擦副。
陶瓷基复合材料的制备方法主要包括烧结法和浸渍法。
烧结法是将陶瓷粉末和其他材料混合后,通过高温加热使其熔结成型。
这种方法适用于制备纯陶瓷基复合材料,如氧化铝基陶瓷复合材料。
浸渍法是将陶瓷基体浸渍于其他材料溶液中,然后通过热处理使其形成复合材料。
这种方法可以制备各种类型的陶瓷基复合材料,如碳纤维增强陶瓷基复合材料和碳化硅增强陶瓷基复合材料。
陶瓷基复合材料在各个领域中都有广泛的应用。
在航空航天领域,它可用于制造发动机组件、航空轴承、导弹和卫星零部件等。
在汽车领域,它可用于制造发动机缸套、刹车片、活塞环等。
在电子领域,它可用于制造电子散热器、半导体器件等。
在能源领域,它可用于制造核燃料颗粒、核电站部件等。
在化工领域,它可用于制造化学反应器、蒸馏柱等。
综上所述,陶瓷基复合材料具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。
随着科技的进步和材料制备技术的发展,陶瓷基复合材料的应用前景将更加广阔。
碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。
陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。
其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。
报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。
鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。
其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。
C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。
Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。
本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。
复合材料习题
第七章
一、如何改善陶瓷的强度?
减少陶瓷内部和表面的裂纹:
含有裂纹是材料微观结构的本征特性。
微观夹杂、气孔、微
裂纹等都能成为裂纹源,材料对表面裂纹(划伤、擦伤)也
十分敏感。
提高断裂韧性(K IC):
采用复合化的途径,添加陶瓷粒子、纤维或晶须,引入各种
增韧机制(增加裂纹的扩散阻力及裂纹断裂过程消耗的能
量),可提高陶瓷的韧性。
二、简述氮化硅陶瓷的烧结方法及其特点。
氮化硅陶瓷中,Si-N是高强度共价键,难以烧结。
氮化硅陶瓷有两种烧结方法:1、反应烧结:
硅粉、氮化硅粉混合→预成型→预氮化(1200℃)→二次氮化(1350-1450℃)→反应烧结氮化硅陶瓷。
Si3N4形成时伴随21.7%的体积膨胀,获得无收缩烧结氮化硅。
2、热压烧结:
粉末状Si3N4、烧结助剂MgO(1wt%)等,在石墨坩埚中,通过感应加热、单向加压烧结(1650-1850℃,15-30MPa,1-4h)。
MgO的作用:与SiO2膜作用生成熔融硅酸镁,使氮化硅高度致密化。
热压烧结氮化硅只能制备形状简单的(如圆柱形)实体坯件,其制品须经过机械加工才能达到要求的形状和尺寸。
三、简述陶瓷基复合材料的特点及制造步骤。
陶瓷基复合材料的特点:E f和E m的数量级相当;陶瓷基体的韧性有限;增强材料与陶瓷基体之间的热膨胀系数不匹配、化学相容性问题突出。
陶瓷基复合材料的制造通常分为两个步骤:将增强材料掺入未固结(或粉末状)的基体材料中排列整齐或均匀混合;运用各种加工条件在尽量不破坏增强材料和基体性能的前提下制成复合材料制品。
四、简述连续纤维增强陶瓷基复合材料的料浆浸渍-热压烧结工艺及其优、缺点。
料浆浸渍-热压烧结工艺:纤维通过含有超细陶瓷基体粉末的料浆使之浸渍,浸挂料浆的纤维缠绕在卷筒上,烘干、切割,得到纤维无纬布;纤维无纬布裁剪、铺层排列、热压烧结得到陶瓷基复合材料。
浸渍料浆的组成:陶瓷基体超细粉末、
溶剂(水或甲醇)、有机粘结剂,有时还
加入促进剂和润湿剂(提高纤维在料浆
中的浸润性)。
料浆中的陶瓷粉体粒径应小于纤维直
径,并能悬浮于料浆中;纤维应选用容
易分散的、捻数低的束丝;所选用的粘
结剂能够完全去除。
料浆浸渍-热压烧结工艺的优点:
烧结温度低、烧结时间短,所得制品的致密度高。
可以制备纤维定向排列、低孔隙率、高强度的陶瓷基复合材料。
料浆浸渍-热压烧结工艺的缺点:
要求基体有较高的熔点或软化点。
生产效率较低(适合单件和小规模生产),工艺成本较高。
制品垂直于加压方向的性能和平行于加压方向的性能差别明显。
纤维与基体的比例较难控制,纤维不易在制品中均匀分布。
五、简述晶须增强陶瓷基复合材料的先驱体转化法制造工艺及其优、缺点。
先驱体转化法工艺流程:晶须、陶瓷微粉、有机先驱物、溶剂均匀混合→预成型坯件(模压)→先驱物热解成陶瓷基体(一定温度和气氛)→陶瓷基复合材料。
先驱体转化法的优点:成型容易,烧结温度低,工艺重复性高。
先驱体转化法的缺点:制品气孔率高,收缩变形大。
晶须增强陶瓷基复合材料制造工艺的问题:
晶须比表面积大(晶须直径小、长径比大),与陶瓷基体的反应性高,容易簇聚,导致晶须与陶瓷基体粉末均匀混合困难。
为此,进行晶须净化,晶须净化的方法:采用沉降技术除去颗粒杂质。
六、简述原位生长晶须增强陶瓷基复合材料的制造工艺及其优、缺点。
原位生长晶须:陶瓷烧结的致密化过程中,通过化学反应,在陶瓷基体内生长出晶须(或高长径比的晶体),从而得到晶须增强陶瓷基复合材料。
原位生长工艺的优点:原料廉价,对环境污染小;工艺简单,晶须生长按冷却方向择优取向,不存在生成的晶须与基体的相容性问题和热膨胀匹配的问题;可以制造形状复杂、大尺寸的产品;烧结过程中没有收缩,得到近净成型制品。
原位生长工艺的缺点:
难以制备完全致密的
陶瓷基复合材料(增加
热压工序可提高致密
化程度)。
例:自增强氮化硅陶瓷复合材料(Si 3N 4/Si 3N 4)
氮化硅陶瓷在高压氮气气氛中烧结,生长出长径比达10:l 的β-Si 3N 4晶体。
原位生长晶须示意图:在烧结助剂作用下,α-Si 3N 4烧结过程中生长出β-Si 3N 4晶须。
当β-Si 3N 4的生长速度约为α-Si 3N 4的两倍时,β-Si 3N 4的活化能是各向异性的,有生长成棒状(rodlike )β-Si 3N 4晶体的趋势。
七、简述陶瓷的增韧方法。
应力强度因子(支配裂纹扩展的尖端应力):lim tip tip R K →=
1、晶须和纤维增韧:吸收能量。
裂纹扩展受阻:当增强体(纤维或颗粒)的断裂韧性大于基体中某些区域的断裂韧性时,纤维受到的残余应力为拉应力,具有收缩趋势,可以使基体裂纹压缩并闭合,阻止裂纹的扩展。
纤维(或晶须)拔出:具有较高断裂韧性的纤维,当基体裂纹扩展至纤维时,应力集中导致结合较弱的纤维与基体之间的界面解离,在进一步应变时,将导致纤维在弱点处断裂,随后纤维的断头从基体中拔出。
纤维(或晶须)桥联:在基体开裂后,纤维承受外加载荷,并在基体的裂纹面之间架桥。
桥联的纤维对基体产生使裂纹闭合的力,消耗外加载荷做功,从而增大材料的韧性。
2、相变增韧:(shielding mechanism )
在含有部分稳定的氧化锆粒子的氧化铝复合材料中:在裂纹尖端的应力区域,稳定的氧化锆(ZrO 2+Y 2O 3)发生应力诱导的马氏体相变(一部分断裂能量被用于应力诱发转移):ZrO 2 (t)→ZrO 2 (m),产生约5%的体积膨胀和约16%的剪切变形(剪切变形由产生孪晶等方式抵消)。
这种体积膨胀和切变,在裂纹尖端产生了一种封闭裂纹的应力,减少了集中在裂纹尖端的拉伸应力,使裂纹扩展困难,达到增韧效果。
3、微裂纹韧化:(crack shielding mechanism ):吸收能量
主裂纹扩展时,其尖端高应力区域容易产生微裂纹,微裂纹是产生膨胀应变的机理之一:在微裂纹产生之前,存在有局部的拉伸残余应力。
微裂纹增韧机制适合于基体弹性模量较低的陶瓷基复合材料。
4、非屏蔽机理:
利用裂纹与材料间的相互作用消耗额外的能量,使断裂能量提高,对应力强度因子的贡献很小,包括裂纹偏转(裂纹沿着结合较弱的纤维/基体界面弯折,偏离原来的扩展方向,呈锯齿状扩展,从而使断裂路径增加)或裂纹弯曲(裂纹扩展时由于强化相的阻碍使得尖端路径弯曲,从而使测得的断裂韧性值提高)。