钢管混凝土叠合柱偏心受压承载力的计算方法_郭全全
- 格式:pdf
- 大小:594.83 KB
- 文档页数:8
轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
4.2 轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,′,远离一侧的钢筋可能受压,也可能受拉,但因本受压钢筋的应力也达到f身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
偏心受压柱承载力计算公式偏心受压柱是指在承受压力时,压力作用点与截面几何中心之间存在一定的偏心距离。
在工程领域中,偏心受压柱常见于建筑物的柱子、支撑柱等结构中。
偏心受压柱的承载力计算公式是工程设计中非常重要的一项计算,它能够帮助我们确定柱子能够承受的最大压力,从而确保结构的安全性。
在计算偏心受压柱的承载力时,通常会使用弯矩-轴力相互作用的公式。
一般来说,偏心受压柱的承载力计算公式可以表示为:Nc = P/Ac + Mc/Wc其中,Nc表示偏心受压柱的承载力,P表示作用在柱子上的压力,Ac表示柱子的截面面积,Mc表示作用在柱子上的弯矩,Wc表示柱子的截面模量。
在实际应用中,偏心受压柱的承载力计算公式还需要根据具体的情况进行一些修正。
比如,在计算时需要考虑柱子的弯曲刚度,以及柱子是否受到了侧向屈曲的影响。
为了更好地理解偏心受压柱的承载力计算公式,我们可以通过一个简单的例子来说明。
假设某栋建筑物的支撑柱的截面面积为Ac,截面模量为Wc,偏心距离为e,作用在柱子上的压力为P,作用在柱子上的弯矩为M。
根据偏心受压柱的承载力计算公式,我们可以得到柱子的承载力Nc = P/Ac + Mc/Wc。
如果柱子的承载力超过了设计要求的压力P,那么这个柱子就可以满足设计需求。
但是,在实际应用中,我们还需要考虑柱子是否会受到侧向屈曲的影响。
如果柱子的高度较大,那么它可能会在承受压力时发生侧向屈曲,这将降低柱子的承载力。
为了避免柱子发生侧向屈曲,我们可以采取一些措施,比如增加柱子的截面尺寸、增加柱子的截面模量等。
这样可以提高柱子的抗弯刚度,从而增加柱子的承载力。
偏心受压柱的承载力计算公式是工程设计中非常重要的一项计算。
通过合理地使用这个公式,我们可以确定柱子能够承受的最大压力,从而确保结构的安全性。
同时,在实际应用中,我们还需要考虑柱子是否会受到侧向屈曲的影响,以采取相应的措施提高柱子的抗弯刚度。
这样能够有效地增加柱子的承载力,保证结构的稳定性。
轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距e0 较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于材料破坏”。
第8章 偏心受压构件正截面承载力知 识 点 回 顾•破坏形式及特点 •大小偏心划分 •大偏心算法第8章 偏心受压构件正截面承载力8.1.4 矩形截面偏心受压构件正截面承载力 1. 大偏心受压x £ xb 正截面破坏åN =0g 0 N £ N u = a1 f c bx + f y¢ As¢ - f y Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø èå M As = 0适用条件: x £ xb ¢ x ³ 2 as As 配筋率: r= ³ r min = max ( 0.45 ft fy, 0.2% ) bh第8章 偏心受压构件正截面承载力¢ 当 x < 2as 时,受压钢筋(此时不屈服)计算, 有两种处理方式: (1)规范算法设混凝土合力中心与 As¢ 形心重合。
åM¢ As=0¢ Ne¢ £ N u e¢ = f y As ( h0 - as )(2)平截面假定算法¢ s s¢ = Ese cu (1 - b1 as x )第8章 偏心受压构件正截面承载力2. 小偏心受压构件 (1)基本计算公式 x > xb矩形截面小偏心受压构件承载力计算简图第8章 偏心受压构件正截面承载力小偏心受压构件计算公式:åN =0åMAsg 0 N £ N u = a1 f c bx + f y¢ As¢ - s s Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø è=0依据平截面假定( b1 = 0.8 ):æ b1hoi ö s si = Ese cu ç - 1÷ è x ø公路桥规:æ b1 - x ö s si = ç ÷ fy è b1 - xb øxb < x £ 2 b1 - xb第8章 偏心受压构件正截面承载力依据平截面假定:公路桥规:第8章 偏心受压构件正截面承载力(2) “反向破坏”的计算公式 偏心距很小,且远离轴向压力一侧的钢筋配置得 不够多,偏心压力有可能位于换算截面形心轴和 截面几何中心之间。
混凝土柱的受压承载力计算方法混凝土柱是建筑结构中常见的承重构件之一,其受压承载力的计算方法对于确保结构的安全性至关重要。
在本文中,我将深入探讨混凝土柱的受压承载力计算方法,并分享我的观点和理解。
1. 混凝土柱的受压承载力概述混凝土柱的受压承载力指的是柱子能够承受的压力大小。
在计算受压承载力时,我们需要考虑以下几个因素:- 柱子的几何形状:柱子的截面形状和尺寸会直接影响其受压承载力。
常见的柱子形状包括圆形、方形、矩形等。
- 混凝土的材料性质:混凝土的强度和材料特性也对受压承载力起着重要作用。
通常,我们会使用混凝土的抗压强度来计算柱的受压承载力。
- 柱子的长度:柱子的长度对其受压承载力也有影响。
一般来说,较高的柱子在受压时更容易发生失稳,因此其受压承载力会相对较低。
2. 混凝土柱的受压承载力计算方法混凝土柱的受压承载力计算方法有多种,其中常见的方法包括:- 截面法:截面法是最常用的计算受压承载力的方法之一。
该方法基于柱子截面的几何形状和混凝土的抗压强度来计算。
根据混凝土的抗压强度和柱子截面的形状,我们可以使用相关公式计算出柱子的受压承载力。
- 整体反应法:整体反应法是另一种常用的计算受压承载力的方法。
该方法将整个柱子看作是一个整体,考虑了柱子在受压过程中的整体性能和失稳特性。
通过进行二阶效应分析,我们可以得到柱子的真实受压承载力。
- 高阶理论法:除了截面法和整体反应法,还有一些高阶理论可以用于计算混凝土柱的受压承载力。
这些方法考虑了更多的力学效应和模型假设,可以更准确地预测柱子的受压承载力。
然而,这些方法通常比较复杂且计算量较大,需要较为丰富的专业知识和经验。
3. 观点和理解在我看来,混凝土柱的受压承载力计算方法是结构设计中非常重要的一部分。
准确计算柱子的受压承载力可以确保结构的稳定性和安全性。
在选择计算方法时,我们应该综合考虑结构的实际情况、设计要求和施工条件,选择合适的方法进行计算。
我们也应该关注并深入理解柱子的失稳特性和力学性能,以便更好地预测和评估其受压承载力。
空间钢构架—方钢管混凝土柱偏心受压承载力的计算刘艾宇;唐兴荣;周洲【摘要】The spatial steel frame concrete filled steel tubular column is a new type of composite column. The square steel tube has a restraining effect on both the core and external concrete. The double constraints can effectively improve the bearing capacity and seismic performance of the column. In order to study the cross-section bearing capacity of the column under eccentric compression,two different models of the column are proposed by considering the restrain effect of steel tube and spatial steel frame on concrete respectively. The formulas for the calculation of the cross-section bearing capacity of the composite column are established. The proximity of the calculated value to the experimental value is investigated. The analysis shows that the calculated value given by the formula agrees with the experimental value,which indicates that the formula can be used for the bearing capacity of this composite column under eccentric compression and provide technical basis for practical application of this composite column.%空间钢构架—钢管混凝土柱是一种新型组合柱,钢管内、外混凝土具有一定的约束作用,这种双重约束作用的特征能够有效地提高柱子的承载力和变形能力.为了研究这种新型组合柱的偏心受压承载能力的计算方法,进行了空间钢构架—方钢管混凝土柱的约束机理分析,在此基础上,考虑混凝土的双重约束作用,建立了两种不同计算模型的空间钢构架—方钢管混凝土短柱偏心受压承载力的计算公式.分析表明:采用这两种不同计算模型建立的计算公式具有较好的精度,均可作为空间钢构架—方钢管混凝土短柱偏心受压承载力计算公式,为这种新型组合柱的实际工程应用提供了技术依据.【期刊名称】《广西大学学报(自然科学版)》【年(卷),期】2018(043)001【总页数】12页(P114-125)【关键词】空间钢构架混凝土;方钢管混凝土;约束作用;极限承载力;计算公式【作者】刘艾宇;唐兴荣;周洲【作者单位】苏州科技大学江苏省结构工程重点实验室,江苏苏州215011;苏州科技大学江苏省结构工程重点实验室,江苏苏州215011;苏州科技大学江苏省结构工程重点实验室,江苏苏州215011【正文语种】中文【中图分类】TU375.20 引言随着我国社会经济的不断发展,高层建筑越建越高,对柱子的承载力和抗震性能提出了更高的要求。