湘教版七年级的上册数学全期教案.doc
- 格式:doc
- 大小:205.04 KB
- 文档页数:7
2024年七年级数学上册教案湘教版实用一、教学目标1.让学生掌握有理数的概念、性质及其运算。
2.培养学生的逻辑思维能力、分析问题和解决问题的能力。
3.激发学生学习数学的兴趣,提高学生的数学素养。
二、教学内容1.第一章:有理数1.1有理数的概念1.2有理数的性质1.3有理数的运算2.第二章:整式的运算2.1整式的概念2.2整式的加减2.3整式的乘除3.第三章:一元一次方程3.1一元一次方程的概念3.2一元一次方程的解法3.3一元一次方程的应用4.第四章:几何图形的认识4.1几何图形的概念4.2几何图形的性质4.3几何图形的应用三、教学过程第一章:有理数1.1有理数的概念(1)导入利用生活实例,如购物找零、温度变化等,引导学生感受有理数在实际生活中的应用。
(2)讲解介绍有理数的定义、分类(整数、分数)和表示方法。
(3)练习让学生自主举例,巩固有理数的概念。
强调有理数的实际意义和重要性。
1.2有理数的性质(1)导入通过实例,让学生感受有理数的性质。
(2)讲解介绍有理数的性质,如正数、负数、零的性质。
(3)练习让学生运用有理数的性质解决问题。
归纳有理数的性质,提高学生的逻辑思维能力。
1.3有理数的运算(1)导入利用生活中的实例,如购物、计算面积等,引导学生学习有理数的运算。
(2)讲解介绍有理数的加、减、乘、除运算方法。
(3)练习让学生自主编写题目,进行有理数的运算。
强调有理数运算的法则,提高学生的运算能力。
第二章:整式的运算2.1整式的概念(1)导入通过实例,引导学生了解整式的概念。
(2)讲解介绍整式的定义、分类(单项式、多项式)和表示方法。
(3)练习让学生自主举例,巩固整式的概念。
强调整式在实际生活中的应用。
2.2整式的加减(1)导入利用生活中的实例,如计算物体的面积、体积等,引导学生学习整式的加减。
(2)讲解介绍整式的加减运算方法。
(3)练习让学生自主编写题目,进行整式的加减运算。
归纳整式加减的法则,提高学生的运算能力。
七年级数学上册全册教案(27套新湘教版)1具有相反意义的量教材分析:本章主要内容是有理数的有关概念及有理数的运算.有理数是在小学学习了数的初步知识和数的加减乘除计算的基础上进行学习的,是中学数学学习的基础,也是研究其他学科的工具.通过学习本章有理数的有关概念及有理数的运算,从而掌握有理数的加减乘除混合运算.正确理解有理数的有关概念,熟练掌握有理数的运算法则,将有利于本章的学习与深化,对今后的学习也具有重要的战略意义.本章的设计思路是:引导学生观察现实生活中的有关现象,自然地引入负数,让学生感受到负数的引入的确源自生活的需要,借助数轴理解相反数、绝对值等概念.创设丰富的问题情境,引入有理数的运算.通过归纳,学生总结运算法则和运算律.教材还设计了许多利用有理数运算解决实际问题的内容,使学生进一步体会数学知识与现实世界的联系.教学重点:教学难点:教学目标教学目标分析知识与技能在具体的情境中,理解有理数及其运算的意义.能用数轴上的点表示有理数,会表示有理数的大小.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能运用运算律简化运算.过程与方法在具体情境中认识有理数的有关概念;2.理解有理数及其运算对于现实生活的作用;3.联系生活实际,培养学生的探索精神;4.发展观察、猜想、验证等能力,初步形成数形结合的思想.情感态度与价值观通过情境引导学生投入学习活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与解决问题的能力.教学重点:有理数的概念和有理数的运算.教学难点:对数轴与绝对值定义及有理数的运算法则和运算律的理解.教学方法与策略的选择基础教育课程改革的目标之一是改变课程实施中过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、自主学习、合作探究,培养学生分析问题和解决问题的能力,获取新知识的能力.第1课时具有相反意义的量教学目标:理解正数与负数的意义.在现实的情景中了解有理数的意义,体会其应用的广泛性.应用正、负数表示现实生活中具有相反意义的量,会对有理数进行正确分类.教学重点:理解正负数的意义。
新湘教版七年级上册数学教案第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
七年级数学上册精品教案大全(此文档为word版精品,下载后您可随意编辑)目录1.1 具有相反意义的量教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:一、创设情景,导入新课大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。
要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。
“运进”和“运出”,其意义是相反的。
同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。
新湘教版七年级上册数学教案第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
数学教案—七年级上册姓名:班次:2011 年9 月第一章有理数单元要点分析:1、本章主要内容是有理数的有关概念及有理数的运算。
2、本章的设计思路是:(1)引导学生观察现实生活中的有关现象,自然地引入负数,让学生感受到负数的引入的确源自生活的需要,借助数轴理解相反数、绝对值等概念。
(2)创设丰富的问题情境,引入有理数的运算。
通过归纳,学生总结运算法则和运算律。
教材还设计了许多利用有理数运算解决实际问题的内容,使学生进一步体会数学知识与现实世界的联系。
(3)探索计算器的使用,利用计算器解决复杂数据的实际问题,处理好符号,运算就容易了。
3、本章注重与日常生活的联系,注重数感的培养,注重计算方法的多样化。
注重解决问题和探索规律,淡化繁杂的运算。
注意数学的思维方式:观察、探索——抽象——直觉判断或类比、归纳——猜测——分析、论证——应用的培养。
4、有理数运算与小学四则运算相比,主要是符号问题,处理好符号,运算就容易多了。
5、重点、难点(1)重点:有理数的运算。
(2)难点:对有理数的运算法则和运算律的理解。
6、教学目标(1)在具体的情境中,理解有理数及其运算的意义。
(2)能用数轴上的点表示有理数,会表示有理数的大小。
(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(4)经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能运用运算律简化运算。
(5)发展观察、猜想、验证等能力,初步形成数形结合的思想。
7、课时安排(约20课时)(1)具有相反意义的量1课时(2)数轴、相反数、绝对值3课时(3)有理数大小的比较1课时(4)有理数的加法2课时(5)有理数的减法1课时(6)有理数的加减混合运算2课时(7)有理数的乘法2课时(8)有理数的除法2课时(9)有理数的乘方2课时(10)有理数的混合运算1课时(11)用计算器计算1课时(12)小结与复习3课时1.1具有相反意义的量教学目标:1、从具体的情境中,体会数学中引入正负数来表示“具有相反意义的量”的合理性与必要性,能应用正负数表示生活中具有相反意义的量。
湘教版七年级数学上册全册教案(教学设计)第一单元:数的初步认识第一课:数的基本概念教学目标:- 了解数的概念和分类- 掌握自然数、整数、有理数和无理数的定义- 学会使用数轴表示数的相对大小教学内容:1. 了解数的概念和分类- 数的定义- 数的分类:自然数、整数、有理数和无理数2. 自然数和整数- 自然数的定义和表示- 整数的定义和表示- 自然数和整数的关系3. 有理数和无理数- 有理数的定义和表示- 无理数的定义和表示- 有理数和无理数的关系4. 数轴的使用- 数轴的定义和表示- 数轴上数的相对大小教学过程:1. 导入:通过展示一些例子引发学生对数概念的思考,引出本课讨论的话题。
2. 介绍数的概念和分类:依次向学生介绍数的定义和自然数、整数、有理数和无理数的概念,提供相应的示例进行解释。
3. 分组探究:将学生分组,让每个小组分别探究自然数、整数、有理数和无理数的定义和表示,并向全班汇报他们的研究结果。
4. 数轴游戏:组织学生进行数轴游戏,让学生根据题目要求在数轴上标出相应的数,并判断它们的相对大小。
5. 归纳总结:引导学生归纳总结数的分类和数轴的使用方法。
教学评价:1. 在小组探究环节和数轴游戏环节中观察学生的参与度和合作情况,评价他们对数的分类和数轴的使用的掌握程度。
2. 提问学生关于数的基本概念和数轴的相关问题,评价他们对知识的理解和运用能力。
3. 收集学生在课堂练中的答题情况,评价他们的数学计算和推理能力。
教学延伸:1. 让学生通过实际生活中的例子,深入理解不同类型的数的应用场景。
2. 引导学生从常见的数的问题中发现问题背后的数学规律和问题解决的方法。
第二单元:代数基础第一课:代数表达式教学目标:- 理解代数表达式的概念和基本要素- 掌握变量、系数、常数项和指数的定义和表示方法- 学会化简代数表达式和计算表达式的值教学内容:1. 代数表达式的概念和基本要素- 代数表达式的定义- 代数表达式的基本要素:变量、系数、常数项和指数2. 变量和常数项- 变量的定义和表示- 常数项的定义和表示- 变量和常数项在代数表达式中的作用3. 系数和指数- 系数的定义和表示- 指数的定义和表示- 系数和指数在代数表达式中的作用4. 化简代数表达式- 合并同类项- 移项和合并同类项结合5. 计算代数表达式的值- 根据给定的变量值计算代数表达式的值教学过程:1. 导入:通过举例解释代数表达式的概念和基本要素,激发学生的兴趣和思考。
2024年新湘教版七年级数学上册教案一、教学目标知识与技能掌握有理数的基本概念,包括正数、负数、零及其数学表示。
学会运用有理数进行加、减、乘、除等基本运算。
理解代数表达式的意义,能够化简简单的代数式。
过程与方法通过探究和实践,培养学生的数学思维和问题解决能力。
学会运用数学知识解决实际生活中的问题,增强应用意识。
发展学生的合作学习和自主学习的能力,鼓励学生之间的交流和分享。
情感、态度和价值观激发学生对数学学习的兴趣和热情,建立自信心。
培养学生严谨、细致的数学态度,形成科学的思维方式。
通过数学活动,培养学生的团队合作精神和创新能力。
二、教学重点和难点教学重点有理数的概念和运算规则。
代数表达式的构建和化简。
实际问题中数学模型的建立和应用。
教学难点负数的理解和应用,尤其是在实际情境中的运用。
代数运算的准确性和符号处理。
复杂代数表达式的化简和解释。
三、教学过程导入新课通过回顾之前学习的内容,引出本节课的主题,激发学生对新知识的兴趣和好奇心。
展示一些与本节课内容相关的实际例子,如温度的升降、海拔的深浅等,帮助学生建立直观认识。
提出问题,引导学生思考如何运用数学知识解决这些问题。
知识讲解详细阐述有理数的概念,包括正数、负数、零的定义和表示方法。
通过实例演示有理数的加、减、乘、除等基本运算规则,强调符号的处理和运算的准确性。
引导学生理解代数表达式的意义,学习如何构建和化简简单的代数式。
学生活动分组进行实践活动,如利用有理数计算气温变化、制作简单的代数表达式卡片等。
开展小组讨论,让学生分享彼此的思路和解题方法,加深对知识点的理解。
教师巡视指导,及时纠正学生的错误,并给予积极的反馈和鼓励。
巩固练习提供一系列有针对性的练习题,帮助学生巩固所学知识,提高运算速度和准确性。
分析典型例题,让学生了解解题思路和方法,培养学生的解题能力。
通过互动问答、抢答等形式,激发学生的竞争意识,提高他们的学习兴趣。
课堂小结总结本节课的主要内容和重点知识点,帮助学生形成完整的知识体系。
湘教版数学七年级上册教案 1.1 具有相反意义的量1.能用正、负数表示生活中具有相反意义的量;(重点)2.理解正负数的意义,会判断一个数是正数还是负数;(重点)3.理解有理数的意义,会对有理数进行分类.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗? 二、合作探究探究点一:正、负数的认识 【类型一】 区分正数和负数下列各数哪些是正数?哪些是负数? -1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.在-1,2.5,+43,0,-3.14,120,-1.732,-27中,负数有-1,-3.14,-1.732,-27;正数有2.5,+43,120;0既不是正数也不是负数.故答案为2.5,+43,120;-1,-3.14,-1.732,-27.方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.【类型二】 对数“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.【类型三】 对正、负数有关的规律探究观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,….解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n.故(1)中应填7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016;(2)中应填-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016.方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.探究点二:具有相反意义的量【类型一】 用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】 用正、负数表示误差的范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查产品的容量是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是500mL 为标准容量,470~530(mL)为合格范围.503mL ,511mL ,489mL ,473mL ,527mL 在合格范围内,抽查产品的容量是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.探究点三:有理数的概念及分类把下列各数填入相应的括号内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1正数{ }; 负数{ }; 整数{ }; 分数{ }.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的括号时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数⎩⎨⎧⎭⎬⎫8,334,3101,2,3.14,37,0.618,…;负数⎩⎨⎧⎭⎬⎫-10,-712,-10%,-67,-1;整数{-10,8,2,0,-67,-1};分数⎩⎨⎧⎭⎬⎫-712,334,-10%,3101,3.14,37,0.618. 方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一类数;(2)逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象.三、板书设计1.正数和负数⎩⎪⎨⎪⎧正、负数的定义具有相反意义的量0的含义2.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.3.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.使学生经历讨论、探索、交流、合作等过程获得新知.在有理数分类的教学中,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.1.2数轴、相反数与绝对值1.2.1数轴1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度.”提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想象中的温度计,并和其他同学交流,注意交流时要提出自己的见解.提出问题:温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A.B.C.D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出图中A、B、C、D、E、F各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示-4.5;B 点表示4;C 点表示-2;D 点表示5.5;E 点表示0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A 、D 这种情况,要注意它们所表示的数是在哪两个整数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的表示的数有2个,分别是7或-3,故选D .方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧. 三、板书设计 1.数轴 (1)原点 (2)正方向 (3)单位长度2.数轴上的点与有理数间的关系 (1)原点表示零(2)原点右边的点表示正数 (3)原点左边的点表示负数数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作,经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.1.2.2相反数1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点)2.了解一对相反数在数轴上的位置关系;(重点)3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.一、情境导入1.让两个学生在讲台前背靠背站好(分左右),规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么?2.规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来.3.从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有什么特点?二、合作探究探究点一:相反数的意义【类型一】相反数的代数意义写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【类型二】相反数的几何意义(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,所以距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等,因为A、B两点间的距离是12.8,所以原点到点A和点B的距离都等于6.4.因为点A在点B的左侧,所以这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】 相反数与数轴相结合的问题如图,图中数轴(缺原点)的单位长度为1,点A 、B 表示的两数互为相反数,则点C 所表示的数为( )A .2B .-4C .-1D .0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点C 所表示的数为-1,故应选C .方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号化简下列各数. (1)-(-8)=________;(2)-⎝ ⎛⎭⎪⎫+1518=________; (3)-[-(+6)]=________;(4)+⎝ ⎛⎭⎪⎫+35=________. 解:(1)-(-8)=8;(2)-⎝ ⎛⎭⎪⎫+1518=-1518; (3)-[-(+6)]=-(-6)=6;(4)+⎝ ⎛⎭⎪⎫+35=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.三、板书设计 1.相反数(1)只有符号不同的两个数互为相反数. (2)a 的相反数是-a ,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简(1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数.从具体的场景出发,利用数轴引导学生感受相反数的意义.通过教师的层层设问,充分展示学生的思维过程,让学生学会“理性”思考,从而归纳出互为相反数的意义.让学生意识到数学“源于生活,又高于生活”;在认识相反数的意义的过程中,通过数形结合,将数学文化灵活应用于教学中,旨在让学生领会归纳相反数意义的多样性、概括性.1.2.3 绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必须引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( )A .3B .-3C .-13D .13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A .方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:因为23或-23的绝对值都等于23,所以绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值化简:⎪⎪⎪⎪⎪⎪-35=______;-|-1.5|=______;|-(-2)|=______. 解析:⎪⎪⎪⎪⎪⎪-35=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=-a.探究点二:绝对值的性质及应用 【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可得|a -3|≥0,|b -2015|≥0.解:由题意得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0. 【类型二】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数).一号球 二号球 三号球 四号球 五号球 六号球 -0.50.10.2-0.08-0.15(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明. (2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克;(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a|.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)或|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0).绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.1.3 有理数大小的比较1.掌握有理数大小比较的法则;(重点) 2.掌握用数轴比较有理数的大小;(重点)3.会比较有理数的大小,并能正确地使用“>”或“<”连接;(重点) 4.会初步进行有理数大小比较的推理.(难点)一、情境导入某一天我国5个城市的最低气温如图所示:(1)从刚才的图片中你获得了哪些信息?(2)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”); 广州______上海;北京______上海;北京______哈尔滨;武汉______哈尔滨;武汉______广州.二、合作探究探究点一:运用法则比较有理数的大小 【类型一】 直接比较大小比较下列各对数的大小: (1)3和-5; (2)-3和-5;(3)-2.5和-|-2.25|;(4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小.解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5;(3)因为|-2.5|=2.5,||-|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|;(4)因为⎪⎪⎪⎪⎪⎪-35=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】 有理数的最值问题设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( )A .0,-1,1B .1,0,-1C .1,-1,0D .0,1,-1解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.故选A .方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.探究点二:借助数轴比较有理数的大小 【类型一】 借助数轴直接比较数的大小画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a|<|b|,则有-b <a <-a <b.故选D .方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小.三、板书设计1.借助数轴比较有理数的大小: 在数轴上右边的数总比左边的数大 2.运用法则比较有理数的大小: 正数与0的大小比较 负数与0的大小比较 正数与负数的大小比较 负数与负数的大小比较本节课的教学目标是让学生掌握比较有理数大小的两种方法,教学设计主要是从基础出发,从简单到复杂,层层递进,让学生更加深刻地认识和掌握有理数大小比较的方法.通过本节的教学,大部分学生能够理解法则的内容,但真正掌握有理数的大小比较的方法还需要一定量的练习进行巩固.同时在教学中还要充分发挥学生的主体意识,让学生逐步解决所设计的问题,并能举一反三.1.4 有理数的加法和减法 1.4.1 有理数的加法第1课时 有理数的加法1.理解有理数加法的意义; 2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.(重点)一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法的法则计算:(1)(-0.9)+(-0.87);(2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312; (3)(-5.25)+514;(4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77; (2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312=113; (3)(-5.25)+514=0;(4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用股民默克上星期交易截止前以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:星 期 一 二 三 四 五 每股涨跌/元44.5-1-2.5-6(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上星期一、星期二、星期三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元; (2)星期一:67+4=71(元),星期二:71+4.5=75.5(元),星期三:75.5+(-1)=74.5(元),星期四:74.5+(-2.5)=72(元),星期五:72+(-6)=66(元),所以本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题已知|a|=5,b 的相反数为4,则a +b =________.解析:因为|a|=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1.方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎨⎪⎧(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值;(3)互为相反数的两数相加得0;(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.第2课时 有理数加法的运算律1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点)2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法. 二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35);(3)⎝ ⎛⎭⎪⎫+635+⎝ ⎛⎭⎪⎫-523+⎝ ⎛⎭⎪⎫425+⎝⎛⎭⎪⎫1+123. 解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)⎝ ⎛⎭⎪⎫+635+⎝ ⎛⎭⎪⎫-523+⎝ ⎛⎭⎪⎫425+⎝ ⎛⎭⎪⎫1+123=⎝ ⎛⎭⎪⎫635+425+⎝ ⎛⎭⎪⎫-523+223=11+(-3)=8. 方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km )+18,-9,+7,-14,+13,-6,-8. 求B 地在A 地何方,相距多少千米?解析:首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米.解:(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km ).。
湘教版七年级数学上册教案第1章有理数 (2)1.1 具有相反意义的量 (2)1.2 数轴、相反数与绝对值 (7)1.2.1 数轴 (7)1.2.2 相反数 (10)1.2.3 绝对值 (13)1.3 有理数大小的比较 (16)1.4 有理数的加法和减法 (20)1.4.1 有理数的加法 (20)第1课时有理数的加法 (20)第2课时有理数的加法运算律 (24)第3课时有理数的减法 (28)第4课时有理数的加减混合运算 (31)1.5 有理数的乘法和除法 (34)1.5.1 有理数的乘法 (34)第1课时有理数的乘法 (34)第2课时有理数的乘法运算律 (37)1.5.2 有理数的除法 (40)第1课时有理数的除法 (40)第2课时有理数的乘除混合运算 (45)1.6 有理数的乘方 (49)第1课时有理数的乘方 (49)第2课时科学记数法 (52)1.7有理数的混合运算 (54)章末复习 (58)第2章代数式 (63)2.1 用字母表示数 (63)2.2 列代数式 (67)2.3 代数式的值 (71)2.4 整式 (74)2.5 整式的加法和减法 (78)第1课时合并同类项 (78)第2课时去括号法则 (82)第3课时整式的加法和减法 (84)章末复习 (86)第3章一元一次方程 (91)3.1 建立一元一次方程模型 (91)3.2等式的性质 (94)3.3一元一次方程的解法 (97)第1课时移项法解一元一次方程 (97)第2课时解含有括号的一元一次方程 (100)第3课时解含有分母的一元一次方程 (103)3.4一元一次方程模型的应用 (107)第1课时利用一元一次方程解决和、差、倍、分问题 (107)第2课时利用一元一次方程解决利润与利率问题 (112)第3课时利用一元一次方程解决行程问题 (115)第4课时利用一元一次方程解决分段计费、盈不足问题 (117)章末复习 (121)第4章图形的认识 (128)4.1 几何图形 (128)4.2 线段、射线、直线 (131)第1课时线段、射线、直线 (131)第2课时线段长度比较 (135)4.3 角 (140)4.3.1 角与角的大小比较 (140)4.3.2 角的度量与计算 (144)第1课时角的度量与计算 (144)第2课时余角与补角 (147)章末复习 (150)第5章数据的收集与统计图 (156)5.1 数据的收集与抽样 (156)第1课时总体、个体、全面调查 (156)第2课时抽样调查、样本、样本容量、简单随机抽样 (158)5.2 统计图 (161)第1课时统计图 (161)第2课时复式统计图及统计图的选择 (167)章末复习 (172)第1章有理数1.1 具有相反意义的量【知识与技能】1.通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量.2.理解有理数的意义,体会有理数应用的广泛性.【过程与方法】通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类.【情感态度】强化用数学的意识,体验数学与实际生活的联系,运用知识解决问题,树立学好数学的信心.【教学重点】正数、负数的意义,有理数的意义,能正确对有理数进行分类.【教学难点】对负数的理解以及正确地对有理数进行分类.一、情景导入,初步认知今天你们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%.问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?问题2:这些数够用吗?你还见过其它的数吗?【教学说明】以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础.二、思考探究,获取新知1.说一说:如下图所示的温度计上是如何区分零上的度数和零下的度数的?2.观察:(1)在预报北京市某天的天气时,播音员说“北京,晴,局部多云,零下6摄氏度到5摄氏度.”这时,屏幕上是如何显示这天的温度的?(2)如下图,储蓄存折上是怎样表示“存入2500元”和“支出3000元”的?3.思考:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么?在数学里怎么表示这样的一对数?【归纳结论】像3、125、10.5、23等大于0的自然数和分数就是正数;在正数前面加上“-”(读作负)号,例如-3、-1、-0.618、-23等就是负数.有时在正数前面加上“+”(读作正)号,以强调它是正数.例如,“正数5”写作“+5”,但通常把“+”号省略不写.4.零是正数还是负数呢?【归纳结论】0既不是正数,也不是负数.我们把正数和零称为非负数;把负数和零称为非正数.【教学说明】强调:①如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km可以用负数表示为-3km.②“相反意义的量”包括两个方面的含义:一是相反意义;二是在相反意义的基础上要有量.如:向东走10米,和运进20吨就不是意义相反的量.5.请举出生活中具有相反意义的量,并分别表示它们.【教学说明】能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引入负数的必要性.6.议一议:从小学到现在,我们学过的数有哪些?你能给它们分类吗?【归纳结论】整数和分数统称为有理数.【教学说明】通过对有理数的分类,使学生更系统地了解有理数.三、运用新知,深化理解1.下列具有相反意义的量是(B)A.前进与后退B.胜3局与负2局C.气温升高3℃与气温为-3℃D.盈利3万元与支出2万元2.表示相反意义量是(B)A.“前进8米”与“向东6米”B.“赢利50元”与“亏损160元”C.“黑色”与“白色”D.“你比我高3cm”与“我比你重5千克”3.温度先上升3℃,再上升-5℃的意义是(C)A.温度先上升3℃,再上升5℃B.温度先上升3℃,再上升-2℃C.温度先上升3℃,再下降5℃D.上面答案都不正确4.下列各组数中不是具有相反意义的量的是(D)A.收入250元与支出20元B.水位上升17米与下降10米C.超过0.5mm和不足0.03mmD.增大2岁与减少2升5.下列用正数和负数表示相反意义的量,其中正确的是(C)A.一天凌晨的气温是-5℃,中午比凌晨上升5℃,所以中午的气温是+4℃B.如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米C.如果生产成本增加5%记作+5%,那么-5%表示生产成本降低5%D.如果收入增加8元,记作+8元,那么-5元表示支出减少5元6.下面说法正确的是(D)A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数7.(1)如果大雁向南飞30米记作+30米,那么向北飞50米记作-50.(2)小明家8月份收入8000元记作+8000,支出5000元记作-5000.(3)答题时假如答一题得10分记作+10分,那么答错一道扣5分记作-5.(4)如果体重减少了10千克记作-10千克,那么体重增加10千克记作+10千克.(5)月底某超市开展打折促销活动,月底结算共盈利80000元可记作+80000.8.若向东走20米记作+20米,那么-30米表示向西走30米若向西走-30米又是什么意思向东走30米.9.把下列各数填入相应的位置上:1,-523,111,-0.6,5,0,3.3,6,-135,0.3,2%,12,14.正数:{1,111,5,3.3,6,0.3,2%,12,14 };负数:{-523,-0.6,-135};整数:{1,111,5,0,6,-135,12};正分数:{3.3,0.3,2%,14 };负分数:{-523,-0.6};分数:{-523,-0.6,3.3,0.3,2%,14};【教学说明】通过练习检测学生掌握的情况,同时巩固提高.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.1”中第1、2、4题.本节课是让学生在现实情境中了解正、负数的意义,会用正、负数描述日常生活中相反意义的量.引导学生自主探索学习,给学生充足的时间去尝试,交流方法,让学生从不同角度去分析和解决问题,做到学生间的思想沟通,集思广益,寻找答案,解决问题,体现了学生解决数学问题思维的多样化,个性化.另外,在课堂教学中努力做到:师生互动,学生互动,全班交流,共同学习.在本节课的教学中,还存在着诸多不足,比如如何更好地安排时间,将知识落到实处?交流时,如何选择个别交流与集体交流?老师的评价怎么才能更到位?我想这些都是今后我要努力的方向.1.2 数轴、相反数与绝对值1.2.1 数轴【知识与技能】1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数.【过程与方法】培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,渗透数形结合的数学思想和方法.【情感态度】放飞学生的思维,给每一个学生表现的机会,使他们寻找自己的兴趣.【教学重点】正确掌握数轴画法和用数轴上的点表示有理数.【教学难点】正确理解有理数与数轴上点的对应关系.一、情景导入,初步认知1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?4.你知道温度计吗?温度计的形状是什么?它上面的刻度和数字有什么样的特点?【教学说明】创设问题情境,激发学生学习的热情,发现生活中的数学.通过问题1和问题2的解决,学生感受到点与数之间的关系,从而由点表示数的感性认识上升到理性认识.二、思考探究,获取新知1.观察:下图是小丽从点O出发,沿一条笔直的东西向人行道行走的示意图,由图你能受到什么启发?【归纳结论】画一条直线,在直线上取一点O,把点O叫做原点,用原点表示数0;规定直线的正方向(标上箭头).通常把直线上从原点向右的方向规定为正方向,从原点向左的方向规定为负方向;规定了原点、正方向、单位长度的直线叫做数轴.2.数轴的画法(1)画直线(一般画成水平的)、定原点、标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,并标出…-3,-2,-1,1,2,3…各点.具体如下图.3.我们能不能用这条直线表示任何有理数?(可列举几个数)【归纳结论】任何有理数都可以用数轴上唯一的一个点来表示.4.思考:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?【教学说明】在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?5.探究:+3,-4,4,1,-1.5,0分别在数轴的什么位置?【教学说明】通过练习,得出结论:正有理数是用原点右边的点表示,负有理数是用原点左边的点表示,0用原点表示.三、运用新知,深化理解1.教材P8例1、例2.2.如图所示的图形为四位同学画的数轴,其中正确的是(D)3.如图所示,点M表示的数是(C)A.2.5B.-1.5C.-2.5D.1.54.下列说法正确的是(D)A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示5.数轴上原点及原点右边的点表示的数是(C)A.正数B.负数C.非负数D.非正数6.数轴上点M到原点的距离是5,则点M表示的数是(C)A.5B.-5C.5或-5D.不能确定7.在数轴上表示-2,0,6.3,15的点中,在原点右边的点有(C)A.0个B.1个C.2个D.3个8.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是(C)A.2002或2003B.2003或2004C.2004或2005D.2005或20069.把下列各数用数轴上的点表示出来:6,-4.5,-3,0,52,4.解:10.指出下列数轴上A、B、C、D、E各点分别表示的是什么数.解:A点表示-2;B点表示0;C点表示3.5;D点表示-4.5;E点表示0.5.【教学说明】一方面巩固新学内容,另一方面是使学生通过练习,从数和形两个方面理解数轴.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、2题.本节课,当学习用数轴上的点表示正、负数时,学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上.在整个数轴的教学中始终注重数与形的结合教学.我想,作为教师,我们在备课时不但要备教材,更要备学生,学会换位思考,学生可能会出现怎样的问题和疏忽,我们要有所准备,及时预防和纠正.但另外,我又想,如果先放手让学生自己画,让他们犯错,然后把学生自己画的数轴(特别是有错误的)展示,相互指正,以示警戒,是否效果会更好呢?我们有时候是否也需要学会适当放手,建议下次大家都可试试.1.2.2 相反数【知识与技能】1.体会相反数的概念和几何意义;2.会求已知数的相反数;3.能根据相反数的意义进行多重符号的化简.【过程与方法】1.经历观察、猜想、做出推断的过程,发展形象思维;2.初步运用数形结合的思想方法解决问题,增强应用意识,发展创新精神.【情感态度】在学习中体验成功的喜悦,增强学好数学的信心.【教学重点】相反数的概念,求一个数的相反数.【教学难点】根据相反数的意义化简符号.一、情景导入,初步认知有理数王国的公民“+3”一天不小心掉入一个魔瓶里.谁知出来后竟变成胖乎乎的0,你说怪不怪?冷眼旁观的2说:“谁叫这瓶里睡着他的相反数兄弟呢?幸好我兄弟不在里面!”同学们,你想知道+3的相反数兄弟吗?为什么他俩见面后就变成了0呢?就让我们一起走进神奇的相反数的世界吧!【教学说明】由故事、游戏引入,激发兴趣,为后面的知识作铺垫.二、思考探究,获取新知1.观察下图,点A和点B表示的有理数之间有什么关系?【教学说明】已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机会——利用数轴任找一组互为相反数的两个数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.2.观察下列数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.想一想:(1)上述各对数之间有什么特点?(2)表示这两对数的点在数轴上有什么特点?(3)你能够写出其他具有上述特点的数吗?【归纳结论】如果两个数只有符号不同,那么其中一个数叫做另一个数的相反数,也称这两个数互为相反数.【教学说明】学生在教师的引导下主动学习并积极思考相关问题,培养学生主动探究数学规律的能力.3.两个互为相反数的数有什么特点?【归纳结论】表示互为相反数的两个数的点,在数轴上分别位于原点两侧,并且与原点的距离相等.4.想一想:0有没有相反数?如果有,是哪个数?【归纳结论】0的相反数是0.5.说一说:(1)-5.8是5.8的相反数,3的相反数是-(+3),a的相反数是-a,a-b的相反数是-(a-b),0的相反数是0.(2)正数的相反数是负数,负数的相反数是正数,0的相反数是它本身.【教学说明】提升学生的化简能力,加深对相反数的理解.6.如何求一个数的相反数呢?【归纳结论】在任意一个数前面添上“-”号,新的数就是原数的相反数.三、运用新知,深化理解1.教材P10例3.2.判断题①-3是相反数(×)②-7和7是相反数(√)③-a的相反数是a,它们互为相反数.(√)④符号不同的两个数互为相反数(×)3.若一个数的相反数不是正数,则这个数一定是(B)A.正数B.正数或0C.负数D.负数或04.下列判断不正确的有(C)①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个5.(1)-(-8)的相反数是-8.(2)+(-6)是6的相反数.(3)1-a的相反数是a-1.(4)若-x=9,则x=-9.6.化简下列各符号:(1)-[-(-2)](2)+{-[-(+5)]}(3)-{-{-…-(-6)}…}(共n个负号)答案:(1)-2(2)5(3)当n为偶数时,为6;当n为奇数时,为-6.7.数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,点B 和点C各对应什么数?解:C点表示2或6,则相应的B点应表示-2或-6.8.若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.解:其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4.【教学说明】学生独立完成,巩固所学知识.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第3、4、5题.这节课学生对相反数的定义掌握得较好,但利用相反数对式子的化简能力还不足.课堂时间分配比较合理,重难点有所突破,大部分学生掌握得较好.1.2.3 绝对值【知识与技能】1.借助数轴初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【过程与方法】通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.【情感态度】帮助学生体会绝对值的意义和作用,感受数学在生活中的价值.【教学重点】理解绝对值的含义.【教学难点】正确理解绝对值的代数意义及其应用.一、情景导入,初步认知上一节我们学过互为相反数的两个数到原点的距离相等.1.什么叫相反数?互为相反数的两个数的代数意义及几何特征如何?2.到原点的距离为2.5的点有几个?它们有什么特征?【教学说明】对上节课的知识进行复习,同时为本节课的教学作准备.二、思考探究,获取新知1.思考:小明家、学校、小李家在数轴上的位置分别如图中点A、O、B所示,若数轴的单位长度表示1km,则A,B两点表示的有理数分别是多少?小明、小李各自从家到学校要走多远?【归纳结论】在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.如4叫做-4的绝对值,记作“|-4|=4”.2.求下列各数的绝对值:6、-7、1、-21,+94,0,-7.8.观察并回答下列问题:(1)正数的绝对值有什么特点?(2)负数的绝对值有什么特点?(3)0的绝对值是什么?【归纳结论】正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.3.给出几对相反数,让学生求出它们的绝对值后,引导学生思考:互为相反数的两个数的绝对值有什么关系?4.每两个同学相互给对方任意写出三个正数、三个负数和零,然后要求对方求出它们的绝对值.【教学说明】同桌之间举例,体现了“自主——协作”学习.积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解.5.如果a表示一个数,则|a|等于多少?同时你发现了什么?【归纳结论】一般地,如果a表示一个数,则(1)当a是正数时,|a|=a;(2)当a=0时,|a|=0;(3)当a是负数时,|a|=-a.任何一个数的绝对值都是一个非负数.【教学说明】对数a的绝对值的讨论,是初中阶段渗透数学分类思想的重要体现,限于学生的认知水平,本环节教师给出思考的问题,帮助学生明确思考方向,大大降低了讨论和理解难度,保护学生学习的信心.三、运用新知,深化理解1.教材P12例5、例6.2.下列说法中正确的个数是(C)(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)互为相反数的两个数的绝对值相等;(4)一个非正数的绝对值是它本身.A.1个B.2个C.3个D.4个3.若-│a │=-3.2,则a 是(C)A.3.2B.-3.2C.±3.2D.以上都不对4.一个数的绝对值等于它的相反数的数一定是(C)A.负数B.正数C.负数或零D.正数或零5.a<0时,化简3a a a 结果为(B) A.23B.0C.-1D.-2a 6.绝对值小于5而不小于2的所有整数有±4,±3,±2.7.绝对值和相反数都等于它本身的数是0.8.数a 的绝对值等于9,那么在数轴上表示数a 的点与原点的距离是9,这样的点在数轴上共有2个.9.计算.10.化简下列各式:【教学说明】对本节知识进行巩固训练,进一步培养学生分析问题、解决问题的能力.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第6、7、10题.一个数的绝对值实质上是数轴上该数所对应的点到原点的距离的数值,而这种几何解释反映了绝对值概念的本质,学生在对概念理解的基础上,最后再概括上升到形式定义上来,这样比较符合从感性认识上升到理性认识的规律,同时使得绝对值概念的非负性具有较扎实的基础.在传授知识的同时,一定要重视学科基本思想方法的教学,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能逐步形成和发展学生的数学能力.1.3 有理数大小的比较【知识与技能】s会比较两个(或几个)有理数的大小.【过程与方法】通过具体实例,抽象出比较两个有理数大小的方法.利用数轴,会比较几个有理数的大小,进一步培养学生数形结合的数学思想方法,提高学生学习的兴趣.【情感态度】不断加深对有理数比较大小方法的认识,渗透数形结合的思想.【教学重点】掌握有理数大小的比较法则.【教学难点】比较两个负数的大小.一、情景导入,初步认知生活中,我们每天都会谈及温度,比如某城市一天中4个不同时刻的气温分别是-3℃,-5℃,4℃,0℃,哪个时刻气温最高,哪个时刻气温最低?其实这个问题就可以归结为比较有理数-3,-5,4,0的大小,我们已经能够比较两个正数的大小及正数与0的大小,引入负数以后,在有理数范围内,怎样比较数的大小呢?这节课我们就来学习有理数的大小比较.【教学说明】创设情境,激发学生的学习兴趣,并引入新课.二、思考探究,获取新知1.说一说:温度-10℃与2℃,哪个温度高?0℃与-3℃,哪个温度高?【归纳结论】正数大于负数,0大于负数.2.温度-10℃与-3℃,哪个温度低?-10的绝对值与-3的绝对值,哪个大?因此,你能发现两个负数的大小与它们的绝对值有什么关系.【归纳结论】两个负数,绝对值大的反而小.3.比较下列各组数的大小:(1)-100与-3;(2)-23与-354.把-3,-5,4,0表示在数轴上,这些数的大小与其在数轴上的点的位置有什么关系?【教学说明】这里放开学生,让他们独立思考后,与同学讨论形成规范的语言归纳发现的结论,利用数轴比较大小,体会使用数与形相结合的方法解决问题.【归纳结论】在以向右为正方向的数轴上,右边的点表示的数比左边的点表示的数大.三、运用新知,深化理解1.比较-0.5,-15,0.5的大小,应有(B)A.- 15>-0.5>0.5 B.0.5>-15>-0.5C.-0.5>-15>0.5 D.0.5>-0.5>-152.在有理数-π,0,-│+1000│,-(-5)中最大的数是(B)A.0B.-(-5)C.-│+1000│D.-π3.下列判断,正确的是(D)A.若│a│=│b│,则a=bB.若│a│>│b│,则a>bC.若│a│<│b│,则a<bD.若a=b,则│a│=│b│4.设a是最大负整数的相反数,b是最小自然数,c是绝对值最小的有理数,则a、b、c三个数的和为(A)A.1B.0C.-1D.25.绝对值最小的有理数是0,绝对值最小的负整数是-1.6.比较下列每对数大小:(1)-(-5)与-│-5│;(2)-(+3)与0;(3)-45与-│-34│;(4)-π与-│-3.14│.解:(1)化简,得-(-5)=5,-│-5│=-5.因为正数大于一切负数,所以-(-5)>-│-5│;(2)化简,得-(+3)=-3,因为负数小于零,所以-(+3)<0;(4)化简,得-│-3.14│=-3.14,这是两个负数比较大小. 因为│-π│=π,│-3.14│=3.14,又因为π>3.14,所以-π<-│-3.14│.7.将有理数0,-3.14,-227,2.7,-4,0.14按从小到大的顺序排列,用“<”号连接起来.解:-4<-227<-3.14<0<0.14<2.7.【教学说明】涉及多个数的大小比较时,可先将它们分三类:正数,0,负数,因为正数都大于0,负数都小于0,正数的大小比较我们在小学就已学过,故本题的关键是几个负数的大小比较.应用本节学习负数大小的比较方法,则问题就迎刃而解了.在比较时应注意分数与小数的互化.8.已知有理数a为正数,b、c为负数,且│c│>│b│>│a│,用“<”把a、b、c、-a、-b、-c连接起来.解:由b、c为负数,│c│>│b│,所以有c<b,即c在b的左边;由a>0,b<0,│b│>│a│,所以-b>a,它们在数轴上表示如图所示.大小关系为c<b<-a<a<-b<-c.。
数学教案—七年级上册姓名:班次:2011年9 月第一章有理数单元要点分析:1、本章主要内容是有理数的有关概念及有理数的运算。
2、本章的设计思路是:(1)引导学生观察现实生活中的有关现象,自然地引入负数,让学生感受到负数的引入的确源自生活的需要,借助数轴理解相反数、绝对值等概念。
(2)创设丰富的问题情境,引入有理数的运算。
通过归纳,学生总结运算法则和运算律。
教材还设计了许多利用有理数运算解决实际问题的内容,使学生进一步体会数学知识与现实世界的联系。
(3)探索计算器的使用,利用计算器解决复杂数据的实际问题,处理好符号,运算就容易了。
3、本章注重与日常生活的联系,注重数感的培养,注重计算方法的多样化。
注重解决问题和探索规律,淡化繁杂的运算。
注意数学的思维方式:观察、探索——抽象——直觉判断或类比、归纳——猜测——分析、论证——应用的培养。
4、有理数运算与小学四则运算相比,主要是符号问题,处理好符号,运算就容易多了。
5、重点、难点(1)重点:有理数的运算。
(2)难点:对有理数的运算法则和运算律的理解。
6、教学目标(1)在具体的情境中,理解有理数及其运算的意义。
(2)能用数轴上的点表示有理数,会表示有理数的大小。
(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(4)经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能运用运算律简化运算。
(5)发展观察、猜想、验证等能力,初步形成数形结合的思想。
7、课时安排(约20课时)(1)具有相反意义的量1课时(2)数轴、相反数、绝对值3课时(3)有理数大小的比较1课时(4)有理数的加法2课时(5)有理数的减法1课时(6)有理数的加减混合运算2课时(7)有理数的乘法2课时(8)有理数的除法2课时(9)有理数的乘方2课时(10)有理数的混合运算1课时(11)用计算器计算1课时(12)小结与复习3课时1.1 具有相反意义的量教学目标:1、从具体的情境中,体会数学中引入正负数来表示“具有相反意义的量”的合理性与必要性,能应用正负数表示生活中具有相反意义的量。
湘教版七年级上册数学全册教学设计1.1 具有相反意义的量1.能用正、负数表示生活中具有相反意义的量;(重点)2.理解正负数的意义,会判断一个数是正数还是负数;(重点)3.理解有理数的意义,会对有理数进行分类.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗? 二、合作探究探究点一:正、负数的认识 【类型一】 区分正数和负数下列各数哪些是正数?哪些是负数? -1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.在-1,2.5,+43,0,-3.14,120,-1.732,-27中,负数有-1,-3.14,-1.732,-27;正数有2.5,+43,120;0既不是正数也不是负数.故答案为2.5,+43,120;-1,-3.14,-1.732,-27.方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.【类型二】 对数“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.【类型三】 对正、负数有关的规律探究观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,….解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n.故(1)中应填7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016;(2)中应填-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016.方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.探究点二:具有相反意义的量【类型一】 用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】 用正、负数表示误差的范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查产品的容量是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是500mL 为标准容量,470~530(mL)为合格范围.503mL ,511mL ,489mL ,473mL ,527mL 在合格范围内,抽查产品的容量是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.探究点三:有理数的概念及分类把下列各数填入相应的括号内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1正数{ }; 负数{ }; 整数{ }; 分数{ }.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的括号时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数⎩⎨⎧⎭⎬⎫8,334,3101,2,3.14,37,0.618,…;负数⎩⎨⎧⎭⎬⎫-10,-712,-10%,-67,-1;整数{-10,8,2,0,-67,-1};分数⎩⎨⎧⎭⎬⎫-712,334,-10%,3101,3.14,37,0.618. 方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一类数;(2)逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象.三、板书设计1.正数和负数⎩⎪⎨⎪⎧正、负数的定义具有相反意义的量0的含义2.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.3.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.使学生经历讨论、探索、交流、合作等过程获得新知.在有理数分类的教学中,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.1.2数轴、相反数与绝对值1.2.1数轴1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点)2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点)3.会根据数轴上的点读出所表示的有理数;(难点)4.感受在特定的条件下数与形是可以相互转化的.一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度.”提出问题:医生为什么通过体温计就可以读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃,0℃,20℃)嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?3.请尝试画出你想象中的温度计,并和其他同学交流,注意交流时要提出自己的见解.提出问题:温度计从外观上具有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是( )A.B.C.D.解析:A中的没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】读出数轴上的点所表示的数指出图中A、B、C、D、E、F各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示-4.5;B 点表示4;C 点表示-2;D 点表示5.5;E 点表示0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A 、D 这种情况,要注意它们所表示的数是在哪两个整数之间.【类型二】 在数轴上表示有理数画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( )A .5B .±5C .7D .7或-3解析:与点A 相距5个单位长度的表示的数有2个,分别是7或-3,故选D .方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧. 三、板书设计 1.数轴 (1)原点 (2)正方向 (3)单位长度2.数轴上的点与有理数间的关系 (1)原点表示零(2)原点右边的点表示正数 (3)原点左边的点表示负数数轴是数形转化、结合的重要桥梁,教学时的创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考和自己动手操作,经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,学习过程中也体现出了从感性认识到理性认识,再到抽象概括的认识规律.1.2.3 绝对值1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必须引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( )A .3B .-3C .-13D .13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A .方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】 利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:因为23或-23的绝对值都等于23,所以绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值化简:⎪⎪⎪⎪⎪⎪-35=______;-|-1.5|=______;|-(-2)|=______. 解析:⎪⎪⎪⎪⎪⎪-35=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=-a.探究点二:绝对值的性质及应用 【类型一】 绝对值的非负性及应用若|a -3|+|b -2015|=0,求a ,b 的值.解析:由绝对值的性质可得|a -3|≥0,|b -2015|≥0.解:由题意得|a -3|≥0,|b -2015|≥0,又因为|a -3|+|b -2015|=0,所以|a -3|=0,|b -2015|=0,所以a =3,b =2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0. 【类型二】 绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数).一号球 二号球 三号球 四号球 五号球 六号球 -0.50.10.2-0.08-0.15(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明. (2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0,正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克;(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a|.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)或|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0).绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.1.2.2 相反数1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点) 2.了解一对相反数在数轴上的位置关系;(重点)3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.一、情境导入1.让两个学生在讲台前背靠背站好(分左右),规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么?2.规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来.3.从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有什么特点?二、合作探究探究点一:相反数的意义【类型一】相反数的代数意义写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【类型二】相反数的几何意义(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B分别表示互为相反数的两个数,点A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,所以距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)因为点A和点B分别表示互为相反数的两个数,所以原点到点A与点B的距离相等,因为A、B两点间的距离是12.8,所以原点到点A和点B的距离都等于6.4.因为点A在点B的左侧,所以这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】相反数与数轴相结合的问题如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为( )A.2 B.-4 C.-1 D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,所以点C 所表示的数为-1,故应选C .方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号化简下列各数. (1)-(-8)=________;(2)-⎝ ⎛⎭⎪⎫+1518=________; (3)-[-(+6)]=________;(4)+⎝ ⎛⎭⎪⎫+35=________. 解:(1)-(-8)=8;(2)-⎝ ⎛⎭⎪⎫+1518=-1518; (3)-[-(+6)]=-(-6)=6; (4)+⎝ ⎛⎭⎪⎫+35=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.三、板书设计 1.相反数(1)只有符号不同的两个数互为相反数. (2)a 的相反数是-a ,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简(1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数.从具体的场景出发,利用数轴引导学生感受相反数的意义.通过教师的层层设问,充分展示学生的思维过程,让学生学会“理性”思考,从而归纳出互为相反数的意义.让学生意识到数学“源于生活,又高于生活”;在认识相反数的意义的过程中,通过数形结合,将数学文化灵活应用于教学中,旨在让学生领会归纳相反数意义的多样性、概括性.1.3 有理数大小的比较1.掌握有理数大小比较的法则;(重点) 2.掌握用数轴比较有理数的大小;(重点)3.会比较有理数的大小,并能正确地使用“>”或“<”连接;(重点)4.会初步进行有理数大小比较的推理.(难点)一、情境导入某一天我国5个城市的最低气温如图所示:(1)从刚才的图片中你获得了哪些信息?(2)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”); 广州______上海;北京______上海;北京______哈尔滨;武汉______哈尔滨;武汉______广州.二、合作探究探究点一:运用法则比较有理数的大小 【类型一】 直接比较大小比较下列各对数的大小: (1)3和-5; (2)-3和-5;(3)-2.5和-|-2.25|;(4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小.解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5;(3)因为|-2.5|=2.5,||-|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|;(4)因为⎪⎪⎪⎪⎪⎪-35=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】 有理数的最值问题设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( )A .0,-1,1B .1,0,-1C .1,-1,0D .0,1,-1解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.故选A .方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.探究点二:借助数轴比较有理数的大小 【类型一】 借助数轴直接比较数的大小画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a|<|b|,则有-b <a <-a <b.故选D .方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小.三、板书设计1.借助数轴比较有理数的大小: 在数轴上右边的数总比左边的数大 2.运用法则比较有理数的大小: 正数与0的大小比较 负数与0的大小比较 正数与负数的大小比较 负数与负数的大小比较本节课的教学目标是让学生掌握比较有理数大小的两种方法,教学设计主要是从基础出发,从简单到复杂,层层递进,让学生更加深刻地认识和掌握有理数大小比较的方法.通过本节的教学,大部分学生能够理解法则的内容,但真正掌握有理数的大小比较的方法还需要一定量的练习进行巩固.同时在教学中还要充分发挥学生的主体意识,让学生逐步解决所设计的问题,并能举一反三.1.4 有理数的加法和减法 1.4.1 有理数的加法第1课时 有理数的加法1.理解有理数加法的意义; 2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.(重点)一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法的法则计算:(1)(-0.9)+(-0.87);(2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312; (3)(-5.25)+514;(4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77; (2)⎝ ⎛⎭⎪⎫+456+⎝ ⎛⎭⎪⎫-312=113; (3)(-5.25)+514=0;(4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用股民默克上星期交易截止前以收盘价67元买进某公司股票1000股,下表为本周星 期 一 二 三 四 五 每股涨跌/元44.5-1-2.5-6(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上星期一、星期二、星期三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)星期一:67+4=71(元),星期二:71+4.5=75.5(元),星期三:75.5+(-1)=74.5(元),星期四:74.5+(-2.5)=72(元),星期五:72+(-6)=66(元),所以本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题已知|a|=5,b 的相反数为4,则a +b =________.解析:因为|a|=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1.方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎨⎪⎧(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值;(3)互为相反数的两数相加得0;(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.第2课时 有理数加法的运算律1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点)2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法. 二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35); (3)⎝ ⎛⎭⎪⎫+635+⎝ ⎛⎭⎪⎫-523+⎝ ⎛⎭⎪⎫425+⎝⎛⎭⎪⎫1+123. 解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)⎝ ⎛⎭⎪⎫+635+⎝ ⎛⎭⎪⎫-523+⎝ ⎛⎭⎪⎫425+⎝ ⎛⎭⎪⎫1+123=⎝ ⎛⎭⎪⎫635+425+⎝ ⎛⎭⎪⎫-523+223=11+(-3)=8. 方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km )+18,-9,+7,-14,+13,-6,-8. 求B 地在A 地何方,相距多少千米?解析:首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米.解:(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km ).故B 地在A 地正北,相距1千米. 方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运的算律⎩⎪⎨⎪⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.。
第一章有理数一、全章概况:本章主要分两部分:有理数的认识,有理数的运算。
二、本章教学目标1、知识与技能(1)理解有理数的有关概念及其分类。
(2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。
(4)能运用有理数的有关知识解决一些简单的实际问题。
2、过程与方法(1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。
(2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。
3、情感、态度与价值观(1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。
(2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。
三、本章重点难点:1、重点:有理数的运算。
2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。
四、本章教学要求认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。
无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。
在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。
课题: 1.1 正数和负数(1)
课题: 1.1 正数和负数(2)
课题: 1.2.1 有理数
负有理数
负分数
课题: 1.2.2 数轴
课题: 1.2.3 相反数
课题: 1.2.4 绝对值
课题: 1.3.1 有理数的加法(一)
课题: 1.3.1 有理数的加法(二)
课题: 1.3.2有理数的减法(1)
课题: 1.3.2 有理数的减法(2)
此时飞机比起飞点高了多少千米?
(组织学生小组讨论并得出答案)
课题: 1.4.1 有理数的乘法(1)
课题: 1.4.1 有理数的乘法(2)
课题: 1.4.1 有理数的乘法(3)
课题: 1.4.2 有理数的除法
课题: 1.5.1 有理数的乘方(1)
课题: 1.5.2 科学记数法
课题:1.5.2有理数的乘方(2)
课题: 1.5.3 近似数和有效数字
课题: 2.1.1一元一次方程(1)
问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)
课题:2.1.1 一元一次方程(2)
练习教科书第69页中练习
小结与作业
着重引导学生从以下几个方面进行归纳:
课题:2.1.2 等式的性质(1)
课题:2.1.2 等式的性质(2)
课题: 2.2从古老的代数书说起一元一次方程的讨论(1)。
数学教案—七年级上册姓名:班次:2011年 9月第一章有理数单元要点分析:1、本章主要内容是有理数的有关概念及有理数的运算。
2、本章的设计思路是:(1)引导学生观察现实生活中的有关现象,自然地引入负数,让学生感受到负数的引入的确源自生活的需要,借助数轴理解相反数、绝对值等概念。
b5E2RGbCAP(2)创设丰富的问题情境,引入有理数的运算。
通过归纳,学生总结运算法则和运算律。
教材还设计了许多利用有理数运算解决实际问题的内容,使学生进一步体会数学知识与现实世界的联系。
p1EanqFDPw(3)探索计算器的使用,利用计算器解决复杂数据的实际问题,处理好符号,运算就容易了。
3、本章注重与日常生活的联系,注重数感的培养,注重计算方法的多样化。
注重解决问题和探索规律,淡化繁杂的运算。
注意数学的思维方式:观察、探索——抽象——直觉判断或类比、归纳——猜测——分析、论证——应用的培养。
DXDiTa9E3d4、有理数运算与小学四则运算相比,主要是符号问题,处理好符号,运算就容易多了。
5、重点、难点(1)重点:有理数的运算。
(2)难点:对有理数的运算法则和运算律的理解。
6、教学目标(1)在具体的情境中,理解有理数及其运算的意义。
(2)能用数轴上的点表示有理数,会表示有理数的大小。
(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(4)经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能运用运算律简化运算。
RTCrpUDGiT( 5)发展观察、猜想、验证等能力,初步形成数形结合的思想。
7、课时安排(约 20 课时)( 1)具有相反意义的量 1 课时( 2)数轴、相反数、绝对值 3 课时( 3)有理数大小的比较 1 课时( 4)有理数的加法 2 课时( 5)有理数的减法 1 课时( 6)有理数的加减混合运算 2 课时( 7)有理数的乘法 2 课时( 8)有理数的除法 2 课时( 9)有理数的乘方 2 课时( 10)有理数的混合运算 1 课时( 11)用计算器计算 1 课时( 12)小结与复习 3 课时1.1具有相反意义的量教学目标:1、从具体的情境中,体会数学中引入正负数来表示“具有相反意义的量”的合理性与必要性,能应用正负数表示生活中具有相反意义的量。
5PCzVD7HxA2、在现实的情景中了解有理数的意义,体会有理数应用的广泛性。
3、通过有关正负数的来由的故事,提高学生学习数学的兴趣。
教学重点、难点:重点:理解正负数的意义。
难点:应用正负数表示现实生活中具有相反意义的量。
教学过程:(新学期开学,初中数学学习方法介绍,教师对学生的各方面的要求)一、创设情境,引入负数1、(出示投影)教师自己的存折其中有一栏:“存入(+)支出(-)”,这是什么意思?2、观察温度计二、议一议,应用正负数表示相反意义的量1、教师提出问题:生活中你还见过带的“-”号的数吗?学生讨论,教师归纳。
2、抽象正负数的概念P4页特别强调:0既不是正数,也不是负数。
3、故事:虚伪的零下在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。
历史上,负数曾经到非议,直到 16 世纪,欧洲大多数的数学家都还不承认负数,他们觉得“ 0 就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。
法国数学家帕斯卡则认为,从 0 减去 4 是胡说八道。
jLBHrnAILg最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。
秦汉时的古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。
三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。
负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元 625 年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。
他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。
(可参考书P64—65)xHAQX74J0X 4、出示投影(1)文具经销计算器,买进100个记作“+100”,那么卖出46个怎样表示?(2)在东西向的公路上,向东走2千米记作“+2千米”,那么向西走4千米记作什么?(3)报纸上有时记载某某国家经济上出现“赤字”,表明什么?教师活动:师生共同讨论其正确性。
教师指出:用正负数表示具相反意义的量时,谁用正数表示,谁用负数表示,是人为的,习惯上把零上温度、上升、向东、向右、收入等规定为正,而把与它相反的量记为负。
并且正数都大于0,负数都小于0。
LDAYtRyKfE三、做一做教师活动:从小学到现在,我们学过哪些数?(组织学生分组讨论,并进行归类)教师归纳:正整数如:1、2、3、整数零负整数如:-1、-2、-3有理数正分数如: 1/2,4/5,0.12 ,0.333333分数负分数如: -2/5 ,-5/7 , -0.012345也可以这样分类:正有理数有理数零负有理数注:1、奇数与偶数;质数(素数)与合数2、分数可以写成有限小数或无限循环小数,而有限小数或无限循环小数也可以表示成分数。
因此,到目前为止,对所有学过的数进行分类时没有提出小数,是因为小数就是分数。
Zzz6ZB2Ltk四、课堂练习书P 6 页练习部分及A组题五、小结本节课学习了正负数的概念及相反意义的量,“负数”是由于实际需要产生的,同时,0既不是正数,也不是负数。
dvzfvkwMI11、练习册2、思考题:(1)、有一座 3 层楼房失火了,一位消防队员搭上梯子要爬到 3 层上去抢救重要东西。
当他爬到梯子正中一级时,二楼的窗户喷出火来,他往下退了 3 级,等火过去了,他又爬上7 级,这时屋顶有一块砖掉下来,他又往后退了 2 级,幸亏砖没打着他,他又爬上了 6 级。
这时他距离最高一层还有 3 级。
请问,这个梯子一共几级?rqyn14ZNXI(2)两只蚂蚁在相距 300 厘米的甲、乙两地分别以每秒 28 厘米和每秒 22 厘米的速度同时相向爬行。
它们爬行 1 秒后,都反向掉头爬行 3 秒,然后又掉头相向爬行 5 秒,再反向依照 1、3、5、7 (连续奇数)秒调头行走,那么它们相遇时,已爬行了多少秒? EmxvxOtOco教后反思:1、2数轴、相反数与绝对值教学目标1、通过类比刻度尺、温度计认识数轴。
2、了解数轴上的点与有理数的对应关系,培养学生数形结合的数学思想方法。
教学重点、难点重点:数轴的画法,把已知数用数轴上的点表示。
难点:理解“数”与“形”结合的思想。
教学过程(复习提问:1、判别对错:(1)最小的整数是0;(2)带正号的数是正数,带负号的数是负数。
2、解答题:一艘潜水艇的高度是-60米,在其上方发现一条鲨鱼,测得两者高度是20米,试用正、负数表示鲨鱼的高度。
)SixE2yXPq5一、创设情境,建立数轴概念教师提问:1、观察带有刻度的尺子,边缘上的点是如何表示数的呢?2、观察温度计上的刻度3、能不能用一条直线上的点来表示有理数呢?4、投影书P 8 页的行程问题的图学生思考、交流教师归纳:1、教师指出:画一条水平直线,在直线上取一点O(原点),用它表示数0。
确定一个单位长度,从原点往右距原点1个单位长度的点记作1;从原点往左距原点1个单位长度的点记作-1。
规定直线向右的方向(标上箭头)称为正方向。
6ewMyirQFL2、引导学生与温度计作类比,理解数轴三要素:原点、正方向、单位长度。
指出:任何有理数都可以用数轴上惟一的一个点来表示。
kavU42VRUs 3、组织学生画数轴,然后讨论所画数轴是否正确?如果不正确,错在哪里?(老师可故意画几条没有三要素之一或数字顺序不对的数轴让学生判断)二、做一做投影 P9、1,2 题三、课堂练习1、书 P10 1,22、学生活动:在练习本上完成这些题目,做完后互相交流。
教师一定要注意学生画数轴是否准确,有问题的地方可以师生共同讨论,促进学生理解。
四、小结1、你觉得本节课的重点是什么,还有什么不懂的地方?2、教师小结:本节课学习了数轴,一条直线只有具备了原点、正方向和单位长度才能成为数轴。
所有的有理数都可以用数轴上的点表示出来。
数轴的引入,使我们能用直观图形来理解数的有关概念,这就是数形的结合,它是一种很重要的数学思想方法,我们应特别注意掌握。
(注:数轴上的点是否都是有理数呢?)y6v3ALoS89五、作业1、书P 13 页A组1、及B组1、2、练习册3、上本作业设计(一)填空:1、数轴的三要素是。
2、在数轴上表示+3的点在原点的侧,距原点5个单位的点是。
(二)解答题:1、一只蚂蚁从原点出发,它先向右爬行了3个单位长度到达A点,又向右爬行了2个单位长度到达B点,然后再向左爬行了7个单位长度到达C点,写出A、B、C这三点表示的数。
M2ub6vSTnP2、画一条数轴,把有理数-2,0,3,-6,-1 .5用数轴上的点表示出来。
课后反思:第二课时相反数教学目标:1、在具体的情境中了解相反数,能求一个数的相反数。
2、了解两个相反数在数轴上的特征,懂得相反数的对立统一的关系。
教学重点、难点:重点:相反数的概念难点:符号的简化。
教学过程:一、创设情境,引入相反数的概念1、出示投影在数轴上表示+3的点在原点的侧,在数轴上表示-3的点在原点的侧;距原点5个单位的点是。
0YujCfmUCw(要求学生画数轴并描点)观察上述数轴上的点的特点,并找出还有哪些点具有同样的特点。
(学生可讨论交流)2、教师归纳,指出:像3和-3那样,如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数,或者说它们互为相反数。
例如:3的相反数是-3,-3的相反数是3,3与-3互为相反数。
eUts8ZQVRd3、我们把数 a 的相反数记为 -a,于是“-3的相反数是3”就可以记作-(-3)=3(学生自己再举几个例子)4、0的相反数是05、观察第1题中数轴上的点,我们可以发现:在数轴上,表示互为相反数的两个点,位于原点两侧,并且与原点的距离相等。
sQsAEJkW5T6、二、想一想,求一个数的相反数5的相反数是()-6的相反数是()-(-4)=-〔-[-(-3)]〕=学生还可以互相举例提问、回答。
教师归纳:多重符号的化简,一个正数前面不管的多少个“+” ,可以全部省去不写;一个前面有偶数个“-”号,也可以把“-”一起去掉;一个正数的。