数学建模范文 公共交通大站快车调度模型
- 格式:pdf
- 大小:354.22 KB
- 文档页数:5
第三篇公交车调度方案的优化模型2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。
并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。
模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
第三篇公交车调度方案得优化模型2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度对于完善城市交通环境、改进市民出行状况、提高公交公司得经济与社会效益,都具有重要意义。
下面考虑一条公交线路上公交车得调度问题,其数据来自我国一座特大城市某条公交线路得客流调查与运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3—1给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。
公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。
如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题得要求,如果要设计更好得调度方案,应如何采集运营数据.公交车调度方案得优化模型*摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。
并提供了关于采集运营数据得较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。
模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
公交车调度数学建模公交车调度摘 要本文通过对给定数据进行统计分析,将数据按18个时段、两个行驶方向进行处理,计算出各个时段各个站点以及两个方向的流通量,从而将远问题转化为对流通量的处理。
首先,利用各时段小时断面最高流通量计算出各时段各方向的最小发车次数,进行适当的调整,确定了各时段两个方向的发车次数。
假定采用均匀发车的方式。
继而求出各时段两个方向发车间隔,经部分调整后,列出0A 站和13A 站的发车时刻表,并给出了时刻表的合理性证明,从而制定调度方案。
根据调度方案采用逐步累加各时段新调用的车辆数算法,求出公交车的发配车辆数为57辆。
其次,建立乘客平均待车时间和公交车辆实际利用率与期望利用率的差值这两个量化指标,并用这两个指标来评价调度方案以如何的程度照顾到乘客和公交公司双方利益。
前者为4.2分钟,后者为13.88%。
最后,我们以上述两个指标为优化目标,以乘客的等车时间数学期望值和公交车辆的满载率的数学期望为约束指标,建立了一个双目标的优化模型。
并且给出了具体的求解方法,特别指出的是,给出了计算机模拟的方法求解的进程控制图。
通过了对模型的分析,提出了采集数据的 采集数据方法的建议。
注释:第i 站乘客流通量:∑=ik 1(第k 站的上车的人数与第k 站的下车人数的差值);总的乘客等车时间:∑=mi 1∑=nj 1(第i 时段第j 站等车乘客数)⨯(第I 时段第j 站等待时间);乘客平均等车时间:总的乘客等车时间与总乘客数的比值; 实际利用率:总实际乘客流通量与公司车辆总最大客运量的比值; 期望利用率:总期望乘客流通量与公司车辆总最大客运量的比值一、问题的提出一条公交线路上行方向共14站,下行方向功13站,给定典型的一个工作日两个运行方向各站上下车的乘客数量统计。
该线路用同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰是一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低与100%,一般也不要地狱50%。
公交车调度摘 要本文通过对给定数据进行统计分析,将数据按18个时段、两个行驶方向进行处理,计算出各个时段各个站点以及两个方向的流通量,从而将远问题转化为对流通量的处理。
首先,利用各时段小时断面最高流通量计算出各时段各方向的最小发车次数,进行适当的调整,确定了各时段两个方向的发车次数。
假定采用均匀发车的方式。
继而求出各时段两个方向发车间隔,经部分调整后,列出0A 站和13A 站的发车时刻表,并给出了时刻表的合理性证明,从而制定调度方案。
根据调度方案采用逐步累加各时段新调用的车辆数算法,求出公交车的发配车辆数为57辆。
其次,建立乘客平均待车时间和公交车辆实际利用率与期望利用率的差值这两个量化指标,并用这两个指标来评价调度方案以如何的程度照顾到乘客和公交公司双方利益。
前者为4.2分钟,后者为13.88%。
最后,我们以上述两个指标为优化目标,以乘客的等车时间数学期望值和公交车辆的满载率的数学期望为约束指标,建立了一个双目标的优化模型。
并且给出了具体的求解方法,特别指出的是,给出了计算机模拟的方法求解的进程控制图。
通过了对模型的分析,提出了采集数据的 采集数据方法的建议。
注释:第i 站乘客流通量:∑=ik 1(第k 站的上车的人数与第k 站的下车人数的差值);总的乘客等车时间:∑=mi 1∑=nj 1(第i 时段第j 站等车乘客数)⨯(第I 时段第j 站等待时间);乘客平均等车时间:总的乘客等车时间与总乘客数的比值;实际利用率:总实际乘客流通量与公司车辆总最大客运量的比值; 期望利用率:总期望乘客流通量与公司车辆总最大客运量的比值一、问题的提出一条公交线路上行方向共14站,下行方向功13站,给定典型的一个工作日两个运行方向各站上下车的乘客数量统计。
该线路用同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰是一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低与100%,一般也不要地狱50%。
公车调度问题的数学模型班级:信息1102学生:汤韩瑜学号:07111082研究概述•1研究背景•2研究意义•3论文结构•4研究内容•公交车调度问题的背景是某大城市公交部门提出的一个实际科研课题。
该课题要求对一条确定的公交路线,解决三个方面的问题:•第一, 根据历史积累和必要的补充调查数据,提出沿路各站来站与离站的乘客分布规律;•第二, 研制一个模拟该线路公交运行过程的数学模型;•第三, 在前两条的基础上为该线路提出一个配备车辆和司( 机) 售( 票员) 人员数目的方案,以及一个在通常情况下车辆的运行时间表。
•从历史积累和必要的补充调查数据中,提出公交车沿路各站来站与离站的乘客分布规律将实际问题转化为数学模型进行具体化的解答有数学模型解答出的答案制定司售人员的工作安排的正常情况下的车辆时间安排3论文结构•第一部分:论文题目•第二部分:摘要•第三部分:关键词•第三部分:正文•第四部分:结论•第五部分:致谢•第六部分:参考文献4研究内容•首先,选择了该市一条比较典型的公交线路, 沿线上行方向共14 站, 下行方向共13站,根据多年来沿线各站乘客来、离站的人数调查数据,给出了该线一个工作日两个运行方向各站上下车的乘客数量按时间的分布。
•其次,根据上述数据,在尽可能适当考虑公交社会效益和公交公司利益的目标下,为该线路设计一个便于操作的全天( 工作日) 的公交车调度方案,即两个起点站的发车时刻表,并指出实现这个方案至少需要配备多少辆车; 给出这种方案照顾乘客和公交公司双方的利益程度的数量指标,从而将这个调度问题抽象成一个明确、完整的数学模型,并指出求解模型的方法。
研究方法•建立数学模型•具体步骤:•1.建立数学模型•(1)运行模型及其求解•(2)配车模型及其求解•2.得出结论主要结论•根据所给数据中始发站的上车人数, 确定早、晚高峰时段为:早高峰6 ∶40 ~9 ∶40 ;晚高峰15 ∶50 ~18 ∶50 。
一类公交车调度问题的数学模型及其解法1. 背景介绍公交车作为城市交通的重要组成部分,其运营效率和服务质量直接影响市民出行体验。
而公交车调度问题则是保障公交线路运营效率和准时性的重要环节之一。
在日常运营中,由于路况、乘客量、车辆故障等影响因素,公交车的调度往往面临诸多挑战。
如何利用数学模型解决公交车调度问题成为了一个备受关注的课题。
2. 公交车调度问题的数学建模公交车调度问题的数学建模主要涉及到车辆的合理分配以及路线的优化规划。
在数学建模时,需要考虑的主要因素包括但不限于乘客量、车辆容量、交通状况、站点分布等。
而个体车辆的运行轨迹则需要综合考虑上述因素以及最优化算法对其进行分析。
3. 数学模型的构建针对上述因素,可以将公交车调度问题构建成一个复杂的优化模型。
该模型主要包括以下几个方面的内容:(1)乘客需求预测:通过历史数据和大数据分析,预测不同时段和不同线路的乘客需求,为车辆调度提供依据。
(2)车辆分配优化:根据乘客需求预测和实际路况,采用最优化算法确定每辆车的运行路线和发车间隔。
(3)站点排队优化:结合乘客上下车规律和站点的停靠条件,优化车辆在不同站点的排队顺序,以减少候车时间和提升服务效率。
(4)交通状况仿真:通过交通仿真模型,考虑城市交通状况对公交车运行的影响,提前对可能出现的拥堵情况进行预判,以调整车辆的发车时间和路线。
4. 数学模型的求解在构建好数学模型后,需要采用合适的方法对其进行求解。
常见的求解方法主要包括但不限于线性规划、遗传算法、模拟退火算法等。
在实际求解过程中,需要充分考虑不同方法的适用场景和对模型的拟合程度,以选择最合适的求解方法。
5. 案例分析以某市的公交系统为例,采用上述数学模型对其进行调度优化。
通过收集该市的实际路况数据、站点分布情况以及历史乘客需求数据,建立完整的数学模型。
然后运用遗传算法对其进行求解,得到了最优的车辆运行路线和发车间隔。
在模型求解后,将其应用于实际公交车调度中,并进行了一段时间的实际运行试验。
§2 公交车调度模型公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要的意义。
下面考虑一条公交线路上的公交车的调度问题,其数据来自于我国一个特大城市,某条公交线路上的客流调查和运营资料。
该条公交线路共上行共14站,下行方向共13站,下面给出的是一个典型工作日中两个运行方向的各个站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆的标准载客是100人,客车的平均运行速度是20公里/小时。
根据运营的要求,乘客候车的时间一般不要超过10分钟,早高峰时一般不要超过5分钟,而车辆的满载率120%,一般也不要低于50%试根据这些资料和要求,为该线路设计一个便于全天操作的公交车调度方案,包括两个起点站的发车时刻表;总共需要多少车:以怎样的程度照顾到了乘客和公交公司的利益等。
如何将这个调度问题抽象成一个明确的、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果设计成一个更好的调度方案,应如何采取运营数据。
站名 A13A12 A11 A10A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 10.732.041.262.291 1.20.4 1 1.03 0.53 5:00-6:00 上 37160 52 4376904883852645 45 11 0下 08 9 1320484581321824 25 85 57 6:00-7:00 上 1990376 333 256589594315622510176308 307 68 0下 099 105 164239588542800407208300 288 921 615 7:00-8:00 上 3626634 528 447948868523958904259465 454 99 0下 0205 227 272461105810971793801469560 636 1871 1459 8:00-9:00 上 2064322 305 235477549271486439157275 234 60 0下 0106 123 169300634621971440245339 408 1132 759 9:00-10:00 上 1186205 166 14728130417232426778143 162 36 0下 081 75 120181407411551250136187 233 774 483 10:00-11:00 上 923151 120 10821521411921220175123 112 26 0下 052 55 81136299280442178105153 167 532 385 11:00-12:00 上 957181 157 13325426413525326074138 117 30 0下 054 58 84131321291420196119159 153 534 340 12:00-13:00 上 873141 140 10821520412923222165103 112 26 0下 046 49 71111263256389164111134 148 488 333 13:00-14:00 上 779141 103 8418618510321117366108 97 23 0下 039 41 7010322119729713785113 116 384 263 14:00-15:00 上 625104 108 82162180901851704975 85 20 0下 036 39 47781891763391398097 120 383 239 15:00-16:00 上 635124 98 82152180801851504985 85 20 0下 036 39 578820919633912980107 110 353 229 16:00-17:00 上 1493299 240 199396404210428390120208 197 49 0下 080 85 135194450441731335157255 251 800 557 17:00-18:00 上 2011379 311 230497479296586508140250 259 61 0下 0110 118 171257694573957390253293 378 1228 793 18:00-19:00 上 691124 107 891671651082011945393 82 22 0下 045 48 8010823723139015089131 125 428 336 19:00-20:00 上 35064 55 4691855088892748 47 11 0下 022 23 3463116108196834864 66 204 139 20:00-21:00 上 30450 43 3672754077602238 37 9 0下 016 17 24388084143593446 47 160 117 21:00-22:00 上 20937 32 2653552947521628 27 6 0下 014 14 21337863125623040 41 128 92 22:00-23:00 上 19 3 3 2553551 3 2 1 0下 0 3 3 581817271279 9 32 21站名A0A2A3A4A5A6A7A8A9A10A11A12A13站间距(公里) 1.56 1 0.44 1.20.972.29 1.320.73 1 0.5 1.62 5:00-6:00 上 22 3 4 2443331 1 0 0下 0 2 1 1677534 2 3 9 6:00-7:00 上 795143 167 841511881091371304553 16 0下 070 40 401842051951479310975 108 271 7:00-8:00 上 2328380 427 224420455272343331126138 45 0下 0294 156 157710780849545374444265 373 958 8:00-9:00 上 2706374 492 224404532333345354120153 46 0下 0266 158 149756827856529367428237 376 1167 9:00-10:00 上 1556204 274 1252353081622031987699 27 0下 0157 100 80410511498336199276136 219 556 10:00-11:00 上 902147 183 821552061201501435059 18 0下 0103 59 5924634632019114718596 154 438 11:00-12:00 上 847130 132 671271501081041074148 15 0下 094 48 4819923825617512214368 128 346 12:00-13:00 上 70690 118 661051449295883440 12 0下 070 40 4017421520512710311965 98 261 13:00-14:00 上 77097 126 59102133971021043643 13 0下 075 43 431662102091369012760 115 309 14:00-15:00 上 839133 156 691301651011181204249 15 0下 084 48 4821923824615511215378 118 346 15:00-16:00 上 1110170 189 791691941411521665464 19 0下 0110 73 63253307341215136167102 144 425 16:00-17:00 上 1837260 330 14630540422927725395122 34 0下 0175 96 106459617549401266304162 269 784 17:00-18:00 上 3020474 587 248468649388432452157205 56 0下 0330 193 1947379341016606416494278 448 1249 18:00-19:00 上 1966350 399 204328471289335342122132 40 0下 0223 129 150635787690505304423246 320 1010 19:00-20:00 上 939130 165 881381871241431474856 17 0下 0113 59 5926630629020114715586 154 398 20:00-21:00 上 640107 126 6911215387102943643 13 0下 075 43 431862302191469012770 95 319 21:00-22:00 上 636110 128 561051448295983440 12 0下 073 41 4219024319213210712367 101 290 22:00-23:00 上 29443 51 2446583541421517 5 0下 035 20 20871089269476033 49 136。
公交车调度问题数学建模论文公交车调度问题数学建模论文————————————————————————————————作者: ————————————————————————————————日期:2011年数学建模论文——对公交车调度问题的研究摘要:本文根据所给的客流量及运营情况排出公交车调度时刻表,以及反映客运公司和乘客的利益有多个指标,建立了乘客的利益及公司利益两个目标函数的多目标规划数学模型。
基于多目标规划分析法,进行数值计算,从而得到原问题的一个明确、完整的数学模型,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于调度方案的想法进行分析和评价。
首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。
通过运客能力与运输需求(实际客运量) 达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。
应用matlab中的fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。
关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab一问题的重述:1、路公交线路上下行方向各24站,总共有L 辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐S人。
这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。
建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。
假设公交车在运行过程中是匀速的速度为v。
1路公交车站点客流量见下表从新汽车站出发到市检察院站点名称新汽车站汉庭花园天九湾电信公司天九湾车场西环小区步行街上车人数1131 1 1 2 下车人数1 00 0 4 等待时间3.8 5 2 1.5 2站点名称实验小学莆一中后门十字街旧汽车站新街口市农行上车人5 1 3 4 8 3下车人数1 0 010 1 等待时间3.8 3 5.3 1 4.1 3.8站点名称市公交公司中国银行凤凰山八十亩小区石室路口市公交稽证处上车人数3 1 3 3 2 2下车人数2 3 3 9 2 3等待时间1.710.5 2.52.2 5.5 站点名称北磨交通花园三信家园市政府龙桥市场市检察院上车人数20 0 0 00 下车人4 2 25 7 10 等待时 4从市检察院出发到新汽车站站点名称市检察院龙桥市场市政府三信家园交通花园北磨上车人数17 3 0 1 2 7 下车人数0 1 1 1 1 4 等待时间3.5 1.2 2.84.8 2.6 4站点名称市公交稽证处石室路口八十亩小区凤凰山中国银行市公交公司上车人2 31583 下车人数1 0 12 2 1 等待时间3.3 1.6 5 409 站点名称市农行新街口旧汽车站十字街莆一中后门实验小学上车人数20 2 4 1 0 下车人数27 2 5 22等待时间3.46 5 1站点名称步行街西环小区天九湾车场天九湾电信汉庭花园新汽车站上车人数0 0 1 0 00下车人数3 1 2 4314 等待时间11已知数据及问题的提出我们要考虑的是莆田市的一路公交线路上的车辆调度问题。
公交车的调度胡敏,郭鹏程,方少军 指导教员:刘卫华(学员旅十队)摘要: 本文就公交车调度问题,运用最优化方法,提出了两个数学模型。
第一个模型采用步长搜索法,以一分钟时间间隔为给定步长,考虑每个站的乘客候车情况,由此来确定是否需要发车。
第二个模型假设在一定的时间间隔内乘客流服从Possion 分布,公交车以等时间间距发出,高峰期和低峰期的发车情况不同且高峰期有加班车辆,提出了一个排队论动态最优化设计模型。
依据算法运行的结果给出了便于操作的全天(工作日)公交车调度方案,该方案需要车辆总数为62辆,上行方向应发车243班次,下行方向应发车238班次。
一、 问题的提出公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面我们对一条公交线路上的公交车进行调度设计,所用的数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,乘客数量统计表已知。
公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过 120%,一般也不要低于50%。
现根据这些资料和要求,要为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;指出这个方案是以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
最后将这个调度问题抽象成一个明确、完整的数学模型,指出求解它的方法;根据实际问题的要求确定应如何采集运营数据,才能满足设计更好的调度方案的需要。
二、 问题的分析问题要求在照顾乘客和公交公司双方利益的前提下,设计一个调度车辆的时刻表,可以看作是排队论中系统控制最优化问题。
在一般情形下,提高服务水平(即多派车)自然会减少乘客的候车时间(提高乘客的满意度),单个乘客的满意度可以用下面的公式来衡量:⎪⎪⎩⎪⎪⎨⎧--=高峰期平常551010)(t tt g 其中t 表示等待时间整体乘客的满意度可以用不超过最长等待时间的乘客数与总乘客数的比值来衡量,但同时会增加公交公司的成本使利润降低,此问题的最优化目标之一就是使候车时间以及公交公司的成本两者之和最小并达到这个水平上的最优服务。
CUMCM优秀论文-公交车调度优化模型【数学建模】维普资讯第19巷建摸专辑工程数学学报Voll9Supp。
月JOURNAL OFENGINEERING MATHEMATICS Feb 2002文章编号:1005―3085(2002)05―0095―06公交车调度优化模型李成功,脱小伟,郭尚彬指导教师:祁忠斌(兰州工业高等专科学校,兰州 730050)鳙者按:本文根据时同和空间客流不均衡变化的情况研究车辆蔼度的规律.在保证一定收益和使顾客满意的情况下给出了调度时刻表。
率文分析问题比较精细,叙连通顺倚练。
本文的不足之址是对原题中50%与 120%的不葡提法考虑不够摘要:车文主要研究了一条公空线路在其每时段内各个车站点的客流坑计数据为已知情况下的车辆运行计埘时刻表的制定问题。
一般情况下.公寰公司在调查研究取得一定数据的基础上帮是按”接连开出的方法安排工作目的车辆行车调度表.使得在运行期内.一组车辆“鱼贯而出.再鱼贯而^ ,而我们主要田F究了-随着时间和空甸上客流不坷街性的变化.车辆应如何调度的规律,建立了目标规j}I模型。
实现了有早出,有晓出.车辆有多青少的调度计划。
在保证一定效益和顾客满意的情况下.使在岗车辆的总运行时间最短。
所有的计算都在计算机上实现,得出了调度时刻表,且最少的车辆散为 42。
顾客与公交公司的满意程度比为:068:046.关麓面:公变车调度;客流量;目标规划分粪号:AMS(2000)90C08 中囤分类号:TB114 1 立标识码:A1 已知数据及问题的提出我们要考虑的是某城市的一条公交线路上的车辆调度问题。
现已知该线路上行的车站总数 N (:14),下行的车站总数 N (=13)。
且在问题中给出了某一个工作日(分为 m 个时间段,第时间段的时问跨度为£.=1小时)中第时间段第站点上行方向上、下车的乘客数量为 Q ( ),Q ( ),第时问段第J站点下行方向上、下车的乘客数量为 Q ( ),Q (,);上、下行站点问的距离分别为 L,,L,。
第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
站名A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 1 0.73 2.04 1.26 2.29 1 1.2 0.4 1 1.03 0.53 5:00-6:00 上371 60 52 43 76 90 48 83 85 26 45 45 11 0 下0 8 9 13 20 48 45 81 32 18 24 25 85 57 6:00-7:00 上1990 376 333 256 589 594 315 622 510 176 308 307 68 0 下0 99 105 164 239 588 542 800 407 208 300 288 921 615 7:00-8:00 上3626 634 528 447 948 868 523 958 904 259 465 454 99 0 下0 205 227 272 461 1058 1097 1793 801 469 560 636 1871 1459 8:00-9:00 上2064 322 305 235 477 549 271 486 439 157 275 234 60 0 下0 106 123 169 300 634 621 971 440 245 339 408 1132 759 9:00-10:00 上1186 205 166 147 281 304 172 324 267 78 143 162 36 0 下0 81 75 120 181 407 411 551 250 136 187 233 774 483 10:00-11:00 上923 151 120 108 215 214 119 212 201 75 123 112 26 0 下0 52 55 81 136 299 280 442 178 105 153 167 532 385 11:00-12:00 上957 181 157 133 254 264 135 253 260 74 138 117 30 0 下0 54 58 84 131 321 291 420 196 119 159 153 534 340 12:00-13:00 上873 141 140 108 215 204 129 232 221 65 103 112 26 0 下0 46 49 71 111 263 256 389 164 111 134 148 488 333 13:00-14:00 上779 141 103 84 186 185 103 211 173 66 108 97 23 0 下0 39 41 70 103 221 197 297 137 85 113 116 384 263 14:00-15:00 上625 104 108 82 162 180 90 185 170 49 75 85 20 0 下0 36 39 47 78 189 176 339 139 80 97 120 383 239 15:00-16:00 上635 124 98 82 152 180 80 185 150 49 85 85 20 0 下0 36 39 57 88 209 196 339 129 80 107 110 353 22916:00-17:00 上1493 299 240 199 396 404 210 428 390 120 208 197 49 0 下0 80 85 135 194 450 441 731 335 157 255 251 800 557 17:00-18:00 上2011 379 311 230 497 479 296 586 508 140 250 259 61 0 下0 110 118 171 257 694 573 957 390 253 293 378 1228 793 18:00-19:00 上691 124 107 89 167 165 108 201 194 53 93 82 22 0 下0 45 48 80 108 237 231 390 150 89 131 125 428 336 19:00-20:00 上350 64 55 46 91 85 50 88 89 27 48 47 11 0 下0 22 23 34 63 116 108 196 83 48 64 66 204 139 20:00-21:00 上304 50 43 36 72 75 40 77 60 22 38 37 9 0 下0 16 17 24 38 80 84 143 59 34 46 47 160 117 21:00-22:00 上209 37 32 26 53 55 29 47 52 16 28 27 6 0 下0 14 14 21 33 78 63 125 62 30 40 41 128 92 22:00-23:00 上19 3 3 2 5 5 3 5 5 1 3 2 1 0 下0 3 3 5 8 18 17 27 12 7 9 9 32 21站名A0 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 站间距(公里) 1.56 1 0.44 1.2 0.97 2.29 1.3 2 0.73 1 0.5 1.62 5:00-6:00 上22 3 4 2 4 4 3 3 3 1 1 0 0 下0 2 1 1 6 7 7 5 3 4 2 3 9 6:00-7:00 上795 143 167 84 151 188 109 137 130 45 53 16 0 下0 70 40 40 184 205 195 147 93 109 75 108 271 7:00-8:00 上2328 380 427 224 420 455 272 343 331 126 138 45 0 下0 294 156 157 710 780 849 545 374 444 265 373 958 8:00-9:00 上2706 374 492 224 404 532 333 345 354 120 153 46 0 下0 266 158 149 756 827 856 529 367 428 237 376 1167 9:00-10:00 上1556 204 274 125 235 308 162 203 198 76 99 27 0 下0 157 100 80 410 511 498 336 199 276 136 219 556 10:00-11:00 上902 147 183 82 155 206 120 150 143 50 59 18 0 下0 103 59 59 246 346 320 191 147 185 96 154 438 11:00-12:00 上847 130 132 67 127 150 108 104 107 41 48 15 0 下0 94 48 48 199 238 256 175 122 143 68 128 346 12:00-13:00 上706 90 118 66 105 144 92 95 88 34 40 12 0 下0 70 40 40 174 215 205 127 103 119 65 98 261 13:00-14:00 上770 97 126 59 102 133 97 102 104 36 43 13 0 下0 75 43 43 166 210 209 136 90 127 60 115 309 14:00-15:00 上839 133 156 69 130 165 101 118 120 42 49 15 0 下0 84 48 48 219 238 246 155 112 153 78 118 346 15:00-16:00 上1110 170 189 79 169 194 141 152 166 54 64 19 0 下0 110 73 63 253 307 341 215 136 167 102 144 425 16:00-17:00 上1837 260 330 146 305 404 229 277 253 95 122 34 0 下0 175 96 106 459 617 549 401 266 304 162 269 784 17:00-18:00 上3020 474 587 248 468 649 388 432 452 157 205 56 0 下0 330 193 194 737 934 1016 606 416 494 278 448 1249 18:00-19:00 上1966 350 399 204 328 471 289 335 342 122 132 40 0 下0 223 129 150 635 787 690 505 304 423 246 320 1010 19:00-20:00 上939 130 165 88 138 187 124 143 147 48 56 17 0 下0 113 59 59 266 306 290 201 147 155 86 154 398 20:00-21:00 上640 107 126 69 112 153 87 102 94 36 43 13 0 下0 75 43 43 186 230 219 146 90 127 70 95 319 21:00-22:00 上636 110 128 56 105 144 82 95 98 34 40 12 0 下0 73 41 42 190 243 192 132 107 123 67 101 290 22:00-23:00 上294 43 51 24 46 58 35 41 42 15 17 5 0 下0 35 20 20 87 108 92 69 47 60 33 49 136公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。
火车调度问题摘要近年来随着铁路交通的发展飞速发展,无论是铁道部门还是旅客都希望缩短登车时间,这样铁路部门可以赢得更多时间用于行驶获得丰厚利润,旅客也可以缩短旅途时间。
然而随着乘坐火车的旅客越来越多以及火车的容量不断增加,使得登车时间却在不断加长。
如何缩短登车时间这一问题亟待解决。
针对各种列车的调度顺序问题,文章将以某车站各列车调度为例建立一个状态模型,在此基础上展开并用于实际情况中。
状态模型的主要思想是:假设各列车在某时间段内将驶离车站,通过安排驶离顺序使铁路部门利益与旅客对铁路的满意度达到一种理想化状态,使铁路紧张问题得到适当的缓解。
关键字:线性函数满意度退票费火车调度问题问题:某火车站有三个停靠站台,通常是用“先来后到”普通旅客列车(以下简称普通)让行普通快速旅客列车(普快),普快让行快速旅客列车(快速k),快速让行特快(T),特快让行直达旅客列车(直达Z),直达让行动车(D或C)”原则来分配进站出站所分配停靠站台,上行与下行线路分开,及当一列火车准备进站和出站时,调度中心负责电告该列火车所进站台。
假设调度中心可以得到每列火车的如下信息:(1)预计驶离站台时间(2)预计停靠站台时间(动车2分,直达3分,特快6分,快速8分,普快10分,普速12分)(3)实际驶离站台时间(4)火车乘客人数(5)预定在下一站下车人数(6)预定在本站上课人数(7)到达下一站的预定时间(8)从上一站驶出时间又设共有上行与下行上述旅客列车各一列,乘客数量分别为1600人(普通)、1400人(普快),1200人(快速、特快)1000人(直达)800人(动车)试开发一种能使乘客和铁路公司双方满意的数学模型(2)假设1)铁路调度中心上有一个快速反应的数据库,该库中存贮着每一列火车的正点起行时间,正点抵达目的地的时间,乘客数量,行驶距离等信息,其他一些有用的参数,可以根据数据库中已有数据估计出来.2)忽略不同类型火车停靠站台时间,这样可以把时间划分成间隔为△的起行时段.3)标号为i 的火车在第j 个时段起行所需费用与先前起行的火车无关,仅与其安排的次序有关.这一假设使我们可以把总费用作为火车调度排序的线性函数. 4)由于各种火车行驶速度不一样,为使问题解单化,此处只设出平均速度及最大行驶速度.5)记τ为使火车尚能正点到达目的地所推迟起行的最长时间.同时假定,当火车的误点时间超过τ时,则火车将以最大的安全速度行驶.6)如果火车推迟起行的时间超过τ,则车上所有的乘客都将耽误到站. 7)因晚点而要求退票的费用对每一个乘客都是相同的且为平均退票费. (3)记号及意义 △: 火车的时间间隔;t 最早起行的火车离站时间;dt : 正点起行的时间;A T : 正点到达目的地的时间; t: 晚点时间;τ: 最大允许晚点起行的时间;k: 各种类型的火车晚点起行而引起耗油的费用常数;V: 平均行驶速度;m ax V : 最大的行驶速度;π: 晚点而造成退票的退票率; m : 票价P : 乘客总数; w : 乘客出现退票的时间点: 由于晚点起行所引起的乘客不满意程度的增长率;a: 全体乘客由于火车晚点起行所引起的不满意度折合成人民币的折合率; b: 退票乘客不满意度折合成人民币的折合率. ★分析与建模若有n 列火车都要在正点时刻驶离该火车站(即为从上火车站有n 列火车几乎同时将到达该站).我们以总费用最小作为目标来安排火车起行的次序.总费用由三部分组成,即铁路部门的费用、退票费和乘客不满意程度所折合的费用. 设ij c 为标号i 的火车在第j 个起行时段起行的费用,,则总费用为∑∑===n i nj ijij x c Z 11由假设条件可知,ij c 与ij x 无关,因而总费用C 是一个线性函数.这是一个调度问题.假定每隔△时间只有一列火车停靠在该站加入到请求起行的行列中,这样就保证总有火车请求起行.每隔△时间,执行一次程序,以安排在当前状态下最优的起行次序.这里需要说明一点,该程序运行时间极短,不到一分钟便可完成,因此,如果数据发生变化时,如火车晚点进站(视为晚点起行)等,几乎可以立即决策.★下面来分析费用系数的确定问题.总费用应包括铁路部门的费用、退票费和乘客的不满意度所折合的费用.首先把基本费用视为0,即设火车在正点起行时的费用为0,仅考虑由于火车晚点起行所导致的额外费用.铁路部门的费用主要由两部分组成.一部分为额外的汽油费,这个费用主要是由于火车晚点起行时,要在快速行驶所额外消耗的汽油费;另一部分为晚点起行造成乘客退票的退票费.若火车晚点起行,为了正点抵达目的地,它必须以最快速度行驶,这样由于风阻力的增大和其它因素,就要增加汽油的消耗.我们不太清楚速度的增加如何引起耗油费和增加,但当加速过程结束,在路上以最大安全速度行驶时,额外的耗油费将是一个常数.为简单起见,选用线性函数来表示额外的油耗费,其公式为:⎩⎨⎧><=τττt k t kt t F ,,)(其中,t 为火车晚点起行的时间,显然当火车正点起行时,t =0,若t 0为首列起行的时刻,d t 为正点起行的时刻,△为起行的时间间隔,则第j 个起行的火车晚点起行的时间为:d t j t t -∆-+=)1(0由于τ为最长的晚点起行时间,即当晚点起行的时间超过τ以后,即使在路途中以最大速度行驶,也不能正点抵达目的地,因此max V d t T d A --=τ其中A T 为正点抵达目的地的时刻,d 为行驶距离, m ax V 为最大的安全行驶速度.d 可用公式来表示Vt T d d A )(-=其中d t 为正点起行时刻, V 为正点起行时平均行驶速度.常数k 与油价、单位晚点时间油耗的增加率及最大安全行驶速度有关,同时还应与行驶距离有关,当然行驶距离越长,额外的油耗就越大.由于行驶距离为V t t )(0-,则有:⎩⎨⎧>-<-=ττττt V t k t t V t t k t F ,)(,)()(00下面再计算乘客由于火车晚点起行而退票的退票费用为:%80)()(⋅=pm t u k t R πΠ为晚点而造成退票的退票率; u(t)乘客出现退票的时间段即:()()⎩⎨⎧≥--<=0u(t)w,t t 0u(t)0,u(t)0d 费用系数中还应考虑乘客的不满意程度.一般地,火车晚点起行的时间越长,旅客就越抱怨,其不满意程度就越大.如果晚点时间只有1~2分钟,旅客就不会太不满意.但是,随着晚点时间的增加,旅客会非常生气,而不满意度会急骤增加,因此我们选用指数函数描述旅客的不满意程度.这个不满意程度对车上每一旅客都是如此,但对要退票的乘客,还需要追加另外的不满意度,用D(t)表示总的不满意程度所折合的费用,则)()1()(t u b e ap t D t πα+-=p 为乘客总数,π为乘客退票率,为了保证在正点起行时乘客的不满意度为0,因而采用了)1(-t e α的形式,显然t=0时,D(0)=0. α为乘客不满意度的增长率,a,b 为折合率,)1(-t e ap α代表全体乘客不满意度折合的费用, )(t u b π为退票乘客追加的不满意度所折合的费用,这一项只有当d t t ≥才起作用.综上所述,费用系数ij c 应为额外油耗费、赔偿费、及不满意度所折合的费用之和)()()(t D t R t F c ij ++=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥⋅++-+-<≤⋅++-+-<≤+-+-<=τππτττπππαααt t u k t u b e ap V t k t w t u k t u b e ap t V t t k wt t t u b e ap t V t t k t t c tt d t dij %,80)()()1()(%,80)()()1()(),()1()(,0000t 和τ由下式给出max0)()1(v V t T t T j t t t avd A d A d ---=∆-+-=τ2)计算实例为了执行简单,再作一些假设。
车辆调度问题的数学模型车辆调度是公交公司、旅游公司、企事业单位等经常遇到的问题,在分析乘车人数、时间、地点等因素的基础上,如何购置车辆使得成本最低,如何合理安排车辆以满足乘客需要,如何使车辆运营费用最省,这些问题都可通过数学建模的方法加以解决.下面以某学校的车辆调度为例进行研究:1.在某次会议上,学校租车往返接送参会人员从A校区到B 校区.参会人员数量见附表1,车辆类型及费用见附表2,请你研究费用最省的租车方案.2.学校准备购买客车,组建交通车队以满足教师两校区间交通需求.假设各工作日教师每日乘车的需求是固定的(见附表3),欲购买的车型已确定(见附表4),两校区间车辆运行时间固定为平均行驶时间35分钟.若不考虑运营成本,请你确定购买方案,使总购价最省.附表1参会人员数量二、问题二模型的建立与求解1.问题分析由于两校区间车辆单程运行时间为35分钟,往返则需70分钟,因此,若不同校区之间的发车时间小于35分钟,或同一校区的发车时间小于70分钟的话,车辆是不能周转使用的,据此便可确定某一时段的乘车人数.通过观察A校区与B校区的18个发车时间,可以看出有两个乘车高峰时段,第一个高峰时段是早上7:30至8:15(即早高峰时段),乘车人数为188人.第二个高峰时段是下午17:15至17:45(即晚高峰时段),乘车人数为222人.从乘车人数看晚高峰时段要多于早高峰时段,而且晚高峰时段的发车时间较为分散,显然只要按晚高峰时段购买车辆,便可满足教师乘车需求.2.模型的建立与求解为建立模型的需要,我们将A校区的发车时间17:15,B校区的发车时间17:15,17:30,17:45依次按1,2,3,4编号.设xij为第i个发车时间点需购置的j型车的数量,(i=1,2,3,4;j=1,2,…,6),cj为购置(包括购置税10%)第j型车的单价,j=1,2,…,6.目标函数是使购车总费用最小.约束条件:满足晚高峰时段各个发车时间点的乘车需求.设z表示购车总费用,在不考虑运营成本的情况下,建立整数线性规划模型如下:minz=∑41i=1∑61jcjxij。
第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。
并提供了关于采集运营数据的较好建议。
在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。
模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。
西南交通大学2012年新秀杯数学建模竞赛题目:A题组别:大二组西南交通大学教务处西南交通大学实验室及设备管理处西南交通大学数学建模创新实践基地校园通行车路线的设计摘要本文主要研究的是校园交通车的站点设置、在固定停车和招手即停两种模式结合下的运载能力、运行路线和时间安排以及相应行驶方案的规划问题。
问题一中,我们对校园通行车现有行车路线网络和常停站点进行了调查和分析。
首先,在数据处理阶段,将站点实体间的线路选择抽象为图论最短路模型,用Matlab软件画出三条主要的行车线路,然后利用GIS空间分析方法解决单个交通线路上站点规划问题。
该方法依据乘客出行时间最短确定单个线路上的站点个数,结合GIS缓冲区分析和叠合分析,在路线上做站点设置的适宜性讨论,提出基于最优化理论和GIS空间分析技术的站点规划方法,确定站点的位置,从而提供一种可行的行驶方案。
问题二中,考虑固定停车和招手即停相结合的方案,我们首先将最佳行驶路线定义为车辆运行时间最短的路线,将图论中经典的Dijkstra算法(单源最短路径)进行改进,结合哈密尔顿图,以结点之间的时间作为权数,利用C++编程得到最佳推销员回路,也就是通行车行驶的最佳路径。
考虑到招手即停模式具有极大的随机性,为了便于调度,我们首先对乘车人次密度分布进行了调查和分析,并通过随机模拟出概率分布值较大的区域,将其抽象为一假想固定停车点,这样就将模型简化为固定停车点最佳行驶路径的问题。
根据已得到的乘车时段分布规律和学校实际的作息时间表,按照模糊聚类分析法将一工作日数单位时间段划分为更概括的高峰期、低潮期和一般期,并应用Matlab中的fgoalattain进行非线性规划求出实际发车数,以及应用时间步长法估计发车间隔,从而给出两种模式结合下通行车每周运行的车辆数、路线和时刻表。
问题三中,我们首先对校区师生乘车需求人数进行了描述性统计,从乘车人数的均值、方差、峰度以及正态性四个角度对样本进行检测,找到相关的分布规律与结论,即每日在各时段中的乘车人数分布相似。
公交车调度关于公交车调度的数学模型摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。
最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。
(一)问题重述公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等.如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
(二)定义与符号说明1、T( I )—---—- 第I个时段( I=1、2……18 )2、A(J )———--- 第J个公交车站(J=1、2……15 )3、P( I )—--—-- 在第I个时段内的配车量4、L(I )--————在第I个时段内的客流量5、G(I )—-——-—在第I个时段内的满载率6、S(I )-—---—在第I个时段内的乘客候车时间期望值7、V—--——-———客车在该线路上运行的平均速度8、ΔL(J)——-第J-1个公交车站到第J个公交车站之间的距离9、ΔT(I)————--第I个时段内相邻两辆车发车间隔时间10、L--—-—收、发车站之间的距离(三)模型的假设基本假设:1、乘客在各个时段内到达公交车站的时间均服从均匀分布2、乘客上车的时间可以忽略不计。