PZT压电陶瓷介绍和测试方法讲义资料
- 格式:ppt
- 大小:372.00 KB
- 文档页数:11
pzt-8 大功率压电陶瓷特点PZT-8(铅锆钛-8)是一种高功率压电陶瓷材料,具有以下特点:1.高电机械耦合系数:PZT-8具有较高的电机械耦合系数,能够将输入的电能有效地转换为机械振动能量。
这使得PZT-8在声波发射、接收和传感等领域具有出色的表现。
2.高机械强度:PZT-8具有较高的机械强度,使其能够承受较大的压力和负荷,具有良好的耐磨损性能。
3.宽工作温度范围:PZT-8具有较宽的工作温度范围,能够在高温和低温环境下保持稳定性能。
它适用于在恶劣环境条件下的应用,如航空航天、核工程等。
4.快速响应速度:PZT-8具有快速的响应和振动速度,能够实现快速的工作和控制。
这使其在快速响应和精准控制要求较高的领域,如超声波成像、精密加工和精确定位等方面表现出色。
5.高效能转换:PZT-8能够将电能有效地转换为机械能,并且具有较高的功率密度。
这意味着在同样输入功率的情况下,PZT-8能够提供更高的输出功率,具有较高的能量转换效率。
6.宽频响范围:PZT-8具有宽带频率特性,能够在较宽的频率范围内工作。
这使得PZT-8适用于需要在不同频率下进行振动、检测或传感的应用,如压电换能器、声波发射器和接收器等。
7.良好的温度稳定性:PZT-8在较宽的温度范围内具有较好的稳定性,能够在不同温度条件下保持一致的性能。
这使得PZT-8适用于需要在高温或低温环境中工作的应用,如热敏控制、温度传感和热能转换等。
总的来说,PZT-8大功率压电陶瓷具有高耦合系数、高机械强度、宽工作温度范围、快速响应速度、高效能转换、宽频响范围和良好的温度稳定性等特点。
这使得它在声波、震动、传感、控制和能量转换等领域具有广泛应用的潜力。
阐述压电陶瓷对蓄电池充电的方法压电陶瓷是一种具有压电效应的功能陶瓷,压电效应是指由应力诱导出电场或磁场,或者由电场或磁场诱导出应力或应变的一种现象,前者为正压电效应,后者为负压电效应。
本文研究压电陶瓷的正压电效应,并提出了将阻尼振动机械能存储到蓄电池中的技术。
本文分析了两种悬臂梁附着压电陶瓷的阻尼振动特性和电压输出特性,结合国内外的一些蓄电池模型提出了铅酸蓄电池的充电电路模型,并分析了压电陶瓷对蓄电池充电的方法。
1 压电陶瓷发电分析及其等效电路模型1.1 压电陶瓷PZT介绍压电陶瓷PZT(钛酸铅)是呈正方体或菱面体形式的铁电体聚合晶粒状,接近立方体结构。
在居里温度(470℃~490℃)以上时,晶粒呈正方对称的结构,但是当温度下降到居里温度以下时,氧离子O2-和钛离子Ti4+一起相对于铅离子Pb2+发生了偏移,表现出了正负极性,由于材料的这种微观不对称性,使之具有了压电性。
1.2 悬臂梁附着压电陶瓷的发电分析图1 悬臂梁结构与压电陶瓷极化方向假设将压电陶瓷功能材料附着在悬臂梁上,如图1所示,用ANSYS软件建模技术分别分析压电陶瓷的极化方向与悬臂梁相垂直(A)和相平行(B)两种情况。
模型(A)用以模拟压电陶瓷片结构,模型(B)用以模拟PFC(压电陶瓷纤维复合材料)结构,PFC为将压电陶瓷纤维镶嵌到聚乙烯等材料中得到UD型等形式的复合材料。
假设悬臂梁的自由端N3与振动源相连,振源的表达式U=UMsin(2πft),UM=0.05mm,f=20Hz。
将该振源施加在模型的N3点,设N4和N5点为零电压,其他节点连接方式如图1所示,使用ANSYS的瞬态响应分析法,采样时间为0.001秒,不断采集模型的两电极的电势差,得到输出电压特性。
得到压电陶瓷纤维复合材料(B)的输出电压可达到1300V,这种材料常用来做高压脉冲设备,不易于对蓄电池充电,所以本文选择纯压电陶瓷片作为研究对象。
模型(A)纯压电陶瓷片的电压输出特性,电压幅值为8.02V,而且稳定和易于控制。
pzt-4压电陶瓷电学参数
PZT-4是一种常见的压电陶瓷材料,具有优良的压电性能和电
学参数。
关于PZT-4的电学参数,我们可以从多个方面来进行全面
的回答。
首先,PZT-4的介电常数通常在1000至1500之间,这意味着
它在外加电场下的极化能力非常强。
这也使得PZT-4成为一种优秀
的压电材料,可用于传感器、换能器和压电马达等应用。
其次,PZT-4的压电常数通常在600至750之间,这表明它对
于机械应力的响应非常敏感。
这使得PZT-4在压电传感器和执行器
方面有着广泛的应用,例如压力传感器、声波发生器等。
此外,PZT-4的电机械耦合系数通常在0.6至0.7之间,这意
味着它能够高效地将电能转换为机械能,或者将机械能转换为电能,因此在压电换能器和压电马达中有着重要的应用。
另外,PZT-4的电阻率通常在10^9至10^11Ω·cm之间,这使
得它在一些特定的电学应用中能够表现出良好的绝缘性能。
总的来说,PZT-4作为一种压电陶瓷材料,具有较高的介电常数、压电常数和电机械耦合系数,以及较高的电阻率,这些优秀的电学参数使得它在压电传感器、换能器、压电马达等领域有着广泛的应用前景。
希望这些信息能够对你有所帮助。
pzt压电陶瓷片的密度
pzt压电陶瓷片是一种具有多种功能的陶瓷材料,因其较高的性能,广泛地应用于电子电路及机械加工等领域。
1. pzt压电陶瓷片的特点:
(1)能够产生拉力变形,具有良好的压电效应;
(2)具有较为稳定的表观温度系数,热稳定性好;
(3)具有良好的泄漏电流特性,使得它成为最常用的气体绝缘材料;(4)耐生化腐蚀性,耐电压冲击的能力较强。
2. pzt压电陶瓷片的密度:
PZT压电陶瓷片的密度通常为7.4~7.7 g/cm3,少数情况下达到8.5
g/cm3,它的重量要比碳化硅陶瓷的重量要轻;此外,它能够长时间使用,具有很高的绝缘水平,使得它成为非常有效的智能传感器和传感器内电路元件。
3. pzt压电陶瓷片的应用:
(1)它在电子电路中可以作为高精度控制元件及保护设备;
(2)也可以用作压力、温度以及湿度的传感器;
(3)具有传导和透射功能的复合型光电器件;
(4)也可以用于声学设备,用于发射和接收声音振动,具有良好的稳定性;
(5)还可以用作气体分离膜,提高产品性能。
4. pzt压电陶瓷片的研发前景
PZT压电陶瓷片在发电、驱动和容纳等领域都有应用,具有极大的潜力。
随着人们对新型气体和微纳米技术的不断发展,PZT压电陶瓷片应用领域也将不断扩展,开发出更多高性能的新型PZT压电陶瓷片。
未来的PZT压电材料将具有更好的性能,使得开发者可以实现新的技术和产品,这可以被很好地应用于消费电子设备领域,例如电子游戏机、导航仪等等。
压电陶瓷报告1.基本概念压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。
图1 BSPT压电陶瓷样品断面SEM照片每个小晶粒内还具有铁电畴组织,如图所示。
图PZT陶瓷中电畴结构的电子显微镜照片1.1晶胞结构目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、KxNa1-xNbO3、Pb(ZrxTi1-x)O3等。
该类材料的化学通式为ABO3。
式中A的电价数为1或2,B的电价为4或5价。
其晶胞(晶格中的结构单元)结构如图所示。
压电陶瓷的晶胞结构随温度的变化是有所变化的。
如下式及图6所示。
PbTiO3(PT ):四方相 立方相BaTiO3(BT ):三角相 正交相 四方相 立方相自发极化的产生以BT 材料由立方到四方相转变为例,分析自发极化的产生,如图7所示。
(a )立方相 (b )四方相由图可知,立方相时,正负电荷中心重合,不出现电极化;四方相时,因490℃ 120℃ 5℃ -90℃Ti4+沿c轴上移,O2-沿c轴下移,正负电荷中心不重合,出现了平行于c 轴的电极化。
这种电极化不是外加电场产生的,而是晶体内因产生的,所以成为自发极化,其相变温度TC称为居里温度。
1.2压电效应某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
其中,如果压力是一种高频震动,产生的就是高频电流。
如果将高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动)。
1.3压电陶瓷具有这种性能的陶瓷称为压电陶瓷,发生正压电效应时,表面电荷的密度与所受的机械应力成正比。
当发生负压电效应时,形变的大小与电场强度成正比。
1.4压电作用机理压电效应首先是在水晶晶体上发现的,现在我们以水晶晶体为模型,说明产生压电效应的物理机理。
当不施以压力时,水晶晶体正、负电荷中心如上图分布,设这时正、负电荷中心重合,整个晶体的总电矩等于零,晶体表面不荷电(不呈压电性)。
PZT压电陶瓷泡沫概述PZT压电陶瓷泡沫是一种新型的材料,具有压电效应和泡沫材料的特点。
本文将从材料特性、制备方法、应用领域等方面对PZT压电陶瓷泡沫进行全面、详细、完整且深入地探讨。
材料特性PZT压电陶瓷泡沫具有以下特性: 1. 压电效应:PZT材料具有压电效应,能够在受到外力作用时产生电荷,从而实现能量转换。
2. 轻质高强度:PZT泡沫材料由于具有泡沫结构,重量轻而强度高,适用于一些需要轻质材料的领域。
3. 隔热性能:PZT泡沫材料具有较好的隔热性能,可以在高温环境下应用。
4. 吸音性能:PZT泡沫材料具有较好的吸音性能,可以在噪音控制领域应用。
制备方法PZT压电陶瓷泡沫的制备方法主要包括以下几个步骤: 1. 原料准备:根据配方比例准备PZT陶瓷粉末、发泡剂、粘结剂等原料。
2. 混合:将PZT陶瓷粉末、发泡剂、粘结剂等原料按照一定比例混合均匀。
3. 发泡:将混合后的原料放入发泡装置中,在一定温度条件下进行发泡处理,使材料形成泡沫结构。
4. 成型:将发泡后的材料进行成型,可以采用压制、注射等方法进行。
5. 烧结:将成型后的材料进行烧结处理,使其形成致密的陶瓷结构。
6. 表面处理:对烧结后的材料进行表面处理,以提高其性能和使用寿命。
应用领域PZT压电陶瓷泡沫在以下领域具有广泛的应用: 1. 声波传感器:PZT泡沫材料具有较好的压电效应和吸音性能,可以用于制造声波传感器,应用于声学领域。
2. 压电发电装置:由于PZT泡沫材料具有压电效应,可以将其应用于压电发电装置,实现能量转换。
3. 隔热材料:PZT泡沫材料具有较好的隔热性能,可以用于制造隔热材料,应用于高温环境中。
4. 噪音控制:PZT泡沫材料具有吸音性能,可以用于制造吸音材料,应用于噪音控制领域。
结论PZT压电陶瓷泡沫是一种具有压电效应和泡沫材料特性的新型材料。
它具有轻质高强度、隔热性能和吸音性能等特点,适用于声学、能源、隔热和噪音控制等领域。
压电陶瓷材料湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:09701540130姓名:姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。
这是一种具有压电效应的材料。
它在工业生产和日常生活中得到了广泛的应用。
由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。
1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。
二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。
当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电荷出现。
这一效应称为正压电效应,晶体的这一性质,称为压电性。
1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。
这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。
1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。
石英是压电晶体的代表,它一直被广泛应用至今。
利用石英的压电效应可制成振荡器和滤波器等频控元件。