中考数学专题复习—数与式
- 格式:docx
- 大小:202.84 KB
- 文档页数:6
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
中考总复习之数与式超全知识点及经典例题中考总复之数与式本部分内容是初中代数部分的基石,是数学研究历程中重要的延伸。
在小学的基础上,引入了平方根、立方根,从将数扩充到了实数范围。
认识了整式、分式、根式,将特殊的数字延伸到了能表示一般规律的代数式范围,其中涉及的代数式的计算,为今后高中研究奠定基础,也是中考综合题复杂运算必需的技能。
在中考试卷中,该部分内容独立考题所占分值较小,多以选择、填空、计算题出现。
然而在综合题型中,这部分内容的应用却处处存在。
实数的分类实数可以按照定义和正负两个方面进行分类。
其中,正负数的分类包括正整数、负整数、有限小数或有理数、正分数、分数、负分数、正无理数、负无理数。
有理数是指任何一个可以写成p/q形式的数,其中p、q是互质的整数。
无理数则包括开不尽的方根、特定结构的无限不循环小数以及特定意义的数,如π、e、一些三角函数等。
实数中的几个概念相反数是指只有符号不同的两个数,它们互为相反数。
一个实数a的相反数是-a,而a和b互为相反数当且仅当a+b=0.倒数是指一个数的倒数是1/a,而a和b互为倒数当且仅当ab=1.需要注意的是,0没有倒数。
绝对值是一个非负数,实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
n次方根是指平方根、立方根和其他次方根。
平方根是指设a≥0,称±a叫a的算术平方根,其中正数的平方根有两个,它们互为相反数。
负数没有平方根。
立方根是指3次方根,即3√a,其中一个正数有一个正的立方根,而负数的立方根是负数。
其他次方根的计算方法与此类似。
单项式的乘积仍然是单项式。
②单项式乘多项式:将多项式中的每一项与单项式相乘,然后将结果相加得到最终结果。
③多项式乘多项式:将每一项都与另一个多项式中的每一项相乘,然后将结果相加得到最终结果。
数与式专题复习一、判断运算正确与否1、下列运算中,计算结果正确的是( )A .632x x x =⋅ B .222+-=÷n n n x x xC . 9234)2(x x =D .633x x x =+ 2、下列因式分解中,结果正确的是( )A .()()2422x x x -=+-B .()()()21213x x x -+=++C .()23222824m n n n m n -=-D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭3、下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a -=-+D .222)(b a b a +=+ 4、下列各式:①21()93--=②()02-=1 ③222)(b a b a +=+ ④()622393b a ab =- ⑤x x x -=-432,其中计算正确的是5、下列运算正确的是( )A .(3xy 2)2=6x 2y 4 B .22124xx -= C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3 6、下列等式不成立的是( )A.m 2 -16=(m-4)(m+4)B.m 2 +4m=m(m+4)C.m 2-8m+16=(m-4)2D.m 2+3m+9=(m+3)27、下列各式计算正确的是( ) A .m 8÷m 4=m 2 B. a 2∙a 3=a 6 C. yx 2y 1x 1+=+ D. 6÷32= 8、在下列运算中,计算正确的是( )A . 725)(x x =B . 222)(y x y x -=-C . 10313x x x =÷D . 633x x x =+二、近似数和科学计数法1、据某网站报道:一粒废旧纽扣电池可以使600吨水受到污染.某校团委四年来共回收废旧纽扣电池3500粒.若这3 500粒废旧纽扣电池可以使m 吨水受到污染.用科学记数法表示m 为2、我市植树造林成绩显著 截至今年5月8日 全市完成平原造林204 844亩 已超过全年任务的八成.将204 844用科学 记数法表示 ,保留2个有效数字约为3、 2012年3月12日 国家财政部公布全国公共财政收入情况 1-2月累计 全国财政收入20918.28亿元 这个数据用科学记数法表示并保留两个有效数字为4、2012年1月21日 北京市环保监测中心开始在其官方网站上公布PM2.5的研究性监测数据. PM2.5是指大气中直径小于或等于0.0000025米即2.5微米的颗粒物也称为可入肺颗粒物. 把0.0000025用科学记数法表示为5、在日本核电站事故期间 我国某监测点监测到极微量的人工放射性核素碘131,其浓度为0.000 0963贝克/立方米,将 0.000 0963用科学记数法表示6、我国1990年的人口出生数为23784659人。
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。
中考总复习一:数与式中考考点第一部分:实数1.数形结合法去绝对值解绝对值的计算问题时,首先要脱去绝对值符号,化成一般的实数计算.脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值定义脱去绝对值符号,而可以转化为去处理.典型例题: 1.实数a、b、c在数轴上的点如图所示,化简:.2.比较实数大小时,要灵活选择以下几种常见的方法:(1)数轴比较法;(2)绝对值比较法;(3)求差比较法;(4)求商比较法;(5)倒数法;(6)中间值比较法;(7)分子、分母有理化法;(8)平方法.典型例题2.比较大小:与.(二)试题分类1.有理数的运算下列式子中结果为负数的是( ).A. B. C. D.2.倒数、相反数、绝对值和数轴(1)如图,点A、B在数轴上对应的实数分别为m、n,则A、B之间的距离是___________.(用含m、n的代数式表示).(2)如图,数轴上点P表示的数可能是( ).A. B. C.D.3.无理数的算术平方根是___________.4.实数的运算(1)若,则的值是( ).A.0B.1C.D.2007(2)计算:.5.近似数、有效数字和科学记数法北京市申办2008年奥运会,得到了全国人民的热情支持,据统计,某日北京申奥网站的访问人次达到了201 949,用四舍五入法取近似值保留两个有效数字,得( ).A. B. C. D.6.实数综合与创新(1)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的数学排列为:1,1,2,3,5,8,…,那么这列数得第8个数应该是____(2)先阅读下列材料,再解答后面的问题.材料:一般地,n个相同的因数相乘:.如,此时,3叫做以2为底8的对数,记为.一般地,若(且,),则n叫做以为底b的对数,记为(即).如,则4叫做以3为底81的对数,记为(即).问题:①计算以下各对数的值:___________,_________,_________.②观察①中三数4、16、64之间满足怎样的关系式?、、之间又满足怎样的关系式?③由②的结果,你能归纳出一个一般性的结论吗?___________(且,,).④根据幂的运算法则:以及对数的含义证明上述结论.第二部分:代数式(一)解题方法和技巧1.整体思想就是把握条件和结论的关系,用整体的方法来处理问题,从而促进问题的解决.典型例题1.已知x为实数,且,求的值.2.从特殊到一般的思维意识从特殊到一般是我们认识世界的普遍规律.通过对特殊现象的研究而得出一般结论的方法是数学上常用的归纳法.典型例题2.已知:,,,….若(、均为实数),请推测___________,___________.(二)试题分类1.整式(1)若单项式与是同类项,则___________.(2)下列计算中,正确的是( ).A. B.C. D.2.因式分解(1)分解因式:___________.(2)因式分解:___________.(3)把代数式分解因式,下列结果中正确的是( ).A. B. C. D.3.分式(1)若分式的值为零,则x的值等于___________.(2)化简:___________.(3)如果,则___________.4.代数式的值(1)若,则的值为___________.(2)若非零实数、()满足,,则___________.(3)有一道题:“先化简,再求值:,其中“”.小亮同学做题时把“”错抄成了“”,但他的计算结果也是正确的,请你解释这是怎么回事.5.二次根式(1)在下列二次根式中,与是同类二次根式的是( ).A. B. C. D.(2)估计的大小应( ).A.在9.1~9.2之间B.在9.2~9.3之间C.在9.3~9.4之间D.在9.4~9.5之间6.代数式的综合与创新(1)已知,当时,;当时,;当时,;…;则的值为___________.(2)已知:m、n是两个连续自然数(),且,设,则( ).A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数(3)任何一个正整数n都可以进行这样的分解:(s、t是正整数,且),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:.例如,18可以分解成、、这三种,这时就有.给出下列关于的说法:①,②,③,④若n是一个完全平方数,则;其中正确的说法的个数是( ).A.1B.2C.3D.4(4)数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:.例如把(3,)放入其中,就会得到.现将实数对(,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是___________.基础练习一、选择题1.一个代数式减去等于,则这个代数式是( ).A. B. C. D.2.下列去括号正确的是( ).A. B.C.D.3.下列各组代数式中,属于同类项的是( ).A.与B.与C.与D.p与q4.下列计算正确的是( ).A. B. C. D.5.a = 255,b = 344,c = 433,则 a、b 、c的大小关系是( ).A.a>c>bB.b>a>cC.b>c>aD.c>b>a6.如果甲数为,甲数是乙数的倍,则乙数是( ).A. B. C. D.7.一个两位数,十位数字是,个位数字是,如果把它们的位置颠倒一下,得到的数是( ).A. B. C. D.8.如果,则下列等式成立的是( ).A. B. C. D.9.设,都是实数,且,,则,的大小关系是( ).A. B. C. D.10.下列多项式属于完全平方式的是( ).A.x2-2x+4B.x2+x+C.x2-xy+y2D.4x2-4x-111.若,则k的值为( ).A. 2B.C. 1D. –112.若x2+mx+25 是一个完全平方式,则m的值是( ).A.20B.10C. ± 20D.±1013.若代数式,那么代数式的值是( ).A. B. C. D.14.如果,那么x的取值范围是( ).A.x≥3B. x≤2C.x>3D.2≤x≤315.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n盆花,每个图案花盆总数是S,按此推断S与n的关系式为( ).A.S=3nB.S=3(n-1)C.S=3n-1D.S=3n+1二、填空题1.计算:_________.2.36 x4 y8 = (_________)23._________.4.小明在文具店买了三支2B铅笔和五个练习本,2B铅笔每支x元,练习本每个y元,小明共花了_____元.5.一台电视机成本价为元,销售价比成本价增加,因库存积压,所以就按销售价的出售.则每台电视机的实际售价为_________.6.如果与是同类项,则的值为_________,的值为_________.7.若,则ab=_________.8.0.0000057用科学记数法表示为_________.9.三角形三边a=7,b=4,c=2,则周长是_________.10.已知,求_________.11.如果最简二次根式与是同类二次根式,则a=_________.12.把分解因式的结果是_______________________.13.化简=_________.14.在下面由火柴杆拼出的一列图形中,第个图形由个正方形组成:通过观察可以发现,第个图形中有_________根火柴杆.15.观察等式:,,,,….设表示正整数,请用关于的等式表示这个观律为:_________.能力提高1.已知A=-4a3-3+2a2+5a,B=3a3-a-a2,求:A-2B.2.已知x+y=7,xy=2,求:①2x2+2y2的值;②(x-y)2的值.3.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.4.已知A=a+2,B=a2-a+5,C=a2+5a-19,其中a>2.(1)求证:B-A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.5.a、b、c为三边,利用因式分解说明的符号.6.某餐厅中张餐桌可以坐人,有以下两种摆放方式:一天中午,餐厅要接待位顾客共同就餐,但餐厅中只有张这样的餐桌,假设你是这个餐厅的经理,你打算选择哪种拼接方式来摆餐桌?(注:范文素材和资料部分来自网络,供参考。
数与式的中考复习汇总数与式是数学中的基本概念,对于中考来说是非常重要的内容。
下面是数与式的中考复习汇总,供你参考。
一、基本概念1.数与式的概念:数是表示事物数量的抽象概念,式是由数和运算符号组成的算式。
2.数的分类:整数、有理数、无理数、实数。
3.有理数的性质:有理数可表示为有限小数、无限循环小数、无限不循环小数。
4.无理数的概念和性质:无理数不能表示为有限小数或无限循环小数。
5.实数的分类:有理数和无理数的并集即为实数。
6.数的比较:相等、大于、小于、不等于的概念。
二、整数运算1.加法和减法法则:同号相加、异号相减,记号保持与被减数相同。
2.乘法和除法法则:同号得正,异号得负;分数相乘,正负性由分数的正负号决定;除法可以转化为乘法运算。
3.绝对值:一个数与其绝对值的关系。
4.整数的混合运算:根据运算顺序,先乘除后加减。
三、分数运算1.分数的概念:分子和分母的含义及分数的整体含义。
2.分数的比较:分数的大小比较通过通分后比较分子大小。
3.分数的化简和约分:将分数化为最简形式。
4.分数的加法和减法:通分后进行分子的加减运算,记号与被减数一致。
5.分数的乘法和除法:将分子和分母分别相乘或相除。
6.假分数和带分数的相互转化。
7.分数的四则运算:根据运算顺序,先乘除后加减。
四、代数式的运算1.代数式的概念:由运算符号和字母组成的式子。
2.代数式的加法和减法:同类项合并。
3.代数式的乘法:乘法法则及乘法交换律。
4.代数式的除法:除法法则及除法运算的定义。
5.代数式的混合运算:根据运算顺序进行相应的运算。
6.同义式的应用:解方程、证明恒等式等。
7.开平方的应用:判断二次根式是否为整数、化简二次根式。
五、数与式的综合运用1.合理估算:对于结果的大小进行近似计算。
2.适当计算:选择合适的运算方法和顺序计算。
3.合理求解:根据实际问题列出代数式,解方程或计算。
4.应用题:根据题意进行有关运算,解决实际问题。
六、错误分类与分析1.基础错误:对基本概念和运算法则理解不清。
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
中考数学第一轮复习“数与式”知识点总结1. 实数-实数的定义与分类:实数包括有理数和无理数。
有理数进一步分为整数(正整数、0、负整数)和分数(正分数、负分数)。
无理数则是不能表示为两个整数之比的数。
-实数的性质:包括实数的有序性、数轴上的表示(实数与数轴上的点一一对应)、相反数、绝对值、倒数等概念。
-实数的运算:掌握实数加、减、乘、除、乘方等基本运算法则,特别是对于带有绝对值和根号的实数的运算,要特别注意运算顺序和运算法则。
2. 代数式-代数式的概念:用字母表示数(或式)的式子叫做代数式。
它可以是单独的一个数、一个字母,也可以是数与字母的积或幂等形式。
-代数式的书写规则:掌握代数式书写的基本规则,如乘法时数应写在字母前面,乘号通常省略不写等。
-代数式的值:当代数式中的字母取定一个值时,代数式就有了一个确定的值。
了解代数式求值的基本步骤和方法。
3. 整式-整式的概念:单项式和多项式统称为整式。
单项式是只含有一个项的代数式,多项式则是由有限个单项式相加或相减得到的代数式。
-整式的加减:整式的加减实际上就是合并同类项的过程,要理解同类项的概念,并会识别和合并同类项。
-整式的乘除:掌握单项式乘单项式、单项式乘多项式、多项式乘多项式等运算法则。
对于整式的除法,重点是掌握多项式除以单项式的运算方法。
-整式的乘方与开方:了解整式乘方的基本性质和运算法则,特别是积的乘方和幂的乘方的运算规则。
对于开方,要了解算术平方根和平方根的概念,并能进行简单的开方运算。
4. 分式-分式的概念:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式。
了解分式有意义、无意义、值为零的条件。
-分式的基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变。
-分式的加减乘除:掌握分式的加减(需要通分)、乘除(转化为乘法进行)、乘方(幂的乘方与积的乘方)等运算法则。
特别地,对于分式的除法,要会将其转化为乘法进行运算。
第一轮中考复习——数与式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数 2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b,①a>b ,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
专题复习一:数与式、方程、不等式一、考点、热点回顾 (一)数与式A 、中考经典真题1、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=2、(2013•遵义)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A . a +b <0B . ﹣a <﹣bC . 1﹣2a >1﹣2bD . |a|﹣|b|>0 3、(2013台湾、29)数轴上A 、B 、C 三点所表示的数分别为a 、b 、c ,且C 在AB 上.若|a|=|b|,AC :CB=1:3,则下列b 、c 的关系式,何者正确?( )A .|c|=|b|B .|c|=|b|C .|c|=|b|D .|c|=|b|4、(2013•咸宁)在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a ﹣b|=2013,且AO=2BO ,则a+b 的值为 .5、(绵阳市2013年)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( D )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米6、(2013凉山州)如果单项式﹣xa+1y 3与是同类项,那么a 、b 的值分别为( )A .a=2,b=3B .a=1,b=2C .a=1,b=3D .a=2,b=27、(2013•绥化)按如图所示的程序计算.若输入x 的值为3,则输出的值为 .8、(13年北京5分16) 已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值。
9、(2013年江西省)如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .B 、培优训练1. (2009 湖北省鄂州市) 为了求231222++++…+20082的值,可令231222S =++++…20082+,则23422222S =++++…20092+,因此2009221S S -=-,所以231222++++…20082009221+=-.仿照以上推理计算出231555++++…20095+的值是( ) A .200951- B .201051- C .2009514- D .2010514- 2. (2009 四川省眉山市) 一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b + B .1019a b -C .1017a b -D .1021a b -3. (2009 贵州省贵阳市) 有一列数12341n n a a a a a a - ,,,,,,,其中1521a =⨯+,2532a =⨯+,3543a =⨯+,4554a =⨯+,5565a =⨯+, ,当2009n a =时,n 的值等于( )A .2010B .2009C .401D .3344. (2009 福建省南平市) 观察下列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,那么第32个数对是( )A .(4,4)B .(4,5)C .(4,6)D .(5,4)5. (2009 福建省泉州市) 点A 1、 A 2、 A 3、 …、n A (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2008 、A 2009所表示的数分别为( )A .2008、2009-B .2008-、 2009C .1004、1005-D .1004、 1004- 6. (2007 内蒙古呼和浩特市) 观察下列三角形数阵:则第50行的最后一个数是( ) A.1225 B.1260 C.1270 D.12757. (2009 浙江省台州市) 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++; ③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 8、 (2008 福建省南平市) 定义:a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a =9. (2009 湖北省荆门市) 定义2*a b a b =-,则(12)3**=______.10. (2007 四川省德阳市) 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0) 根据这个规律探索可得,第100个点的坐标为____________.12 34 5 6 7 8 9 10 11 12 13 14 15O (1,0) (2,0) (3,0) (4,0) (5,0)x(5,1)(4,1) (3,1) (2,1) (3,2) (4,2) (4,3) (5,4) (5,3)(5,2) y11.(2009 四川省凉山州) 我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?12. (2009 四川省凉山州)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱 五棱柱 六棱柱图形顶点数a 6 10 12 棱数b 9 12 面数c58观察上表中的结果,你能发现a b c 、、之间有什么关系吗?请写出关系式.(二)方程与不等式 A 、中考经典真题1、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C.120x-10=100x D.120x+10=100x2、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是3、(2013•攀枝花)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣64、(2013•咸宁)已知是二元一次方程组的解,则m+3n的立方根为.5、(2013安顺)4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .6、(2013•泸州)设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()A.5B.﹣5 C.1D.﹣17、(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4C.﹣4 D.10 8、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
B. 1
2m 4
11.已知 x = 2 + 1 ,求代数式 ⎪÷ 的值. x
中考数学专题复习
专题一
数与式
[基础训练]
1.如果 a 与 -2 的和为O ,那么 a 是(
)
1
C. -
D. -2
2
2
2. (m 2 )3 gm 4 等于(
)
A. m 9
B . m 10
C . m 12
D . m 14
3. 若 x = 4 ,则 x - 5 的值是( )
A .1
B .-1
C .9
D .-9
4、 -5 的相反数是
, 9 的算术平方根是
,-3 倒数是
.
4.已知(a-b)2=4,ab= 1
2
,则(a+b)2=
5.在函数 y = x - 1 中,自变量 x 的取值范围是 .
输入 x
6.若分式
x - 2 x - 1
的值为零,则 x = .
平方
7.因式分解: x 3 - 2 x 2 y + xy 2 = __________________.
9.根据如图所示的程序计算,若输入 x 的值为 1,
则输出 y 的值为
10.计算或化简:
乘以 2
减去 4
否则
若结果大于 0
输出 y
(1) 3 ⎛ + tan 60︒ + - 3 ⎝ 2 ⎫ 0 (第 9 题图) ⎪ (2) -
3 ⎭ m - 2 m - 2
⎛ x + 1 ⎫ 1
-
⎝ x 2 - x x 2 - 2 x + 1 ⎭ x
A
1
(2)当x=_____时,分式
x-3
D (3)
=a
D (2)
=a
[精选例题]
例题1(1)1:2的倒数是()
11
B-C±D2
222
(2)写出一个比-1大的负有理数是________,写出一个比-1大的负无理数是_________.(3)若m-3+(n+3)2=0,则m+2n的值为
()
A-4B-1C0D4
说明:本题考查对数与式基本概念的理解
(1)倒数的概念(2)有理数与无理数的概念和大小比较(3)绝对值和完全平方的非负性例题2(1)如图,在数轴上表示15的点可能是()01234
A点P B点Q C点M D点N
x-3无意义.
(3)已知1-a
a2
=
1-a
a,则a的取值范围是()
A a≤0
B a<0C0<a≤1Da>0
说明:本题考查对数与式有关性质的掌握
(1)实数的大小和数轴上的表示(2)分式在什么时候无意义和绝对值的意义(3)平方根的意义和性质
例题3(1)下列运算正确的是()
A a2⋅a=a2
B a+a=a2
C a6÷a3=a226
(2)化简a+b+(a-b)的最后结果正确的是()
A2a+2b B2b C2a D0
(3)下列计算错误的是()
A-(-2)=2B8=22C2x2+3x2=5x235
(2)已知 1 - = 3, 代数式 的值为 _________
值.
(4)先化简 (1 + 3 a + 1 ) ÷
a - 2 a 2 - 4
, 然后请你给 a 选取一个合适的值 , 再求此时原式的
说明:本题考查对数与式运算法则的掌握,第(4)题注意解题的规范。
例题 4(1)如果 x + y = -4, x - y = 8, 那么代数式 x 2 - y 2的值是 _____
1 2 x - 14 x y - 2 y
x y x - 2 x y - y
说明:本题较为灵活的考查利用运算法则对其适当变形然后求值。
例题 5.(1)让我们轻松一下,做一个数字的游戏;
第一步:取一个自然数 n 1 = 5 ,计算 n 12 +1 得 a
1
第二步:取出 a 1 的各位数字之和得 n 2 ,计算 n 2 2 +1 得 a
2
第三步:取出 a 2的各位数字之和得 n 3 ,计算 n 32 +1 得 a。
3
依次类推,则 a
2008
= _____
(2)如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含 n
的等式表示第 n 个正方形点阵中的规律
.
…… 1 = 121 + 3 = 22 3 + 6 = 32 6 +10 = 42
……
(3)观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、
c 的值分别为
1
2 2
4 3
6 4
8 …
…
3C.-3
2C.±2D.1
36912…
1218
4 (8)
…
12
…
16
…
…
…
15
2024
25
b
c
表二表三表四表一
A.20、29、30B.18、30、26C.18、20、26D.18、30、28说明:本题考查发现规律、归纳思考的能力和列式的能力。
[中考试题强化训练]
1.3的倒数是()
A.3B.1
D.-
1
3
2.计算x3÷x的结果是()
A.x4B.x3C.x2D.3
3.1
4的算术平方根是()11
A.-B.2
4.3-27等于()
A.9 C.3 D.-3 5.下列运算正确的是()
A.a2g a3=a6B.(-y2)3=y61
16
C(m2n)3=m5n3D.-2x2+5x2=3x2
6.下列各数中,与23的积为有理数的是()
A.2+3B.2-3C.-2+3D.3
; 16 计算: ⎪ - 2 cos 45o + 3 ⨯ (2007 - π)0 .(2) .
7.观察下面的一列单项式: -x 、2x 2、-4x 3、8x 4、-16x 5、…根据其中的规律,得
出的第 10 个单项式是(
)
B. 29x 10
C. -29x 9
D. 29x 9
8.大家知道 5 是一个无理数,那么 5 -1 在哪两个整数之间(
)
A .1 与 2
B .2 与 3
C .3 与 4
D .4 与 5
9.我市冬季某一天的最高气温为一 l℃,最低气温为一 6℃,那么这一天的最高气温比最低
气温高_________℃.
10.肥皂泡表面厚度大约是,这个数用科学记数法表示为
mm 。
11.分解因式: b 2 - 4 =
.
12.若代数式 x + 1
x - 3
的值为零,则 x=________;
若代数式 ( x + 1)(x - 3) 的值为零,则 x=_______。
13.函数 y =
2
x - 2
中自变量 x 的取值范围是 ,
函数 y = 2x - 3 中自变量 x 的取值范围是
.
14.已知数轴上两点 A 、B 到原点的距离是 2 和 2,则 AB=
15.计算(1) ( 1 )-1 + (-2)3 + -3 - ( 9 3 1 1
)0 . (2) ( - )( x 2 - 1)
2 x - 1 x + 1
⎛ 1 ⎫-1 a a 2 - a 1 ÷ -
⎝ 2 ⎭
a - 1 a 2 - 1 a - 1
17.先化简,再求值: x 2 + 4 2 -
x 2 - 4 x - 2
,其中 x = 2 - 2 .
18..先化简,再求值: ⎪ 19.先化简,再求代数式 1 -
根.
⎛ a 2 - 4 1 ⎫ 2
- ÷ ⎝ a 2 - 4a + 4 2 - a ⎭ a 2
- 2a
,其中,a 是方程 x 2 + 3x + 1 = 0 的
⎛
3 ⎫ x 2 - 1 ⎪÷
⎝ x + 2 ⎭ x + 2
的值,其中 x = 4 s in 450 - 2 cos 600
20 如图,由等圆组成的一组图中,第 1 个图由 1 个圆组成,第 2 个图由 7 个圆组成,第 3
个图由 19 个圆组成,……,按照这样的规律排列下去,则第 9 个图形由__________个圆组
成。
……
( 第 20 题。