地基沉降计算课堂练习题
- 格式:doc
- 大小:17.50 KB
- 文档页数:1
沉井施工练习题沉井是一项常见的施工工艺,用于地下工程中的基坑加固、桩基施工等方面。
在沉井施工中,需要进行相关的工程计算和设计,并遵循一系列的操作规范和安全要求。
下面是一个沉井施工练习题,旨在加深对沉井施工工艺的理解和应用。
1. 某基坑的设计深度为15米,直径为6米,需要进行沉井施工。
请计算该基坑需要多少个沉井环才能完成施工。
假设每个沉井环的高度为2米。
解答:基坑的深度为15米,每个沉井环的高度为2米。
所以总共需要15/2=7.5个沉井环。
因为沉井环是一个个完整的环状结构,所以需要向上取整,即需要8个沉井环。
答案:8个沉井环。
2. 某沉井施工现场的工期为12天,每天可以下沉井深度为1.5米,那么在规定工期内,该施工现场最多能完成多少米的沉井?解答:工期为12天,每天下沉井深度为1.5米。
所以在规定工期内,最多能下沉井的总深度为12*1.5=18米。
答案:18米。
3. 在进行沉井施工时,为了避免引起地面塌陷和其他安全事故,需要进行相关的安全措施。
请列举至少三个沉井施工的安全措施。
解答:(1) 在进行沉井施工前,需要对基坑地质进行勘察,保证地质情况的准确性,避免地质灾害的发生。
(2) 在沉井施工的过程中,需要进行实时的监测和检查,如地下水位、地表沉降等,一旦发现异常情况,及时采取措施。
(3) 沉井施工现场需要设置相应的警示标识和防护栏杆,确保工地周边的安全,避免人员误入施工现场。
4. 某基坑的沉井施工要求采用二次沉井法,并已知每次下沉井完成后需要回注50m³的混凝土。
请计算在完成整个沉井施工过程后,对该基坑共需要回注混凝土多少m³。
解答:在二次沉井法中,每次下沉井完成后需要回注50m³的混凝土。
已知该基坑需要进行8次沉井。
所以完成整个沉井施工过程后,需要回注的混凝土总量为50*8=400m³。
答案:400m³。
5. 某施工现场的基坑周围环境复杂,地质条件较差。
3.1 某建筑场地的地层分布均匀,第一层杂填土厚1.5m,γ=17kN/m³,第二层粉质粘土厚4m,γ=19kN/m³,Gs=2.73,ω=31%,地下水位在地面下2m处;第三层淤泥质粘土厚8m,γ=18.3kN/m³,Gs=2.74,ω=41%;第四层粉土厚3m,γ=19.5kN/m³,Gs=2.72,ω=27%;第五层砂岩。
试计算各层交界处的竖向自重应力σcz,并绘出σcz沿深度分布图。
解;由题意已知h1=1.5m,γ1=17kN/m³;h2=4m,γ2=19kN/m³,G S2=2.73,ω2=31%;h3=8m;γ3=18.3kN/m³,Gs3=2.74,ω3=41%;h4=3m,γ4=19.5kN/m³,Gs4=2.72,ω4=27%.(1)求第一二层交界面处竖向自重应力σcz1σcz1=h1γ1=1.5*17=25.5kPa(2)求第二三层交界面处竖向自重应力σcz2已知地下水位在地面下2m处,则在2m处时σcz=σcz1+0.5*γ2=25.5+0.5*19=35kPa即19=[2.73*(1+31%)/(1+e2)]*10 得出e2=088已知γArray w.浮重度γ2’=[(G s2-1)/(1+e2)]1)/(1+0.88)]*10=9.19kN/m³σcz2=σcz+3.5γ2’=35+3.5*9.19=67.17kPa(3)求第三四层交界面处竖向自重应力σcz3即18.3=[2.74*(1+41%)/(1+e3)]*10 得出e3=1.11已知γ浮重度γ3’=[(G s3-1)/(1+e3)]γw=[(2.74-1)/(1+1.11)]*10=8.25kN/m³σcz3=σcz2+h3γ3’=67.17+8*8.25=133.17kPa(4)求第四层底竖向自重应力σcz4即19.5=[2.72*(1+27%)/(1+e4)]*10 得出e4=0.771已知γ浮重度γ4’=[(G s4-1)/(1+e4)]γw=[(2.72-1)/(1+0.771)]*10=9.71kN/m³Σcz4=σcz3+h4γ4’+(3.5+8+3)γw=133.17+3*9.71+(3.5+8+3)*10=307.3kPaσcz沿深度分布图如下3.2 某构筑物基础如图3.31所示,在设计地面标高处作用有偏心荷载680KN, 偏心距有1.31m, 基础埋深为2m,底面尺寸为4m×2m, 试求基底平均压力Pk和边缘最大压力Pkmax, 并绘出沿偏心方向的基地压力分布图。
地基沉降量计算地基变形在其表面形成的垂直变形量称为建筑物的沉降量。
在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。
一、分层总和法计算地基最终沉降量计算地基的最终沉降量,目前最常用的就是分层总和法。
(一)基本原理该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。
地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有:变换后得:或式中:S--地基最终沉降量(mm);e--地基受荷前(自重应力作用下)的孔隙比;1e--地基受荷(自重与附加应力作用下)沉降稳2定后的孔隙比;H--土层的厚度。
计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。
然后按式(4-9)或(4-10)计算各分层的沉降量S i。
最后将各分层的沉降量总和起来即为地基的最终沉降量:(二)计算步骤1)划分土层如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。
2)计算基底附加压力p03)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。
4)确定压缩层厚度满足σz=0.2σsz的深度点可作为压缩层的下限;对于软土则应满足σz=0.1σsz;对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。
5)计算各分层加载前后的平均垂直应力p=σsz; p2=σsz+σz16)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量S i8)按公式(4-11)计算总沉降量S。
分层总和法的具体计算过程可参例题4-1。
例题4-1已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。
地基沉降量计算欧阳歌谷(2021.02.01)地基变形在其表面形成的垂直变形量称为建筑物的沉降量。
在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。
一、分层总和法计算地基最终沉降量计算地基的最终沉降量,目前最常用的就是分层总和法。
(一)基本原理该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。
地基的最终沉降量可用室内压缩试验确定的参数(ei、Es、a)进行计算,有:变换后得:或式中:S--地基最终沉降量(mm);e1--地基受荷前(自重应力作用下)的孔隙比;e2--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比;H--土层的厚度。
计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。
然后按式(4-9)或(4-10)计算各分层的沉降量Si。
最后将各分层的沉降量总和起来即为地基的最终沉降量:(二)计算步骤1)划分土层如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足Hi≤0.4B(B为基底宽度)。
2)计算基底附加压力p03)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。
4)确定压缩层厚度满足σz=0.2σsz的深度点可作为压缩层的下限;对于软土则应满足σz=0.1σsz;对一般建筑物可按下式计算zn=B(2.5-0.4lnB)。
5)计算各分层加载前后的平均垂直应力p1=σsz;p2=σsz+σz6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、Es等其它压缩性指标7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量Si8)按公式(4-11)计算总沉降量S。
分层总和法的具体计算过程可参例题4-1。
例题4-1已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。
单桩、单排桩、桩中心距大于6倍桩径的疏桩基础的沉降计算例题(JGJ94-2007 5.5.14条和附录F)3.87某高层为框架-核心筒结构,基础埋深26m(7层地下室),核心筒采用桩筏基础。
外围框架采用复合桩基,基桩直径1.0 m,桩长15 m,混凝土强度等级C25,桩端持力层为卵石层,单桩承载力特征值为R a= 5200 kN ,其中端承力特征值为2080kN,梁板式筏形承台,筏板厚度h b=1.2 m,梁宽b l=2.0 m,梁高 h l=2.2 m(包括筏板厚度),承台地基土承载力特征值f ak=360kP a,土层分布:0~26 m土层平均重度=18 kN/m3;26m~27.93 m为中沙⑦1,=16.9kN/m3; 27.93m~32.33 m 为卵石⑦层,=19.8kN/m3,E S=150MP a; 32.33m~38.73m为粘土⑧层,=18.5kN/m3,E S=18Mp a; 38.73m~40.53 m为细砂⑨1层,=16.5kN/m 3,ES=75MP a; 40.53m~45.43 m为卵石⑨层,=20kN/m3,E S=150MP a; 45.43m~48.03 m为粉质粘土⑩层,=18kN/m3,E S=18MP a; 48.03m~53.13 m为细中砂⒀层,=16.5kN/m3,E S=75MP a;桩平面位置如图3—61,单柱荷载效应标准值F K=19300 kN,准永久值F=17400 kN。
试计算0±1桩的最终沉降量。
图3—61基础平面和土层剖面图解:1 按5.2.5条计算基桩所对应的承台底净面积A C:A C=(A-nA PS)/nA为1/2柱间距和悬臂边(2.5倍筏板厚度)所围成的承台计算域面积(图3-61),A=9.07.5 m=67.5㎡ ,在此承台计算域A内的桩数n=3,桩身截面积A ps=0 .785㎡,所以A C=(67.5-30.785)/3=65.14/3=21.7㎡2 按已知的梁板式筏形承台尺寸计算单桩分担的承台自重G K:G K=(67.5 1.2+92 1.0+(3.5+2)2 1.0)24.5/3 =106⨯24.5/3=866 kN(898)3 计算复合基桩的承载力特征值R ,验算单桩竖向承载力:为从表5.2.5查承台效应系数ηc ,需要s a/d和B c/l,故先计算桩距桩距/按表5.2.5 内插得:0.27考虑承台效应的复合基桩竖向承载力特征值R 及荷载应 标准组合轴心竖向力作用下,复合基桩的平均竖向力N k :52000.2736021.7520021093193003866 满足要求4 沉降计算,采用荷载效应准永久值组合.31740038666666kN 承台底土压力21.7(若根据5.5.14 条按取值:=0.27360应该说这两种取值方法都不尽合理,此处用67.6kP a ) 5 0#桩的沉降按公式(5.5.14-2、3、4、5)计算:1uzci k i ck k p σα==∑在荷载效应准永久组合作用下,桩顶的附加荷载:6666kN j Q =第j 桩总桩端阻力与桩顶荷载之比:以0# 桩为圆心、以0#桩的沉降有0.60.6159.0l m =⨯=,在此范围内有9根桩分别为1#和1`桩(n 1= =0.2);2#桩(n 2=0.25);3#、3′桩(n 3=0.44);4#、4′桩(n 4=0.41)和5#、5′桩(n 5=0.6)。
华南理工大学-土力学与基础工程随堂练习第二章土的性质及工程分类1。
(单选题)土中所含“不能传递静水压力,但水膜可缓慢转移从而使土具有一定的可塑性的水,称为( )。
A.结合水;B.自由水; C。
强结合水; D.弱结合水.答题: A。
B. C。
D。
(已提交)参考答案:D问题解析:2。
(单选题) 由某土颗粒级配曲线获得d60=12.5mm,d10=0.03mm,则该土的不均匀系数Cu为()。
A。
416.7; B。
4167; C。
2。
4×10-3; D.12.53。
答题: A. B. C. D。
(已提交)参考答案:A问题解析:3.(单选题) 具有更好的分选性和磨圆度的土是()。
A。
残积土; B。
坡积土; C. 洪积土; D。
冲积土。
答题: A. B。
C. D. (已提交)参考答案:D问题解析:4.(单选题) 对无粘性土的工程性质影响最大的因素是()。
A。
含水量; B.密实度; C.矿物成分; D。
颗粒的均匀程度.答题: A。
B。
C。
D。
(已提交)参考答案:B问题解析:5.(单选题) 处于天然状态的砂土的密实度一般用哪一种试验方法测定( ).A.载荷试验;B.十字板剪切试验;C.标准贯入试验; D。
轻便触探试验。
答题:A。
B。
C。
D。
(已提交)参考答案:C问题解析:6.(单选题)某粘性土的液性指数=0.6,则该土的状态( )。
A.硬塑;B. 可塑;C. 软塑; D。
流塑。
答题: A。
B。
C。
D. (已提交)参考答案:B问题解析:7.(单选题) 粘性土的塑性指数越大,表示土的()。
A.含水量w越大;B.粘粒含量越高; C。
粉粒含量越高; D. 塑限Wp 越高。
答题: A. B。
C。
D。
(已提交)参考答案:B问题解析:8。
(单选题)淤泥属于()。
A.粉土;B.粘性土;C. 粉砂;D. 细砂。
答题: A. B. C. D. (已提交)参考答案:B问题解析:9.(单选题)粘性土的塑性指数越大,说明( )。
重难点:室内压缩试验、判断土的压缩性指标(应力应变曲线、e-p曲线、e-lgp 曲线)、单一土层的沉降量计算、分层总和法计算地基最终沉降量、黏性土地基沉降发展的三个阶段、饱和土的渗流固结理论的物理模型、基本假设及推导、地基沉降与时间的关系(掌握固结系数、时间因素及固结度近似解的公式)名词解释:压缩性、固结、压缩系数、压缩指数、压缩模量、变形模量、最终沉降量、瞬时沉降、固结沉降、次固结沉降、平均固结度一、填空题1. 在相同的压力作用下,饱和粘性土压缩稳定所需时间t1与饱和砂土压缩稳定所需时间t2的关系是t1>t2。
2. 侧限压缩试验时,先用环刀切取保持天然结构的原状土样,然后置于刚性护环内进行实验。
3. 压缩曲线可按两种方式绘制,一种是采用普通直角坐标绘制的e-p曲线,另一种是采用半对数直角坐标绘制的e-lgp曲线。
4. 实际工程中,土的压缩系数根据土原有的平均自重应力增加到平均自重应力与平均附加应力之和这一压力变化区间来确定。
5. 工程评判土的压缩性类别时,采用的指标是压缩系数a1-2。
6. 若土的初始孔隙比为0.8,某应力增量下的压缩系数为0.3Mpa-1,则土在该应力增量下的压缩模量等于6Mpa 。
7. 某薄压缩层天然地基,其压缩层土厚度2m,土的天然孔隙比为0.9,在建筑物荷载作用下压缩稳定后的孔隙比为0.8,则该建筑物最终沉降量等于10.5cm 。
8. 在其他条件相同的情况下,固结系数增大,则土体完成固结所需时间的变化是变短。
9. 饱和土地基在局部荷载作用下的总沉降包括瞬时沉降、固结沉降和次固结沉降三个分量。
10. 从应力转化的观点出发,可以认为饱和土的渗透固结无非是:在有效应力原理控制下,土中超静孔隙压力的消散和有效应力相应增长的过程。
11. 太沙基一维固结理论采用的土的应力~应变关系是侧限条件下的应力~应变关系。
12. 研究指出,土的压缩性愈小时,变形模量愈_ 大___,压缩曲线愈_ 缓_。
第6章土中应力一简答题1.成层土地基可否采用弹性力学公式计算基础的最终沉浸量?【答】不能。
利用弹性力学公式估算最终沉降量的方法比较简便,但这种方法计算结果偏大。
因为的不同。
2.在计算基础最终沉降量(地基最终变形量)以及确定地基压缩层深度(地基变形计算深度)时,为什么自重应力要用有效重度进行计算?【答】固结变形有效自重应力引起3.有一个基础埋置在透水的可压缩性土层上,当地下水位上下发生变化时,对基础沉降有什么影响?当基础底面为不透水的可压缩性土层时,地下水位上下变化时,对基础有什么影响?【答】当基础埋置在透水的可压缩性土层上时:地下水下降,降水使地基中原水位以下的有效资中应力增加与降水前比较犹如产生了一个由于降水引起的应力增量,它使土体的固结沉降加大,基础沉降增加。
地下水位长期上升(如筑坝蓄水)将减少土中有效自重应力。
是地基承载力下降,若遇见湿陷性土会引起坍塌。
当基础埋置在不透水的可压缩性土层上时:当地下水位下降,沉降不变。
地下水位上升,沉降不变。
4.两个基础的底面面积相同,但埋置深度不同,若低级土层为均质各向同性体等其他条件相同,试问哪一个基础的沉降大?为什么?【答】引起基础沉降的主要原因是基底附加压力,附加压力大,沉降就大。
(〈20)因而当基础面积相同时,其他条件也相同时。
基础埋置深的时候基底附加压力大,所以沉降大。
当埋置深度相同时,其他条件也相同时,基础面积小的基底附加应力大,所以沉降大5.何谓超固结比?在实践中,如何按超固结比值确定正常固结土?【答】在研究沉积土层的应力历史时,通常将先期固结压力与现有覆盖土重之比值定义为超固结比。
超固结比值等于1时为正常固结土6.正常固结土主固结沉降量相当于分层总和法单向压缩基本公式计算的沉降量,是否相等?【答】不相同,因为压缩性指标不同7.采用斯肯普顿-比伦法计算基础最终沉降量在什么情况下可以不考虑次压缩沉降?【答】对于软粘土,尤其是土中含有一些有机质,或是在深处可压缩压缩土层中当压力增量比(指土中附加应力与自重应力之比)较小的情况下,此压缩沉降必须引起注意。
第四章 土的压缩性和地基沉降计算一、名 词 释 义1.角点沉降系数:单位均布矩形荷载在其角点处引起的沉降。
2.地基沉降计算深度:计算地基沉降时,超过基底下一定深度,土的变形可略去不计,该深度称为地基沉降计算深度。
3.压缩性:土在压力作用下体积缩小的特性。
4.固结:土的压缩随时间而增长的过程。
5.压缩曲线:室内土的侧限压缩试验结果,是土的孔隙比与所受压力的关系曲线。
6.压缩系数:反映土在一定压力作用下或在一定压力变化区间其压缩性大小的参数,其值等于e-p曲线上对应一定压力的切线斜率或对应一定压力变化区间的割线斜率。
7.压缩指数:采用半对数直角坐标绘制的p e log −压缩曲线,其后段接近直线,直线的斜率称为土的压缩指数。
8.压缩模量:土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值。
9.变形模量:根据土体在无侧限条件下的应力应变关系得到的参数,定义同弹性模量,但由于变形模量随应力水平而异,加载和卸载时的值不同,故未称作弹性模量,而称为变形模量。
10.地基最终沉降量:地基土层在荷载作用下,达到压缩稳定时地基表面的沉降量。
11.应力比法:地基沉降计算深度取地基附加应力等于自重应力的20%处,在该深度以下如有高压缩性土,则继续向下取至10%处,这种确定沉降计算深度的方法称为应力比法。
12.平均附加应力系数:基底下一定深度范围内附加应力系数的平均值。
13.变形比法:由基底下一定深度处向上取规范规定的计算厚度,若计算厚度土层的压缩量不大于该深度土层总压缩沉降量的2.5%,即可确定该深度为地基沉降计算深度,这种确定地基沉降计算深度的规范方法称为变形比法。
14.前期固结压力:天然土层在历史上所经受过的最大固结压力。
15.正常固结土:历史上所经受过的最大固结压力等于现有覆盖土自重应力的土体。
16.超固结土:土体历史上曾经受过大于现有覆盖土自重应力的前期固结压力的土体。
17.欠固结土:指在目前自重应力下还未达到完全固结的土体,土体实际固结压力小于现有覆盖土自重应力。
地基沉降量计算地基变形在其表面形成的垂直变形量称为建筑物的沉降量。
在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。
一、分层总和法计算地基最终沉降量计算地基的最终沉降量,目前最常用的就是分层总和法。
(一)基本原理该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。
地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有:变换后得:或式中:S--地基最终沉降量(mm);e--地基受荷前(自重应力作用下)的孔隙比;1e--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比;2H--土层的厚度。
计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。
然后按式(4-9)或(4-10)计算各分层的沉降量S。
最后将各分层的沉降量总和起来即为地基的最终沉降量:i(二)计算步骤1)划分土层如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。
2)计算基底附加压力p03)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。
4)确定压缩层厚度满足σz=0.2σsz的深度点可作为压缩层的下限;对于软土则应满足σz=0.1σsz;对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。
5)计算各分层加载前后的平均垂直应力p=σsz; p2=σsz+σz16)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量Si8)按公式(4-11)计算总沉降量S。
分层总和法的具体计算过程可参例题4-1。
例题4-1已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。
桩基沉降计算例题假设需要计算一个桥梁的单桩基础沉降,其桥墩直径为2m,桥墩高度为20m,桩长为30m,桩径为0.5m。
已知桩侧土壤的面积重为18kN/m,桩端土壤的面积重为19kN/m,黏聚力为15kPa,内摩擦角为28°。
该桩基础的承载力为5000kN,同时考虑桩身侧阻和底部端阻的影响。
解题步骤如下:1. 计算桩顶荷载:单桩基础的承载力为5000kN,由于桥墩直径为2m,因此桩顶荷载可以通过荷载面积计算得出:A = πd/4 = 3.14 × 2/4 = 3.14mq = 5000kN / 3.14m = 1592.36kN/m2. 计算桩身侧阻力和底部端阻力:桩身侧阻力可通过以下公式计算:Rf = Ks × Ap ×σv其中,Ks为侧阻系数,Ap为桩身侧面积,σv为有效应力桩底端阻力可通过以下公式计算:Rb = Kp × Ab ×σp其中,Kp为桩底阻力系数,Ab为桩底面积,σp为桩端土壤的有效应力根据国标规定,该桥梁的侧阻系数Ks为0.6,底部阻力系数Kp 为9.5。
同时考虑到桩身直径较小,因此可以假设桩顶承受的荷载全部由桩身侧阻和底部端阻共同承担,则有:Rf + Rb = qA将Rf和Rb代入上述公式可得:Rf = (qA - KpAbσp) / (1 + KsAp/Ab)3. 计算桩身平均侧阻力:桩身平均侧阻力可通过下式计算:fa = Rf / Lp其中,Lp为桩长4. 计算桩端沉降:桩端沉降可通过以下公式计算:Δs = Q / Es + ∑faAi / Es + qbAh / Eh其中,Q为桩顶荷载,Es为桩的弹性模量,∑faAi为桩身平均侧阻力的合力乘以桩身长度,qbAh为桩底端阻力乘以底部面积并除以底部土壤的弹性模量Eh。
将已知参数代入上述公式计算得:Δs = 1592.36kN/m / 10000MPa + (0.6 ×π× 30m × 15kPa) / 10000MPa + (9.5 ×π/4 × 0.5 × 19kN/m) / 3000MPa= 0.159m5. 校核桩身侧阻和底部端阻是否满足要求:桩身侧阻力和底部端阻力应该满足以下公式:Rf <= Ksf ×σv × ApRb <= Kpb ×σp × Ab根据国标规定,侧阻安全系数Ksf取1.5,底部阻力安全系数Kpb取2。
土木工程师-专业知识(岩土)-深基础-4.6桩基沉降计算[单选题]1.关于《建筑桩基技术规范》(JGJ 94—2008)中等效沉降系数说法正确的是()。
[2009年真题]A.群桩基(江南博哥)础按(明德林)附加应力计算的沉降量与按等代墩基(布奈斯克)附加应力计算的沉降量之比B.群桩沉降量与单桩沉降量之比C.实测沉降量与计算沉降量之比D.桩顶沉降量与桩端沉降量之比正确答案:A参考解析:根据《建筑桩基技术规范》(JGJ 94—2008)第2.1.16条规定,桩基等效沉降系数是指弹性半无限体中群桩基础按Mindlin(明德林)解计算沉降量ωM与按等代墩基Boussinesq(布辛奈斯克)解计算沉降量ωB之比,用以反映Mindlin解应力分布对计算沉降的影响。
[单选题]2.依据《建筑桩基技术规范》(JGJ 94—2008),正、反循环灌注桩灌注混凝土前,对端承桩和摩擦桩,孔底沉渣的控制指标正确的是()。
[2009年真题]A.端承型≤50mm;摩擦型≤200mmB.端承型≤50mm;摩擦型≤100mmC.端承型≤100mm;摩擦型≤50mmD.端承型≤100mm;摩擦型≤100mm正确答案:B参考解析:根据《建筑桩基技术规范》(JGJ 94—2008)第6.3.9条规定,钻孔达到设计深度,灌注混凝土之前孔底沉渣厚度指标应符合下列规定:端承型桩≤50mm,摩擦型桩≤100mm,抗拔、抗水平力桩≤200mm。
[单选题]3.根据《建筑桩基技术规范》(JGJ 94—2008)的相关规定,下列关于灌注桩配筋的要求中正确的是()。
[2009年真题]A.抗拔桩的配筋长度应为桩长的2/3B.摩擦桩的配筋应为桩长的1/2C.受负摩阻力作用的基桩,桩身配筋长度应穿过软弱层并进入稳定土层D.受压桩主筋不应少于6Φ6正确答案:C参考解析:ABC三项,根据《建筑桩基技术规范》(JGJ 94—2008)第4.1.1条第2款规定,配筋长度应符合下列规定:①端承型桩和位于坡地、岸边的基桩应沿桩身等截面或变截面通长配筋;②摩擦型灌注桩配筋长度不应小于2/3桩长,当受水平荷载时,配筋长度尚不宜小于4.0/α(α为桩的水平变形系数);③对于受地震作用的基桩,桩身配筋长度应穿过可液化土层和软弱土层,进入稳定土层的深度不应小于本规范第3.4.6条规定的深度;④受负摩阻力的桩、因先成桩后开挖基坑而随地基土回弹的桩,其配筋长度应穿过软弱土层并进入稳定土层,进入的深度不应小于2~3倍桩身直径;⑤专用抗拔桩及因地震作用、冻胀或膨胀力作用而受拔力的桩,应等截面或变截面通长配筋。
3.1 某建筑场地的地层分布均匀,第一层杂填土厚1.5m,γ=17kN/m³,第二层粉质粘土厚4m,γ=19kN/m³,Gs=2.73,ω=31%,地下水位在地面下2m处;第三层淤泥质粘土厚8m,γ=18.3kN/m³,Gs=2.74,ω=41%;第四层粉土厚3m,γ=19.5kN/m³,Gs=2.72,ω=27%;第五层砂岩。
试计算各层交界处的竖向自重应力σcz,并绘出σcz沿深度分布图。
解;由题意已知h1=1.5m,γ1=17kN/m³;h2=4m,γ2=19kN/m³,G S2=2.73,ω2=31%;h3=8m;γ3=18.3kN/m³,Gs3=2.74,ω3=41%;h4=3m,γ4=19.5kN/m³,Gs4=2.72,ω4=27%.(1)求第一二层交界面处竖向自重应力σcz1σcz1=h1γ1=1.5*17=25.5kPa(2)求第二三层交界面处竖向自重应力σcz2已知地下水位在地面下2m处,则在2m处时σcz=σcz1+0.5*γ2=25.5+0.5*19=35kPa已知γw 即19=[2.73*(1+31%)/(1+e2)]*10 得出e2=0.88浮重度γ2’=[(G s2-1)/(1+e2)]1)/(1+0.88)]*10=9.19kN/m³σcz2=σcz+3.5γ2’=35+3.5*9.19=67.17kPa(3)求第三四层交界面处竖向自重应力σcz3已知γw 即18.3=[2.74*(1+41%)/(1+e3)]*10 得出e3=1.11浮重度γ3’=[(G s3-1)/(1+e3)]γw=[(2.74-1)/(1+1.11)]*10=8.25kN/m³σcz3=σcz2+h3γ3’=67.17+8*8.25=133.17kPa(4)求第四层底竖向自重应力σcz4已知γw 即19.5=[2.72*(1+27%)/(1+e4)]*10 得出e4=0.771浮重度γ4’=[(G s4-1)/(1+e4)]γw=[(2.72-1)/(1+0.771)]*10=9.71kN/m³Σcz4=σcz3+h4γ4’+(3.5+8+3)γw=133.17+3*9.71+(3.5+8+3)*10=307.3kPa σcz沿深度分布图如下3.2 某构筑物基础如图 3.31所示,在设计地面标高处作用有偏心荷载680KN, 偏心距有1.31m, 基础埋深为2m,底面尺寸为4m×2m, 试求基底平均压力Pk和边缘最大压力Pkmax, 并绘出沿偏心方向的基地压力分布图。
【例题4-2】设基础底面尺寸为4.8 m 2x 3.2 m 2,埋深为1.5 m ,传至地面的中心荷载F=1 800 kN ,地基的土层分层及各层土的侧限压缩模量 (相应于自重应力至自重 应力加附加应力段)如图4-10所示,持力层的地基承载力为f k =180 kPa,用应 力面积法计算基础中点的最终沉降。
图 4-10 【解】(1)基底附加压力-18KN/m JxL5ffi = 1201£Pa(2) 取计算深度为8 m ,计算过程见表4-7,计算沉降量为123.4 mm (3) 确定沉降计算深度Z n根据b=3.2 m 杳表4-4上可得z = 0.6 m 相应于往上取 z 厚度范围(即7.4〜8.0 m 深度范围)的土层计算沉降量为1.3 mm < 0.025 X 23.4 mm=3.08 mm,满足 要求,故沉降计算深度可取为 8 m 。
(4) 确定修正系数円=1 800 kN=3.36 MPa尹。
耳3L456h2.024~L904~0.271 ~0.067 +366 2-60 6.20 6.20由于p o<0.75f k=135 kPa,查表4-3 得:‘飞=1.04(5) 计算基础中点最终沉降量s=1.04 x 123.4 mm = 128.3mm表4-7应力面积法计算地基最终沉降z访-E s i As'送A s' / / b z / b a z空m MPa mm mm0.0 4.8/3.2=1 0/1.6=0.04X0.000.50.250 0=1.000 02.4 1.5 2.4/1.6=1.5 4X 2.024 2.2043.66 66.366.30.210 8=0.843 25.6 1.5 5.6/1.6=3.5 4X 3.118 1.094 2.60 50.5116.80.139 2=0.556 87.4 1.5 7.4/1.6=4.6 4X 3.389 0.271 6.20 5.3250.114 5=0.458 0122.1表4-4 z的取值表4-3沉降计算经验系数'-s。
地基沉降计算一、填空1、前期固结压力大于现有自重应力的土称为土。
2、某土在压力为100kPa,200kPa时对应的孔隙比分别为0.85和0.82,则该土的压缩性。
3、饱和土体渗流固结完成的条件是土中孔隙水应力。
4、饱和土体在荷载作用下,孔隙中自由水随时间缓慢,体积逐渐的过程,称为土的固结。
5、在饱和土体的渗流固结理论中假定土中水和土粒。
6、饱和土的渗透固结过程中应力消散,应力增加。
7、在饱和土体的渗流固结理论中假定土中水的渗流服从。
8、根据OCR的大小可把粘性土分为_________ 、__________和__________三类。
9、土的压缩试验是在___________条件下完成的。
压缩系数反映了________。
10、在应力历史上地基土所经受的最大有效应力称为________。
11、前期固结压力与现有的自重应力的比值称为________。
12、饱和土体在荷载作用下,孔隙中的水逐渐被排出,土的体积逐渐被压缩的过程称为________。
二、单项选择1、室内压缩试验中,完全侧限意味着()A.水的体积不变B.土样的体积不变C.土颗粒不变D.土样的横载面不变2、下列土中,压缩曲线最平缓的是()A.杂质土B.淤泥C.淤泥质土D. 密实砂土3、室内压缩试验采用的仪器为()A.直剪仪B.固结仪C.液限仪D.十字板剪力仪4、基础最终沉降量包括()A.主固结沉降B.瞬时沉降C.次固结沉降D.以上三者5、其他条件相同时,单面排水所需固结时间是双面排水的()A.0.5倍B.1倍C.2倍D.4倍6、室内压缩曲线越陡土的()A.压缩模量越大B.压缩系数越小C.压缩指数越小D.压缩性越高7、关于分层总和法计算基础最终沉降量描述不正确的是()A.假定地基土仅有竖向变形B.按基础中心点下的附加应力计算C.考虑了地基基础的协同作用D.一般情况下取附加应力与自至应力之比为20%的点处8、土的固结程度越大,土的()A.强度越高B.强度越低C.压缩性越低D.A和C9、土的压缩性随应力水平的增加而()。