初中数学基础知识测试卷答案-A
- 格式:doc
- 大小:426.00 KB
- 文档页数:4
初中数学概率基础测试题及答案解析一、选择题1.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13B .16C .12D .23【答案】A 【解析】 【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A . 【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.2.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( ) A .136B .16C .112D .13【答案】A 【解析】 【分析】本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a ,b ,c 正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.【详解】P(a,b,c正好是直角三角形三边长)=61 21636=故选:A【点睛】本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.3.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.4.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A 、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A 错误; B 、操场上小明抛出的篮球会下落是必然事件,故B 正确; C 、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C 错误; D 、明天气温高达30C ︒,一定能见到明媚的阳光是随机事件,故D 错误; 故选:B . 【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.5.(2018•六安模拟)下列成语所描述的是必然事件的是() A .揠苗助长 B .瓮中捉鳖 C .水中捞月 D .大海捞针 【答案】B【解析】A ,是不可能事件,故选项错误;B ,是必然事件,选项正确;C ,是不可能事件,故选项错误;D ,是随机事件,故选项错误.故选B .6.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( ) A .20 B .15C .10D .5【答案】B 【解析】 【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数. 【详解】白色球的个数是50(127%43%)?-=15个, 故选:B. 【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键.7.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a - , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C . 【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.8.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球( ) A .4个 B .12个C .8个D .不确定【答案】C 【解析】 【分析】首先设黑球的个数为x 个,根据题意得:4143=x +,解此分式方程即可求得答案. 【详解】设黑球的个数为x 个, 根据题意得:4143=x +, 解得:x=8,经检验:x=8是原分式方程的解; ∴黑球的个数为8. 故选:C.此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.9.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A.12B.13C.16D.19【答案】B【解析】【分析】先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,所以小斌和小宇两名同学选到同一课程的概率=31 93 ,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.抛掷一枚质地均匀的硬币,若抛掷95次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定【答案】B【解析】【分析】根据概率的意义分析即可.【详解】解:∵抛掷一枚质地均匀的硬币是随机事件,正面朝上的概率是1 2∴抛掷第100次正面朝上的概率是1 2故答案选:B 【点睛】本题主要考查概率的意义,熟练掌握概率的计算公式是解题的关键.11.下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形 【答案】C 【解析】 【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【详解】A 、某个数的绝对值大于0,是随机事件,故此选项错误;B 、某个数的相反数等于它本身,是随机事件,故此选项错误;C 、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D 、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误. 故答案选C . 【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8x x π-=3x+88xx -的解为整数的概率是( ) A .12B .13C .14D .23【答案】B 【解析】 【分析】求出使得一次函数y=(-m+1)x+11-m 经过一、二、四象限且关于x 的分式方程8xx π-=3x+88xx -的解为整数的数,然后直接利用概率公式求解即可求得答案. 【详解】解:∵一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限,﹣m+1<0,11﹣m >0, ∴1<m <11,∴符合条件的有:2,5,7,8, 把分式方程m 8x x -=3x+88xx -去分母,整理得:3x 2﹣16x ﹣mx =0, 解得:x =0,或x =163π+, ∵x ≠8,∴163π+≠8, ∴m ≠8,∵分式方程8mx x -=3x+88xx -的解为整数, ∴m =2,5,∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88xx -的解为整数的整数有2,5, ∴使得一次函数y =(﹣m+1)x+11﹣m 经过一、二、四象限且关于x 的分式方程8mxx -=3x+88x x -的解为整数的概率为26=13;故选:B . 【点睛】本题考查了概率公式的应用、一次函数的图象与系数的关系以及分式方程的解,熟练掌握是解题的关键.13.下列说法正确的是 ( )A .要调查现在人们在数学化时代的生活方式,宜采用普查方式B .一组数据3,4,4,6,8,5的中位数是4C .必然事件的概率是100%,随机事件的概率大于0而小于1D .若甲组数据的方差2s 甲=0.128,乙组数据的方差2s 乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】A 、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B 、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C 、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.14.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次【答案】B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.15.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误; ③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确; ④16的平方根是4±,用式子表示是164±=±,故错误; 综上,正确的只有③, 故选:A . 【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.16.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16B .6π C .8π D .5π 【答案】B 【解析】 【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论. 【详解】解:∵AB=5,BC=4,AC=3, ∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形, ∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B . 【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.17.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( ) A .红球比白球多 B .白球比红球多C .红球,白球一样多D .无法估计【答案】A 【解析】根据题意可得5位同学摸到红球的频率为85976357505010++++==,由此可得盒子里的红球比白球多.故选A .18.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 【答案】A 【解析】 【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可. 【详解】 A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;D、是随机事件,选项错误.故选A.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.。
初中数学函数基础知识基础测试题(1)一、选择题1.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以B 正确.故选:B .【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.2.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C .D .【答案】D【解析】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.3.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =,依题意得:12AQ AP =, 又∵A A ∠=∠∴APQ ABC V :V , ∴90AQP C ∠=∠=︒则3PQ t =,II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.4.已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【详解】 解:由题意得,12×2πR×l =8π, 则R =8lπ, 故选A .【点睛】 本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.5.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算9的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误; 122723333==是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.6.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )A .3B 3C .3D .3【答案】C【解析】【分析】 将图1和图2结合起来分析,分别得出直线l 过点D ,B 和C 时对应的x 值和y 值,从而得出菱形的边长和高,从而得其面积.【详解】解:由图2可知,当直线l 过点D 时,x =AF =a ,菱形ABCD 的高等于线段EF 的长,此时y =EF 3;直线l 向右平移直到点F 过点B 时,y 3;当直线l 过点C 时,x =a +2,y =0∴菱形的边长为a +2﹣a =2∴当点E 与点D 重合时,由勾股定理得a 2+23)=4∴a =1 3∴菱形的面积为3故选:C .【点睛】本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,7.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM x =,BMD ∆的面积减去CNE ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】A【解析】【分析】设a =12BC ,∠B =∠C =α,求出CN 、DM 、EN 的长度,利用y =S △BMD −S △CNE ,即可求解. 【详解】 解:设a =12BC ,∠B =∠C =α,则MN =a , ∴CN =BC−MN−BM =2a−a−x =a−x ,DM =BM·tanB =x·tanα,EN =CN•tanC =(a−x )·tanα, ∴y =S △BMD −S △CNE =12(BM·DM−CN·EN )=()()221tan tan 222x a x a tan x a ααα⋅⎡⎤⋅-⋅=⎣⎦--, ∵2a tan α⋅为常数, ∴上述函数图象为一次函数图象的一部分,故选:A .【点睛】本题考查了动点问题的函数图象、等腰三角形的性质、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.10.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()A.22B.23C.25D.26【答案】C【解析】【分析】根据三角形中位线定理,得到S△PEF=14S△ABP,由图像可以看出当x为最大值CD=4时,S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.【详解】解:∵E、F分别为AP、BP的中点,∴EF∥AB,EF=12 AB,∴S△PEF=14S△ABP,根据图像可以看出x的最大值为4,∴CD=4,∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,∴AD=24ABDSV=284⨯=4,当点P在C点时,S△PEF=3,∴S△ABP=3×4=12,即S△ABC=12,∴BC=24ABCSV=2124⨯=6,过点A作AG⊥BC于点G,∴∠AGC=90°,∵AD∥BC,∴∠ADC+∠BCD=180°,∵∠BCD=90°,∴∠ADC=180°-90°=90°,∴四边形AGCD是矩形,∴CG=AD=4,AG=CD=4,∴BG=BC-CG=6-4=2,∴AB=2242=25.故选C.【点睛】本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.13.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,22(11)3(1)S vt vt vt =⨯-⨯-=+≤,∴符合变化趋势的是A 和C ,但C 中面积减小太多不符合实际情况,∴只有A 中的符合实际情况.故选A .17.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x x y x x x x ⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C 选项符合题意.故选:C .【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.18.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h【答案】C【解析】甲的速度是:20÷4=5km/h ;乙的速度是:20÷1=20km/h ; 由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C .19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中, 2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.已知:在ABC ∆中, 10,BC BC =边上的高5h =,点E 在边AB 上,过点E 作//EF BC 交AC 边于点F .点D 为BC 上一点,连接DE DF 、.设点E 到BC 的距离为x ,则DEF ∆的面积S 关于x 的函数图象大致为( )A .B .C.D.【答案】D【解析】【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【详解】解:∵EF∥BC,∴△AEF∽△ABC,∴55EF x BC-=,∴EF=55x-•10=10-2x,∴S=12(10-2x)•x=-x2+5x=-(x-52)2+254,∴S与x的关系式为S=-(x-52)2+254(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点睛】此题考查动点问题函数图象,相似三角形的性质,求出S与x的函数关系式是解题的关键.。
海口市初中数学有理数基础测试题含答案解析一、选择题1.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】利用2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴+++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a6.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在7.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .,5或13【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.8.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( ) A .B .C .D .【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.12.-14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.13.在﹣6,0,﹣1,4这四个数中,最大的数是()A.4 B.﹣6 C.0 D.﹣1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A.【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.14.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.15.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】 开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.。
新初中数学数据分析基础测试题附答案(1)一、选择题1.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定【答案】A【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【详解】因为s2甲=0.002<s2乙=0.03,所以,甲比乙的产量稳定.故选A【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352+=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.4.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.7.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.11.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.12.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,15【答案】D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .14.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数 B .中位数C .众数D .方差【答案】D 【解析】 【详解】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符; B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符; C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化. 故选D .15.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数 D .甲的方差小于乙的方差【答案】D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4, 23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.16.有一组数据如下:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是( )A .10 BCD .2【答案】D 【解析】 【分析】 【详解】∵3、a 、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.17.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.18.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( ) A .1x x <,221s s = B .1x x =,221s s > C .1x x =,221s s < D .1x x =,221s s =【答案】B 【解析】 【分析】根据平均数和方差的公式计算比较即可. 【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n-+=x ,方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n-s 2, 故221s s >, 故选B . 【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。
数学初中基础试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它本身,这个数是多少?A. 0B. 1C. -1D. 2答案:A3. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:B4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 25B. 50C. 75D. 100答案:B5. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 所有数答案:A6. 下列哪个分数是最简分数?A. 3/4B. 6/8C. 8/12D. 5/10答案:A7. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 所有数答案:A, B, C8. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 20答案:A9. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A10. 一个等腰三角形的两个底角相等,那么它的顶角是:A. 锐角B. 直角C. 钝角D. 无法确定答案:D二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是______。
答案:±52. 一个数的立方是-8,那么这个数是______。
答案:-23. 如果一个角是直角的一半,那么这个角的度数是______。
答案:45°4. 一个数的绝对值是5,那么这个数可以是______。
答案:±55. 一个三角形的三个内角的度数之和是______。
答案:180°三、解答题(每题10分,共50分)1. 计算下列表达式的值:(3x - 2) + (2x + 5)。
答案:5x + 32. 一个数的三倍减去4等于10,求这个数。
答案:63. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,求它的体积。
初中数学几何图形初步基础测试题含答案解析一、选择题1.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.5.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.6.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,那么∠2的度数是( )A .20°B .30°C .35°D .50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a ∥b ,所以∠2=∠3=35°.故选C .【点睛】本题主要考查了平行线的性质.7.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是( )A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.8.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.5B.2 dm C.25D.42【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴2dm,∴这圈金属丝的周长最小为2dm.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.11.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到BD km=,32AC kmA,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.12.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.13.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°【答案】A【解析】【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE ,∴∠2=60°+45°-90°=15°.故选:A .【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.14.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.15.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD =60°﹣38°=22°,故选:B .【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.16.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .【答案】B【解析】【分析】 根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B .【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.17.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°【答案】A【解析】【分析】 根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【点睛】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.18.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB ,∴CD=12DB ,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.19.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又∵两点之间线段最短∴AC<AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离。
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >52.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等4.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 5.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形6.(0分)[ID :10212]如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==,则AB 的长为( )A .3B .4C .43D .57.(0分)[ID :10210]1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1 C .x≠1 D .x≥﹣1且x≠18.(0分)[ID :10207]如图,在四边形ABCD 中,AB ∥CD ,要使得四边形ABCD 是平行四边形,可添加的条件不正确的是 ( )A .AB=CDB .BC ∥AD C .BC=AD D .∠A=∠C9.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .10.(0分)[ID :10145]计算4133÷ 的结果为( ). A .32 B .23C .2D .2 11.(0分)[ID :10143]如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米12.(0分)[ID :10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米13.(0分)[ID:10188]如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1B.2C.3D.414.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.15.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.3二、填空题16.(0分)[ID:10327]如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)17.(0分)[ID :10317]函数y =21x x -中,自变量x 的取值范围是_____. 18.(0分)[ID :10314]一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10294]如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=120°,CE//BD ,DE//AC ,若AD=5,则四边形CODE 的周长______.21.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).22.(0分)[ID :10266]如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 .23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10237]如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________25.(0分)[ID:10234]已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.三、解答题26.(0分)[ID:10389]某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?27.(0分)[ID:10354]如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD 于点D,点E为BC的中点,求DE的长.28.(0分)[ID:10338]如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?29.(0分)[ID:10336]如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.30.(0分)[ID:10429]如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.C4.A5.C6.B7.D8.C9.B10.D11.B12.D13.C14.C15.D二、填空题16.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD 是矩形四边形MBQK是矩形四边形17.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分18.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解19.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD是等边三角形即可求出OD的长度再通过证明四边形CODE是菱形即可求解四边形CODE的周长【详解】∵四边形ABCD是矩形∴∵∠21.大于【解析】【分析】根据一次函数的性质当k<0时y随x的增大而减小【详解】∵一次函数y=−2x+1中k=−2<0∴y随x的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的22.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC 再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC的中点∴EF是△ABC 的中位线∴BC=2EF=2×3=6∴菱23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】【详解】解:由于直线过点A(02)P(1m)则解得故所求不等式组可化为:mx>(m-2)x+2>mx-20>-2x+2>-2解得:1<x<225.8cm【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC中∠ACB=90°AC=6cmBC=8cmCD⊥AB则(cm)由得解得CD=48(cm)故答案为48cm【点三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C.【点睛】(a≥0(a≤0).2.D解析:D【解析】【分析】7n 是完全平方数,满足条件的最小正整数n 为7.【详解】∴7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.==.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .4.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.5.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.6.B解析:B【解析】【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长.【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD , ∴AO=BO ,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.7.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.C解析:C【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故选:C.【点睛】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.9.B解析:B【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.10.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】===.原式2故选:D.【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.11.B解析:B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.12.D解析:D【分析】【详解】试题分析:众数是26cm,出现了3次,次数最多;在这10个数中按从小到大来排列最中间的两个数是26,26;它们的中位书为26cm考点:众数和中位数点评:本题考查众数和中位数,解本题的关键是熟悉众数和中位数的概念13.C解析:C【解析】【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD 的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB6,∵M是AD的中点,∴OM=12CD=3.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.14.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.15.D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.二、填空题16.=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积△MBK的面积=△QKB的面积△PKD的面积=△NDK的面积进而求出答案【详解】解:∵四边形ABCD是矩形四边形MBQK是矩形四边形解析:=【解析】【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为:=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.17.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x≠1【解析】【分析】根据分式有意义的条件即可解答.函数y =21x x -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1.【点睛】 本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.18.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 19.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b >0,a <0;.故答案为:.本题主要考查二次根式的化简方法与运用:当a >0;当a <0;当a=0.20.20【解析】【分析】通过矩形的性质可得再根据∠AOB=120°可证△AOD 是等边三角形即可求出OD 的长度再通过证明四边形CODE 是菱形即可求解四边形CODE 的周长【详解】∵四边形ABCD 是矩形∴∵∠解析:20【解析】【分析】通过矩形的性质可得OD OA OB OC ===,再根据∠AOB=120°,可证△AOD 是等边三角形,即可求出OD 的长度,再通过证明四边形CODE 是菱形,即可求解四边形CODE 的周长.【详解】∵四边形ABCD 是矩形∴OD OA OB OC ===∵∠AOB=120°∴18060AOD AOB =︒-=︒∠∠∴△AOD 是等边三角形∵5AD =∴5OD OA ==∴5OD OC ==∵CE//BD ,DE//AC∴四边形CODE 是平行四边形∵5OD OC ==∴四边形CODE 是菱形∴5OD OC DE CE ====∴四边形CODE 的周长20OD OC DE CE =+++=故答案为:20.【点睛】本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.21.大于【解析】【分析】根据一次函数的性质当k <0时y 随x 的增大而减小【详解】∵一次函数y =−2x +1中k =−2<0∴y 随x 的增大而减小∵x1<x2∴y1>y2故答案为>【点睛】此题主要考查了一次函数的解析:大于【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.22.【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC再根据菱形的周长公式列式计算即可得解【详解】∵EF分别是ABAC 的中点∴EF是△ABC的中位线∴BC=2EF=2×3=6∴菱解析:【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故答案为24.【点睛】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】 解:由于直线过点A (0,2),P (1,m ), 则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,25.8cm 【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt△ABC 中∠ACB=90°AC=6cmBC=8cmCD⊥AB 则(cm )由得解得CD=48(cm)故答案为48cm 【点解析:8cm【解析】【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.【点睛】本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.三、解答题26.(1)2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩;(2)55元 【解析】【分析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y 与x 之间的函数关系式为y =kx+b (k≠0),将(40,60),(58,24)代入y =kx+b ,得: 40605824k b k b +=⎧⎨+=⎩ ,解得:2140k b =-⎧⎨=⎩, ∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+82.综上所述:y 与x 之间的函数关系式为2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩. (2)设当天的销售价为x 元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x ﹣40)(﹣2x+140)=100×3+150, 解得:x 1=x 2=55;当57<x≤71时,依题意,得:(x ﹣40)(﹣x+82)=100×3+150, 此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.27.【解析】试题分析:延长BD 与AC 相交于点F ,根据等腰三角形的性质可得BD=DF ,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=12CF ,然后求解即可. 试题解析:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵BD ⊥AD ,∴∠ADB =∠ADF ,又∵AD =AD ,∴△ADB ≌△ADF(ASA ).∴AF=AB=6,BD=FD.∵AC=10,∴CF=AC-AF=10-6=4.∵E为BC的中点,∴DE是△BCF的中位线.∴DE=12CF=12×4=2.28.需要爬行的最短距离是152cm.【解析】【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:22BD AD+2cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:22BH AH+5,则需要爬行的最短距离是2cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm ,AB′=BC=5cm ,在Rt △AB ′B 中,根据勾股定理得:AB=22BB AB ''+=526cm ,∵152<105<526,∴则需要爬行的最短距离是152cm .考点:平面展开-最短路径问题.29.答案见解析【解析】【分析】首先连接AC 交EF 于点O ,由平行四边形ABCD 的性质,可知OA=OC ,OB=OD ,又因为BE=DF ,可得OE=OF ,即可判定AECF 是平行四边形.【详解】证明:连接AC 交EF 于点O ;∵平行四边形ABCD∴OA=OC ,OB=OD∵BE=DF ,∴OE=OF∴四边形AECF 是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题. 30.(1)证明见解析;(2)3【解析】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD考点:1.菱形的性质;2..矩形的判定.。
新初中数学几何图形初步基础测试题附答案(1)一、选择题1.木杆AB 斜靠在墙壁上,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆的底端B 也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P 随之下落的路线,其中正确的是( )A .B .C .D .【答案】D【解析】解:如右图,连接OP ,由于OP 是Rt △AOB 斜边上的中线,所以OP=12AB ,不管木杆如何滑动,它的长度不变,也就是OP 是一个定值,点P 就在以O 为圆心的圆弧上,那么中点P 下落的路线是一段弧线.故选D .2.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC 的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.3.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)【答案】D【解析】【详解】 解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B ′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE ,∵C ′O ∥AE ,∴∠B ′C ′O=∠B ′AE ,∴∠B ′C ′O=∠EB ′A∴B ′O=C ′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .4.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD 是正方形B D ∴、关于AC 对称PB PD =∴PB PE PD PE DE ∴+=+=2,3BE AE BE ==Q6,8AE AB ∴== 226810DE ∴=+=;故PB PE +的最小值是10,故选:C .【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确;②、点A到直线CD的距离是线段AD的长,∴②正确;③、根据三角形的高的定义,△ABC边AB上的高是线段CD,∴③正确;④、根据三角形的高的定义,△DBC边BD上的高是线段CD,∴④正确.综上所述,正确的是①②③④共4个.故选:D.【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.7.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.8.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )A.B.C.D.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【答案】D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导11.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.12.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大【答案】C【解析】 如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C .13.下列图形中,不是三棱柱的表面展开图的是( )A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .14.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB ,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;③若AB BC=,则点B是线段AC的中点;④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;③若AB BC=,则点B不一定是线段AC的中点,故错误;④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.17.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C .【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.18.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.19.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,∠,20.如图,已知直线AB和CD相交于G点,CG EG⊥,GF平分AGECGF∠=︒,则BGD34∠大小为()A.22︒B.34︒C.56︒D.90︒【答案】A【解析】【分析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.。
最新初中数学有理数的运算基础测试题含答案一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.如果a 是实数,下列说法正确的是( )A .2a 和a 都是正数B .(-a +2可能在x 轴上C .a 的倒数是1aD .a 的相反数的绝对值是它本身【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低()A.4℃B.﹣4℃C.4℃或者﹣4℃D.34℃【答案】A【解析】【分析】所求的数值就是最高气温与最低气温的差,利用有理数的减法法则即可求解.【详解】19﹣15=4(℃)答:这天的最低气温比最高气温低4℃.故选A.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.7.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.2018年全国高考报名总人数是975万人,用科学记数法表示为()A.3⨯人D.7⨯人0.975109.75100.97510⨯人C.6⨯人B.29.7510【答案】C【解析】【分析】根据科学计数法的定义进行作答.【详解】A.错误,应该是6⨯;C.正确;D. 错误,应该是9.75109.7510⨯;B.错误,应该是66⨯.综上,答案选C.9.7510【点睛】本题考查了科学计数法的定义:将一个数字表示成(a⨯10的n次幂的形式),其中1≤a<10,n表示整数,熟练掌握科学计数法的定义是本题解题关键.9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.611610⨯B.711.610⨯C.71.1610⨯D.81.1610⨯【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.-2的倒数是()A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.2018年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为()A.744.5810⨯B.84.45810⨯C.94.45810⨯D.100.445810⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.由此即可解答.【详解】445800000用科学记数法表示为: 445800000=84.45810⨯.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( )A.80.34210⨯B.73.4210⨯C.83.4210⨯D.634.210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将34200000用科学记数法表示为:3.42×107.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.6万亿=296000000000000=2.96×1013.故选B .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示的关键是要正确确定a 的值以及n 的值.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
初一数学函数基础知识试题答案及解析1.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2+3=【答案】19.【解析】根据纵坐标互为相反数列式求得a的值,代入所给代数式求值即可.试题解析:∵点M(2,a+3)与点N(2,2a-15)关于x轴对称,∴a+3+2a-15=0,解得a=4,∴a2+3=19.【考点】1.关于x轴、y轴对称的点的坐标;2.代数式求值.2.如图是某市一天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()A.这天15时的温度最高B.这天3时的温度最低C.这天最高温度与最低温度的差是13℃D.这天21时的温度是30℃【答案】C.【解析】横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为15时,38℃,A正确;温度最低应找到函数图象的最低点所对应的x值与y值:为3时,22℃,B正确;这天最高温度与最低温度的差应让前面的两个y值相减,即38﹣22=16℃,C错误;从图象看出,这天21时的温度是30℃,D正确.故选C.【考点】函数的图象.3.点P(x,y)在第二象限,且,则P点的坐标为﹒【答案】(﹣5,6).【解析】∵点P(x,y)在第二象限,∴x<0,y>0;∵|x|=5,|y|=6,∴x=﹣5,y=6;故P点的坐标为(﹣5,6).故答案是(﹣5,6).【考点】1.点的坐标2.绝对值.4.函数中自变量x的取值范围是.【答案】x≥2【解析】平方根的被开方数必须≥0,所以,解得x≥2.本题涉及了被开方数的取值范围以及解不等式,该题较为简单,是常考题,主要考查学生对被开方数的理解和取值要求的应用。
5.在平面直角坐标系中,点(2,﹣4)在第___象限.【解析】根据各象限内点的坐标特征解答.解答:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)6.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE 在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()【答案】A【解析】设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,当A从D点运动到E点时,即2<x≤4时,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选A.【考点】动点问题的函数图象.7.下面的折线图描述了某地某日的气温变化情况,根据图形提供的信息,下列结论错误的是()A.这一天的温差是10℃B.在0:00--4:00时气温在逐渐下降C.在4:00--14:00时气温都在上升D.14:00时气温最高[【解析】A、这一天的最高温度为32℃,最低温度为22℃,所以这一天的温差为10℃,故选项正确;B、在0:00--4:00时气温在逐渐下降,故选项正确;C、在4:00--6:00气温上升,6:00--8:00气温没有变化,8:00--14:00时气温在上升,故选项错误;D、14:00时气温最高,故选项正确.故选C.【考点】函数的图象.8.一辆汽车以40千米/时的速度行驶,则行驶的路程S(千米)与行驶的时间t(时)两变量之间的关系式是。
初中数学三角形基础测试题含答案解析一、选择题1.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB 又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴()()2220015-+-=∴菱形ABCD 的周长为:5故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.2.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( )A .4B .5C .6D .9 【答案】C【解析】【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.3.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.4.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.5.等腰三角形两边长分别是 5cm 和 11cm ,则这个三角形的周长为( )A .16cmB .21cm 或 27cmC .21cmD .27cm【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.故选D.【点睛】本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.6.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.C.D.【答案】C【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确,故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.7.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C .2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.9.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A .4B .8C .6D .10【答案】B【解析】【分析】【详解】 解:设AG 与BF 交点为O ,∵AB=AF ,AG 平分∠BAD ,AO=AO ,∴可证△ABO ≌△AFO ,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF ∥BE ,∴可证△AOF ≌△EOB ,AO=EO ,∴AE=2AO=8,故选B .【点睛】本题考查角平分线的作图原理和平行四边形的性质.10.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.11.如图,△ABC≌△A E D,∠C=40°,∠E AC=30°,∠B=30°,则∠E AD=();A.30°B.70°C.40°D.110°【答案】D【解析】【分析】【详解】∵△ABC≌△AED,∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D-∠E=110°,故选D.12.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【答案】B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22+=22'BC BD+=5.故选B.3413.下列条件中,不能判断一个三角形是直角三角形的是()A.三条边的比为2∶3∶4 B.三条边满足关系a2=b2﹣c2C.三条边的比为1∶1∶2D.三个角满足关系∠B+∠C=∠A【答案】A【解析】【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】A、三条边的比为2:3:4,22+32≠42,故不能判断一个三角形是直角三角形;B、三条边满足关系a2=b2-c2,即a2+c2=b2,故能判断一个三角形是直角三角形;C、三条边的比为1:1:2,12+12=(2)2,故能判断一个三角形是直角三角形;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故能判断一个三角形是直角三角形.故选:A.【点睛】此题考查勾股定理的逆定理的应用.解题关键在于掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.14.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A.△ABD≌△ECD B.连接BE,四边形ABEC为平行四边形C.DA=DE D.CE=CD【答案】D【解析】【分析】根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.【详解】∵CE∥AB,∴∠B=∠DCE,∠BAD=∠E,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .15.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形; B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】 本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.如图,AD ∥BC ,∠C =30°, ∠ADB:∠BDC= 1:2,则∠DBC 的度数是( )A .30°B .36°C .45°D .50°【解析】【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【详解】∵AD ∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D. 【点睛】熟练掌握平行线的性质是本题解题的关键.17.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点,∴1 2.52DE AB ==,【点睛】本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.18.一个等腰三角形的顶角为钝角,则底角a的范围是()A.0°<a<9 B.30°<a<90° C.0°<a<45° D.45°<a<90°【答案】C【解析】:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选:C19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设ab ,大正方形的边长为5,则小正方形的直角三角形两条直角边长分别为a和b.若8边长为()A.1 B.2 C.3 D.4【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.。
初中数学概率基础测试题及答案一、选择题1.下列事件中,属于随机事件的是( ).A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B 、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C 、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D 、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C .【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【答案】C【解析】【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:112 P ;故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数. 3.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.4.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 =.故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.5.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C︒,一定能见到明媚的阳光【答案】B【解析】【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;故选:B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°【答案】D【解析】【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.8.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于12B.等于12C.小于12D.无法确定【答案】B【解析】【分析】根据概率的意义解答即可.【详解】∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第3次正面朝上的概率是12.故选:B.【点睛】本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.11.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540° D.长分别为3,4,6的三条线段能围成一个三角形【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为1 6【答案】D 【解析】A、A盘转出蓝色的概率为12、B盘转出蓝色的概率为13,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为16,故选D.14.下列问题中是必然事件的有()个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b+=-(其中a、b都是实数);(4)水往低处流.A.1 B.2 C.3 D.4【答案】B【解析】【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.15.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .18【答案】C【解析】【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=, 故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.如图,由四个直角边分别是6和8的直角三角形拼成的“赵爽弦图”,随机往大正方形ABCD内投针一次,则针扎在小正方形EFGH内的概率是()A.116B.120C.124D.125【答案】D【解析】【分析】根据几何概率的求法,针头扎在小正方形内的概率为小正方形面积与大正方形面积比,小正方形的面积求算根据直角三角形的边长求算边长再算面积.【详解】根据题意,“赵爽弦图”中,直角三角形的直角边分别为6和8所以小正方形的边长为:862-=,小正方形的面积为4,10=,大正方形的面积为100.所以针扎在小正方形EFGH内的概率是41=10025,答案选D.【点睛】本题借助“赵爽弦图”考查了几何概率,要注意针扎在小正方形EFGH内的概率是小正方形与大正方形的面积比.18.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为()A.23B.13C.14D.16【答案】A【解析】【分析】列表或树状图得出所有等可能的情况数,找出数字之积大于9的情况数,利用概率公式即可得.【详解】解:根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为82 123=,故选A.【点睛】此题考查的是用列表法或树状图法求概率,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.。
第1章二次函数单元测试卷(A卷基础篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019•九龙坡区校级模拟)二次函数y=x2﹣2x的顶点坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,﹣1)D.(﹣1,1)2.(3分)(2019•雁塔区校级模拟)已知两点A(﹣6,y1),B(2,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y1>y2,则x0的取值范围是()A.x0<﹣6 B.x0<﹣2 C.﹣6<x0<﹣2 D.﹣2<x0<23.(3分)(2019•镇平县三模)对于二次函数y=﹣x2﹣4x+5,以下说法正确的是()A.x<﹣1时,y随x的增大而增大B.x<﹣5或x>1时,y>0C.A(﹣4,y1),B(,y2)在y=﹣x2﹣4x+5的图象上,则y1<y2D.此二次函数的最大值为84.(3分)(2019•周口二模)在抛物线y=x2﹣4x+m的图象上有三个点(﹣3,y1),(1,y2),(4,y3),则y1,y2,y3的大小关系为()A.y2<y3<y1B.y1<y2=y3C.y1<y2<y3D.y3<y2<y15.(3分)(2019•平房区三模)已知,二次函数y=(x+h)2+k向左平移1个单位,再向下平移3个单位,得到二次函数y=(x﹣1)2+1,则原函数的顶点坐标为()A.(2,﹣4)B.(1,﹣4)C.(1,4)D.(2,4)6.(3分)(2019•河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A.ac<0 B.b2﹣4ac>0 C.2a﹣b=0 D.a﹣b+c=07.(3分)(2019•呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.8.(3分)(2019•南昌模拟)如图,直线y1=mx+n和抛物线y2=ax2+bx+c交于A(﹣3,1)和B(1,2)两点,使得y1>y2的x的取值范围是()A.x>1 B.x>﹣3 C.﹣3<x<1 D.x>1或x<﹣39.(3分)(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<610.(3分)(2019•杭州模拟)关于x的二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0),在某次数学研究课上得到以下结论:①当k=1时,二次函数图象顶点为(0,﹣2);②当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象对称轴在直线x=左侧;③当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象在x轴上截得线段长小于;④当k>0时,点M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象上一点,若<x0<1,则y0<0;则以上研究正确的是()A.①③B.②③④C.①④D.①③④第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(4分)(2019•道里区校级模拟)抛物线y=(x+3)2+4的对称轴是.12.(4分)(2019春•滨州期末)将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为.13.(4分)(2019•大洼区三模)若二次函数y=(m﹣1)x的图象开口向下,则m的值为.14.(4分)(2019•中原区校级三模)二次函数y=x2﹣2mx+1在x≤1时y随x增大而减小,则m的取值范围是.15.(4分)(2019•福建三模)已知二次函数y=(x﹣h)2(h为常数),当自变量x的值满足﹣1≤x≤3时,与其对应的函数值y的最小值为4,则h的值为.16.(4分)(2019•南关区校级一模)在美化校园的活动中,某兴趣小组想帮助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=m,若在P处有一棵树与墙CD、AD的距高分别是18m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积的最大值为.三.解答题(共7小题,满分66分)17.(6分)(2018秋•宁乡市期中)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?18.(8分)(2019•兰坪县二模)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A、B 两点,与y轴交于点C,其中A(﹣3,0)、C(0.﹣2).求这条抛物线的函数表达式.19.(8分)(2018秋•黔东南州期末)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.20.(10分)(2019春•雨花区校级月考)我校上个月进行了义卖活动,某班购进了一批单价为20元的某种商品在课余时间进行义卖,并将所得利润捐给希望工程,经实验发现,若每件按24元的价格销售时,每天能卖出36件:若每件按29元的价格销售时,每天都能卖出21件,假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数表达式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润p最大?21.(10分)(2019春•日照期末)如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)连接BC,求△ABC的面积;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.22.(12分)(2019•蜀山区校级三模)如图,二次函数=ax2+bx﹣3的图象与x轴相交于A(﹣1,0),B(3,0)两点.与y轴相交于点C(1)求这个二次函数的解析式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点AM,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.23.(12分)(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m 的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.第1章二次函数单元测试卷(A卷基础篇)【浙教版】参考答案与试题解析1.(3分)(2019•九龙坡区校级模拟)二次函数y=x2﹣2x的顶点坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,﹣1)D.(﹣1,1)【思路点拨】先把该二次函数化为顶点式的形式,再根据其顶点式进行解答即可.【答案】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴二次函数y=x2+4x的顶点坐标是:(1,﹣1),故选:B.【点睛】此题主要考查了二次函数的性质和求抛物线的顶点坐标的方法,熟练配方是解题关键.2.(3分)(2019•雁塔区校级模拟)已知两点A(﹣6,y1),B(2,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y1>y2,则x0的取值范围是()A.x0<﹣6 B.x0<﹣2 C.﹣6<x0<﹣2 D.﹣2<x0<2【思路点拨】由抛物线顶点纵坐标最大可得出a<0,对称轴在A、B之间,结合y1<y2≤y0可得出点A 到对称轴的距离小于点B到对称轴的距离,得到x0≤﹣6或﹣6<x0<2,即x0≤﹣6或x0﹣(﹣6)<2﹣x0,解之即可得出结论.【答案】解:∵点C(x0,y0)是该抛物线的顶点.且y0≥y1>y2,∴a<0,x0≤﹣6或﹣6<x0<2,∴x0﹣(﹣6)<2﹣x0,∴x0<﹣2,∴x0≤﹣6或x﹣6<x0<﹣2,∴x0<﹣2故选:B.【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,由y0≥y1>y2找出x0﹣(﹣6)<2﹣x0是解题的关键.3.(3分)(2019•镇平县三模)对于二次函数y=﹣x2﹣4x+5,以下说法正确的是()A.x<﹣1时,y随x的增大而增大B.x<﹣5或x>1时,y>0C.A(﹣4,y1),B(,y2)在y=﹣x2﹣4x+5的图象上,则y1<y2D.此二次函数的最大值为8【思路点拨】y=﹣x2﹣4x+5的对称轴为x=﹣2,x≤﹣2时,y随x的增大而增大;当﹣5<x<1时,y >0;点A到对称轴的距离大于点B到对称轴的距离,则y1<y2;当x=﹣2时,y有最大值9;【答案】解:y=﹣x2﹣4x+5的对称轴为x=﹣2,∴x≤﹣2时,y随x的增大而增大;A不正确;﹣x2﹣4x+5=0时的两个根为x=﹣5,x=1,当﹣5<x<1时,y>0;B不正确;∵﹣4<﹣2,﹣>﹣2,点A到对称轴的距离大于点B到对称轴的距离,∴y1<y2;C正确;当x=﹣2时,y有最大值9;D不正确;故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象与性质是解题的关键.4.(3分)(2019•周口二模)在抛物线y=x2﹣4x+m的图象上有三个点(﹣3,y1),(1,y2),(4,y3),则y1,y2,y3的大小关系为()A.y2<y3<y1B.y1<y2=y3C.y1<y2<y3D.y3<y2<y1【思路点拨】由已知确定函数的对称轴为x=2,三点到对称轴的距离分别为5,1,2,即可求解;【答案】解:y=x2﹣4x+m的对称轴为x=2,(﹣3,y1),(1,y2),(4,y3)三点到对称轴的距离分别为5,1,2,∴y1>y3>y2,故选:A.【点睛】本题考查二次函数的图象及性质;理解开口向上的函数,点到对称轴的距离越大则对应的函数值越大是解题的关键.5.(3分)(2019•平房区三模)已知,二次函数y=(x+h)2+k向左平移1个单位,再向下平移3个单位,得到二次函数y=(x﹣1)2+1,则原函数的顶点坐标为()A.(2,﹣4)B.(1,﹣4)C.(1,4)D.(2,4)【思路点拨】此题实际上求“把抛物线y=(x﹣1)2+1向右平移1个单位,再向上平移3个单位”后的抛物线的顶点坐标,根据“左加右减”的规律进行解答即可.【答案】解:∵抛物线y=(x﹣1)2+1的顶点坐标是(1,1),则向右平移1个单位,再向上平移3个单位后的坐标为:(2,4),∴则原函数的顶点坐标为(2,4),故选:D.【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减是解题的关键.6.(3分)(2019•河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A.ac<0 B.b2﹣4ac>0 C.2a﹣b=0 D.a﹣b+c=0【思路点拨】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【答案】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项正确,不符合题意;C、由对称轴为x=﹣=1,得2a=﹣b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(﹣1,0),所以a﹣b+c=0,故本选项正确,不符合题意.故选:C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.(3分)(2019•呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.【思路点拨】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断.【答案】解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.【点睛】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.8.(3分)(2019•南昌模拟)如图,直线y1=mx+n和抛物线y2=ax2+bx+c交于A(﹣3,1)和B(1,2)两点,使得y1>y2的x的取值范围是()A.x>1 B.x>﹣3 C.﹣3<x<1 D.x>1或x<﹣3【思路点拨】写出直线在抛物线上方所对应的自变量的范围即可.【答案】解:∵直线y1=mx+n和抛物线y2=ax2+bx+c交于A(﹣3,1)和B(1,2)两点,∴由图象可知,直线y1=mx+n在抛物线y2=ax2+bx+c上方时,自变量x的为﹣3<x<1,∴使得y1>y2的x的取值范围是﹣3<x<1,故选:C.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围.9.(3分)(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6【思路点拨】根据给出的对称轴求出函数解析式为y=x2﹣2x+3,将一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,再由﹣1<x<4的范围确定y的取值范围即可求解;【答案】解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.【点睛】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.10.(3分)(2019•杭州模拟)关于x的二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0),在某次数学研究课上得到以下结论:①当k=1时,二次函数图象顶点为(0,﹣2);②当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象对称轴在直线x=左侧;③当k<0时,二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象在x轴上截得线段长小于;④当k>0时,点M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k(k≠0)图象上一点,若<x0<1,则y0<0;则以上研究正确的是()A.①③B.②③④C.①④D.①③④【思路点拨】①当k=1时y=2x2﹣2,则顶点为(0,﹣2);②当k<0时y=2kx2+(1﹣k)x﹣1﹣k的对称轴x==>,对称轴在x=的右侧;③当k<0时,y=2kx2+(1﹣k)x﹣1﹣k,,,则有|x1﹣x2|==<;④M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k上的点,y0=2kx02+(1﹣k)x0﹣1﹣k=2k(x0﹣)2﹣,当<<1时,y的最小值为﹣<0,即y0<0;当>1时,当x=1时有y=2k﹣2,当x=时,y=∴>y0>2k﹣2,y0<0;当<时,<y0<2k﹣2,y0<0;【答案】解:①当k=1时y=2x2﹣2,则顶点为(0,﹣2);①正确;②当k<0时y=2kx2+(1﹣k)x﹣1﹣k的对称轴x==>,∴x>,对称轴在x=的右侧,∴②错误;③当k<0时,y=2kx2+(1﹣k)x﹣1﹣k,△=(3k+1)2≥0,,,∴|x1﹣x2|==<,∴③正确;④M(x0,y0)是二次函数y=2kx2+(1﹣k)x﹣1﹣k上的点,∴y0=2kx02+(1﹣k)x0﹣1﹣k=2k(x0﹣)2﹣,∵<x0<1,k>0,∴当<<1时,y的最小值为﹣<0,即y0<0;当>1时,当x=1时有y=2k﹣2,当x=时,y=∴>y0>2k﹣2,∴y0<0;当<时,<y0<2k﹣2,∴y0<0;综上所述,y0<0;④正确;故选:D.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的性质,数形结合解题,灵活运用韦达定理是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.(4分)(2019•道里区校级模拟)抛物线y=(x+3)2+4的对称轴是直线x=﹣3.【思路点拨】已知抛物线解析式为顶点式,可直接写出对称轴.【答案】解:∵y=2(x+3)2﹣4为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的对称轴为直线x=﹣3故答案为:直线x=﹣3.【点睛】本题考查的是二次函数的性质,用到的知识点:二次函数y=a(x﹣h)2+k的对称轴是直线x =h.12.(4分)(2019春•滨州期末)将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的解析式为y=4(x+2)2+3.【思路点拨】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【答案】解:抛物线y=4x2向上平移3个单位得到解析式:y=4x2+3,再向左平移2个单位得到抛物线的解析式为:y=4(x+2)2+3.故答案为y=4(x+2)2+3.【点睛】此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.13.(4分)(2019•大洼区三模)若二次函数y=(m﹣1)x的图象开口向下,则m的值为﹣1.【思路点拨】根据二次函数y=(m﹣1)x的图象开口向下,可以求得m的值.【答案】解:∵二次函数y=(m﹣1)x的图象开口向下,∴,解得,m=﹣1,故答案为:﹣1.【点睛】本题考查二次函数的性质、定义和图象,解答本题的关键是明确题意,利用二次函数的性质解答.14.(4分)(2019•中原区校级三模)二次函数y=x2﹣2mx+1在x≤1时y随x增大而减小,则m的取值范围是m≥1.【思路点拨】可求二次函数的对称轴,由于抛物线开口向上,在对称轴的左侧y随x的增大而减小,然后根据对称轴和“在x≤1时y随x增大而减小”做出判断,得出答案.【答案】解:二次函数y=x2﹣2mx+1的对称轴为x=m,∵a=1>0,∴在对称轴的左侧(即当x≤m),y随x的增大而减小,又∵在x≤1时y随x增大而减小,∴m的取值范围为m≥1.故答案为:m≥1.【点睛】考查二次函数的图象和性质、一元一次不等式等知识,掌握二次函数的性质,特别增减性是解决问题的关键,15.(4分)(2019•福建三模)已知二次函数y=(x﹣h)2(h为常数),当自变量x的值满足﹣1≤x≤3时,与其对应的函数值y的最小值为4,则h的值为﹣3或5.【思路点拨】由解析式可知该函数在x=h时取得最小值0,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据﹣1≤x≤3时,函数的最小值为4可分如下两种情况:①若h<﹣1≤x≤3,x =﹣1时,y取得最小值4;②若﹣1≤x≤3<h,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.【答案】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<﹣1≤x≤3,x=﹣1时,y取得最小值4,可得:(﹣1﹣h)2=4,解得:h=﹣3或h=1(舍);②若﹣1≤x≤3<h,当x=3时,y取得最小值4,可得:(3﹣h)2=4,解得:h=5或h=1(舍);③若﹣1<h<3时,当x=h时,y取得最小值为0,不是4,∴此种情况不符合题意,舍去.综上,h的值为﹣3或5,故答案为:﹣3或5.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.16.(4分)(2019•南关区校级一模)在美化校园的活动中,某兴趣小组想帮助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=m,若在P处有一棵树与墙CD、AD的距高分别是18m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积的最大值为180.【思路点拨】本题是通过构建函数模型解答面积的问题.只要根据题意,列出矩形面积的函数关系式即可【答案】解:∵P在矩形ABCD内,P的坐标为(18,6)∴AB=m≥6,BC=28﹣m≥18,得6≤m≤10矩形的面积为S=m•(28﹣m)=﹣m2+28m整理得S=﹣(m﹣14)2+196∵6≤m≤10,在x=14的左侧,a<0∴S随m的增大而减小∴m=10时,取得最大值,代入解得S=﹣(10﹣14)2+196=180故答案为:180【点睛】本题考查了二次函数的性质在实际生活中的应用.,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.三.解答题(共7小题,满分66分)17.(6分)(2018秋•宁乡市期中)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【思路点拨】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.【答案】解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.18.(8分)(2019•兰坪县二模)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A、B 两点,与y轴交于点C,其中A(﹣3,0)、C(0.﹣2).求这条抛物线的函数表达式.【思路点拨】根据抛物线对称轴得到关于a、b的一个方程,再把点A、B的坐标代入抛物线解析式,然后解方程组求出a、b、c的值,即可得解.【答案】解:根据题意得,,解得,,∴这条抛物线的函数表达式:.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.(8分)(2018秋•黔东南州期末)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.【思路点拨】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【答案】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.20.(10分)(2019春•雨花区校级月考)我校上个月进行了义卖活动,某班购进了一批单价为20元的某种商品在课余时间进行义卖,并将所得利润捐给希望工程,经实验发现,若每件按24元的价格销售时,每天能卖出36件:若每件按29元的价格销售时,每天都能卖出21件,假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数表达式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润p最大?【思路点拨】(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:由“总利润=每件利润×销售量”列出函数解析式,再配方成顶点式可得答案.【答案】解:(1)根据题意,设y与x之间的函数解析式为y=kx+b,将x=24、y=36和x=29、y=21代入,得:,解得:,∴y与x之间的函数解析式为y=﹣3x+108;(2)p=(x﹣20)(﹣3x+108)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192,∵a=﹣3<0,∴当x=28时,P取得最大值,最大值为192,答:销售价格定为28元时,才能使每天获得的利润p最大,最大利润为192元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是熟练掌握二次函数的性质以及最值得求法,注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.21.(10分)(2019春•日照期末)如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)连接BC,求△ABC的面积;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.【思路点拨】(1)利用直线y=﹣5x+5求点A、C坐标,再用待定系数法即可求抛物线解析式,进而求得点B坐标.(2)由A、B、C坐标可知AB、OC的长,根据△ABC面积等于AB与OC乘积的一半即求得答案.(3)过点M作x轴的垂线段MD,故△ABM面积等于AB与MD乘积的一半.由△ABM面积为△ABC 的面积的倍列式可求得MD=OC=4,即点M纵坐标绝对值等于4.把y=4和y=﹣4分别代入抛物线解析式,解方程即求得点M的横坐标.【答案】解:(1)∵直线y=﹣5x+5中当x=0时,y=5∴C(0,5)当y=0时,﹣5x+5=0,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=0时,x2﹣6x+5=0,解得:x1=1,x2=5∴B(5,0)(2)∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10(3)如图2,过点M作MD⊥x轴于点D∴S△ABM=AB•MD∵△ABM面积为△ABC的面积的倍∴AB•MD=AB•OC∴|y M|=MD=OC=4当y M=4时,x2﹣6x+5=4解得:x1=3+2,x2=3﹣2当y M=﹣4时,x2﹣6x+5=﹣4解得:x1=x2=3∴点M的坐标为(3+2,4),(3﹣2,4),(3,﹣4).【点睛】本题考查了二次函数的图象与性质,一次函数与方程的关系,解二元一次方程组和一元二次方程.函数图象上三角形面积为定值求动点坐标时,一般要考虑动点坐标的正负性进行分类讨论计算,是较基础的二次函数综合题.22.(12分)(2019•蜀山区校级三模)如图,二次函数=ax2+bx﹣3的图象与x轴相交于A(﹣1,0),B(3,0)两点.与y轴相交于点C(1)求这个二次函数的解析式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点AM,请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.【思路点拨】(1)利用待定系数法求二次函数解析式;(2)先确定C点坐标,则可求出直线BC的解析式,设P的坐标为(t,t2﹣2t﹣3)(0<t<3),M的坐标为(t,t﹣3),所以PM=t﹣3﹣(t2﹣2t﹣3)=t2+3t,然后利用二次函数的性质解决问题.【答案】解:(1)由题意得:,解得,∴这个二次函数的解析式为y=x2﹣2x﹣3,(2)当x=0时,y=3,则C为(0,﹣3),易得直线BC的函数解析式为:y=x﹣3,设P的坐标为(t,t2﹣2t﹣3)(0<t<3),则M的坐标为(t,t﹣3),∴PM=t﹣3﹣(t2﹣2t﹣3)=t2+3t=(t﹣)2+,∵﹣1<0且0<t<3,∴当t=时,PM取得最大值,最大值为,此时P的坐标为(,﹣).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征和二次函数的性质.23.(12分)(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m 的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.【思路点拨】(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,求出y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,△=9﹣8a≥0即可求解;(2)根据题意可得,y=﹣x2+2x﹣1,当y=﹣4时,有﹣x2+2x﹣1=﹣4,x=﹣1或x=3;①在x=1左侧,y随x的增大而增大,x=m+2=﹣1时,y有最大值﹣4,m=﹣3;②在对称轴x=1右侧,y随x最大而减小,x=m=3时,y有最大值﹣4;(3))①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,△=﹣2a>0,则a<,即可求a的范围;【答案】解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;【点睛】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.。
初中数学函数之平面直角坐标系基础测试题含答案解析(1)一、选择题1.根据下列表述,能确定位置的是()A.天益广场南区B.凤凰山北偏东42oC.红旗影院5排9座D.学校操场的西面【答案】C【解析】【分析】根据有序数对可以确定坐标位置对各选项分析判断后利用排除法求解.【详解】解:A、天益广场南区,不能确定位置,故本选项错误;B、凤凰山北偏东42o,没有明确具体位置,故本选项错误;C、红旗影院5排9座,能确定位置,故本选项正确;D、学校操场的西面,不能确定位置,故本选项错误;故选:C.【点睛】本题考查了坐标位置的确定,有序数对可以确定一个具体位置,即确定一个位置需要两个条件,二者缺一不可.2.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,-,横坐标是3,∴点P的纵坐标是2或2-),∴点P的坐标是(3,2)或(3,2故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.3.如果点P(3x+9,1 2x﹣2)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【答案】C【解析】解:由点P(3x+9,12x﹣2)在平面直角坐标系的第四象限内,得:3901202xx+⎧⎪⎨-⎪⎩><.解得:﹣3<x<4,在数轴上表示为:故选C.4.如图,动点P从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为() A.()1,4B.()5,0C.()7,4D.()8,3【答案】C【解析】【分析】理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.5.如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.6.已知点() ,3A a 、点()3, B b -关于y 轴对称,点(),P a b --在第( )象限A .一B .二C .三D .四【答案】C【解析】【分析】根据点A 、点B 关于y 轴对称,求出a ,b 的值,然后根据象限点的符号特点即可解答.【详解】∵点() ,3A a 、点()3, B b -关于y 轴对称,∴a=3,b=3,∴点P 的坐标为()3, 3 --,∴点P 在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.7.已知点A 的坐标为(a +1,3﹣a ),下列说法正确的是( )A .若点A 在y 轴上,则a =3B .若点A 在一三象限角平分线上,则a =1C .若点A 到x 轴的距离是3,则a =±6D .若点A 在第四象限,则a 的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A .若点A 在y 轴上,则a +1=0,解得a =﹣1,故本选项错误;B .若点A 在一三象限角平分线上,则a +1=3﹣a ,解得a =1,故本选项正确;C .若点A 到x 轴的距离是3,则|3﹣a |=3,解得a =6或0,故本选项错误;D .若点A 在第四象限,则a +1>0,且3﹣a <0,解得a >3,故a 的值不可以为﹣2; 故选:B .【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.8.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.9.在平面直角坐标系中,点(),P x y 经过某种变换后得到点()'1,2P y x -++,我们把点()'1,2P y x -++叫做点(),P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3,P 点3P 的终结点为4P ,这样依次得到1234,,,,,n P P P P P ⋅⋅⋅.若点1P 的坐标为(50,),则2017P 点的坐标为( )A .()2,0B .()3,0C .()4,0D .()5,0【答案】D【解析】【分析】根据题意先求出12345,,,,P P P P P L 的坐标,然后找到规律,利用规律即可求出答案.【详解】∵点1P 的坐标为(5)0,,根据题意有 ∴2345(1,7),(6,3),(2,4),(5,0)P P P P ---,由此可见,n P 点的坐标是四个一循环,201745041÷=Q L ,∴2017P 点的坐标为()5,0,故选:D .【点睛】本题主要考查点的坐标的规律,找到规律是解题的关键.10.根据下列表述,能确定位置的是( )A .红星电影院第2排B .北京市四环路C .北偏东30°D .东经118°,北纬40°【答案】D【解析】解:在平面内,点的位置是由一对有序实数确定的,只有D 能确定一个位置, 故选D .点睛:本题考查了在平面内,如何表示一个点的位置的知识点.11.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A 的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.13.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【答案】C【解析】【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y 轴,向上平移2个单位所得直线是x 轴是解题关键.14.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.15.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..16.在平面直角坐标系中.对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(3,2)]等于()A.(3,2) B.(3.﹣2) C.(﹣3,2) D.(﹣3,﹣2)【答案】C【解析】【分析】根据f、g的规定进行计算即可得解.【详解】g[f(3,2)]=g(3,﹣2)=(﹣3,2).故选C.【点睛】本题考查了点的坐标,读懂题目信息,理解f、g的运算方法是解题的关键.17.若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】【详解】解:因为点A(a+2,b-1)在第二象限,所以a+2<0,b-1>0,则-a>2,,b-1>0,即点B的横坐标为正数,纵坐标为正数,所以点B在第一象限,故选A18.在平面直角坐标系中,点(一6,5)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B .【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.点P(a,b)在第四象限,则点P 到x 轴的距离是( )A .aB .bC .|a|D .|b|【答案】D【解析】∵点P (a ,b )在第四象限,∴b <0,∴点P 到x 轴的距离是|b|.故选D .20.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)-- 【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.。
初中数学基本概念考试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是实数?A. √2B. πC. √-1D. 0.33333...答案:A、B、D2. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 1答案:A3. 以下哪个选项是单项式?A. 3x^2 + 2xB. 5x^3 - 7C. 2x^2yD. x^2/3答案:C4. 以下哪个选项是多项式?A. 4x^2 + 3x - 5B. 2xC. x^2 - 4D. 3x^2答案:A5. 以下哪个选项是等式?A. 3x + 2 = 5C. 5x - 3 > 2D. 7x = 0答案:A、D6. 以下哪个选项是不等式?A. 3x + 2 = 5B. 3x + 2C. 5x - 3 > 2D. 7x = 0答案:C7. 以下哪个选项是整式?A. 3x^2 + 2xB. 5x^3 - 7C. 2x^2y答案:A、B、C8. 以下哪个选项是分式?A. 3x^2 + 2xB. 5x^3 - 7C. 2x^2yD. x^2/3答案:D9. 以下哪个选项是相似图形?A. 两个等边三角形B. 两个等腰三角形C. 两个矩形D. 两个正方形答案:A、D10. 以下哪个选项是全等图形?A. 两个等边三角形B. 两个等腰三角形C. 两个矩形D. 两个正方形答案:A、D二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是16,这个数可能是______。
答案:±413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是2,这个数是______。
答案:1/215. 一个数的相反数是-3,这个数是______。
答案:316. 一个数的平方根是2,这个数是______。
答案:417. 一个数的立方根是3,这个数是______。
初中数学几何图形初步基础测试题含答案一、选择题1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.2.下列图形中,是正方体表面展开图的是()A.B.C.D.【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.3.如图,O 是直线AB 上一点,OC 平分∠DOB,∠COD=55°45′,则∠AOD=( )A .68°30′B .69°30′C .68°38′D .69°38′【答案】A【解析】【分析】先根据平分,求出∠COB ,再利用互补求∠AOD【详解】∵OC 平分∠DOB ,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是604.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.5.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件6.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.7.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.8.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.11.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转 80°B.右转80°C.右转 100°D.左转 100°【答案】C【解析】【分析】过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.【详解】过C点作CE∥AB,延长CB与点D,如图∵根据题意可知:AF∥BH,AB∥CE,∴∠A+∠ABH=180°,∠ECB=∠ABC,∵根据题意可知:∠FAB=70°,∠HBC=30°,∴∠ABH=180°−70°=110°,∠ABC=110°−30°=80°,∴∠ECB=80°,∴∠DCE=180°−80°=100°,即方向的调整应是右转100°.故答案选C.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.14.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.15.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.19.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【分析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.20.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB与∠DOA的比是2:11∴设∠DOB=2x,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导。
初中数学基础知识测试卷答案一、选择题(本题共10个小题,每小题2分,满分20分) 题号 1 2 3 4 5 6 7 8 9 10 答案D C B A A B B B D C二、填空题(本题共5个小题,每小题2分,满分10分)11..17 13.1 14.20 15.①,③,④ 三、解答题(本题共6个小题,满分70分) 16.(本题满分10分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ········· 1分 初一学生总数:2010%200÷=(人). ··············· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ··········· 3分 频数分布直方图(如图)· 4分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ···· 5分 (4)众数是4天,中位数是4天.················· 8分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ············ 10分17.(本题满分10分)解:过点C 作CE AB ⊥于E . 906030903060D ACD ∠=-︒=∠=-= °°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴== ,. ······ 3分在Rt ACE △中,5sin 5sin 302AE AC ACE =∠== °, ··· 4分cos 5cos30CE AC ACE =∠== ° ··· 6分在Rt BCE △中,DBA (第22题图)C(第21题图)45tan 45BCE BE CE ∠=∴== °,° ·············· 8分551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ················ 10分 18.(本题满分10分)解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭,即2224320025y x x =-++. ···················· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. ·················· 4分 解这个方程,得12100200x x ==,. ················ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···· 6分(3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ···················· 8分 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.10分19.(本题满分10分)(1)证明:连接OC , HC HG HCG HGC =∴∠=∠ ,. ······ 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, · 2分 12OB OC =∴∠=∠ ,, ·········· 3分 3HGC ∠=∠ ,2390∴∠+∠=°. ····· 4分 90BFG ∴∠=°,即DE AB ⊥.······· 5分 (2)连接BE .由(1)知DE AB ⊥. AB 是O ⊙的直径, ∴ BDBE =. ·························· 6分 BED BME ∴∠=∠. ······················· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ·········· 8分 HMD BME ∴∠=∠.BME ∠ 是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······· 9分 HMD MHE MEH ∴∠=∠+∠. ··················· 10分(第24题图)20.(本题满分15分) 证明:(1)延长DE 交BC 于F . AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ······· 1分在Rt DCF △中,tan tan 2DFC ABC ∠=∠= ,2CD CF∴=,即2CD CF =. 22CD AD BF == ,BF CF ∴=. ····· 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ·························· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠.由(1)知BC CD CE CE == ,,BCE DCE ∴△≌△,BE DE ∴=. ··· 6分由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ········ 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ········ 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ··············· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ······· 12分 又BD BD = ,BAD BPD ∴△≌△,DP AD ∴=. ·········· 13分12AD CD = ,12DP CD ∴=.P ∴是CD 的中点. ·········· 15分21.(本题满分15分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,·· 2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. 3分 (2)存在.在223y x x =--中,令0x =,得3y =-. 令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ················ 5分 容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.A D G E CB (第25题图)FP(第26题图)(30)N ∴-,,2AN ∴=.······················ 6分在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····· 8分(3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,. OD OB ∴=,45OBD ∴∠=°. ··················· 9分又 点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········· 10分由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ········· 11分 90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ······ 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ··· 15分。