rxx (0) rxx (0) Rxx r ( M 1) xx
第二章 维纳滤波和卡尔曼滤波 (2.2.22)式可以写成矩阵的形式, 即
Rxd Rxxh
对上式求逆,得到
h Rxx1Rxd
(2.2.23)
(2.2.24)
第二章 维纳滤波和卡尔曼滤波 上式表明已知期望信号与观测数据的互相关函数及观测 数据的自相关函数时,可以通过矩阵求逆运算, 得到维纳滤
E[| e(n) |2 ] E[| e(n) |2 ] j 0 a j b j
记
j=0, 1, 2, … (2.2.6)
j j a j b j
j=0, 1, 2, …
(2.2.7)
第二章 维纳滤波和卡尔曼滤波 则(2.2.6)式可以写为
j E[| e(n) |2 ] 0
j 0
(2.2.16)
假定滤波器工作于最佳状态,滤波器的输出yopt(n)与期望信号d(n) 的误差为eopt(n),把(2.2.15)式代入上式,得到
* E[ yopt (n)eopt (n)] 0
(2.2.17)
第二章 维纳滤波和卡尔曼滤波
d(n) eo pt(n)
yo pt(n)
图 2.2.1 期望信号、 估计值与误差信号的几何关系
方法求解,简单易行,具有一定的工程实用价值,并且物理概
念清楚,但不能实时处理;维纳滤波的最大缺点是仅适用于一 维平稳随机信号。这是由于采用频域设计法所造成的, 因此人 们逐渐转向在时域内直接设计最佳滤波器的方法。
第二章 维纳滤波和卡尔曼滤波
2.2 维纳滤波器的离散形式——时域解
2.2.1 维纳滤波器时域求解的方法 根据线性系统的基本理论,并考虑到系统的因果性,可以 得到滤波器的输出y(n),