遥感技术系统及其技术原理是什么
- 格式:doc
- 大小:48.50 KB
- 文档页数:4
遥感技术的原理和应用1. 遥感技术的概述遥感技术是指利用航空器和卫星等遥感平台对地球表面进行高分辨率、多光谱的观测和监测的一种技术。
它通过获取地球表面反射、辐射和散射的电磁能量,将其转化为数字信息,从而获取地表特征的一种方法。
2. 遥感技术的原理遥感技术的原理基于以下几个核心概念:2.1 电磁能谱电磁能谱是指在不同波长的电磁辐射中,包含了各种能量和信息的分布。
遥感技术利用不同波长的电磁辐射来观测地球表面,衍生出不同的信息。
2.2 传感器传感器是遥感技术中的核心设备,用于接收和记录地球表面发出的电磁辐射。
传感器的种类多种多样,包括运载在卫星上的遥感传感器、航空器上的航空传感器等。
2.3 数字图像处理遥感技术通过将传感器接收到的电磁辐射转化为数字图像,然后利用数字图像处理技术对图像进行增强、分类、配准等处理,从而提取出地表特征。
3. 遥感技术的应用3.1 环境监测遥感技术可以对地球上的环境进行全面和实时的监测。
可以通过监测植被覆盖、土地利用、气候变化等因素,为环境保护和自然资源管理提供重要数据。
3.2 土地资源调查遥感技术可以用于土地资源的调查和评估。
通过获取地表的光谱信息,可以判断土壤的类型、水分含量、植被生长状况等,为农业生产和土地规划提供依据。
3.3 城市规划遥感技术可以帮助城市规划部门更好地了解城市的发展情况和需求。
通过监测城市的土地利用、建筑高度、交通状况等,可以为城市规划提供数据支持。
3.4 自然灾害监测遥感技术在自然灾害监测方面具有重要作用。
通过监测地表变化、水体沉积物等,可以提前预警和监测洪水、地震、火灾等自然灾害的发生。
3.5 农业生产遥感技术可以应用于农业生产的监测和管理。
通过监测植被生长情况、土壤水分状况等,可以提高农作物的产量和质量,实现精细化农业管理。
3.6 资源勘探遥感技术在矿产资源勘探方面有广泛应用。
通过监测地表的地质特征和矿产指标,可以提供矿区选址和资源储量估计的依据。
简述遥感的基本原理及应用遥感是利用人造卫星、飞机、无人机或地面观测站等平台对地球表面进行观测和测量的技术。
遥感的基本原理是通过接收和记录地球表面反射和辐射的能量,并将其转化为电信号,进而提供地面信息和数据。
遥感技术主要应用于地质勘探、农业、气象、环境保护、城市规划等领域。
遥感的基本原理包括电磁波与物体相互作用、反射与辐射、传感器及数据的获取与处理等。
遥感利用电磁波来获取地面信息,电磁波通过空气、云、尘埃等自然界中的物质传播,当它与地球表面上的物体相互作用时,会发生反射、散射、吸收等过程。
利用这些过程,遥感技术可以测量并分析地球表面上的对象的光谱、热力学特性和形状等重要信息。
遥感的应用广泛,涵盖了很多领域。
在地质勘探方面,遥感可以帮助寻找地下资源,如石油、天然气和矿藏。
通过分析地质特征、土壤类型和植被覆盖等信息,可以确定矿区位置和资源储量。
在农业领域,遥感可以监测作物的生长状况、土壤湿度和病虫害等问题,提供精确的农作物管理和灾害预警信息。
在气象领域,遥感可以监测大气成分、云层和降水等,为气象预报和天气监测提供重要数据。
在环境保护方面,遥感可以检测森林覆盖变化、土地利用变化和水资源管理等问题,促进可持续发展和生态保护。
在城市规划方面,遥感可以提供城市发展和用地规划所需的数据,帮助城市规划师做出更科学的决策,在城市建设过程中提高效率和减少资源浪费。
遥感还有其他一些应用领域。
例如,遥感可以监测自然灾害,如洪水、地震、火灾等,及时提供救援和应急响应。
遥感还可以监测海洋和水质,了解海洋生态系统的变化和海洋资源的利用情况。
另外,遥感还可以用于考古学领域,帮助寻找古代文明的遗址和文化遗产等。
此外,遥感技术还可以用于导航和测绘等领域,提供高精度的地理数据。
总之,遥感技术的基本原理和应用十分重要和广泛。
通过利用遥感技术,可以获取地球表面的重要信息,提供决策支持和数据支持,促进各个领域的发展和进步。
同时,随着遥感技术的不断发展和创新,未来遥感技术的应用领域还将继续扩大,为人类社会的可持续发展做出更大的贡献。
遥感技术的工作原理遥感技术是一种通过航空、卫星等方式获取地球表面信息的技术。
它主要依靠遥感器和数据处理系统进行测量和分析。
本文将对遥感技术的工作原理进行介绍,主要包括遥感技术的基本概念、遥感技术的数据源和遥感技术的数据处理流程。
一、遥感技术的基本概念遥感是指通过对植被、地形、地球表面材质、水体、气象等现象进行探测和数据获取的技术。
主要通过卫星、飞机等平台获取地球表面信息,用于地质勘探、城市规划、环境监测等领域。
遥感数据包括遥感图像、数字高程模型、风场、温度场等。
遥感技术主要有两大类:有源遥感和无源遥感。
有源遥感是指采用外部信号对地物进行探测,如雷达、激光雷达等。
无源遥感则是依靠地球本身辐射进行探测,如红外遥感、微波遥感等。
二、遥感技术的数据源遥感技术的数据源主要包括遥感卫星、航空遥感、地面遥感和潜水器遥感。
1.遥感卫星遥感卫星是通过在轨道上搭载遥感器来获取地球表面信息的卫星。
常见的遥感卫星有陆地观测卫星、气象卫星、海洋卫星等。
卫星遥感具有全天候、全天时、全球性的优点,能够获取遥远地区的信息。
2.航空遥感航空遥感是指通过飞机搭载遥感器来获取地球表面信息的技术。
相比卫星遥感,它的空间分辨率更高,能够捕捉到更小的地物和更详细的地貌。
航空遥感主要用于地图制作、城市规划等领域。
3.地面遥感地面遥感是指通过安装在地面上的遥感设备来获取地球表面信息的技术。
它主要用于农业、生态环境、资源勘探等领域。
地面遥感的分辨率比较低,但可以针对特定的目标进行研究。
4.潜水器遥感潜水器遥感是指通过潜水器搭载遥感器来获取水下信息。
它主要用于海洋环境、资源勘探、水下考古等领域。
三、遥感技术的数据处理流程遥感技术的数据处理分为预处理、特征提取和应用三个阶段。
1.预处理预处理是遥感数据处理的第一步,主要是对原始遥感数据进行处理和校正。
校正包括时序纠正、几何校正、辐射校正等。
预处理的目的是提高数据的质量和可用性。
2.特征提取特征提取是指从遥感数据中提取出实际应用中需要的信息,如土地利用类型、道路分布、林木分布等。
遥感技术原理
遥感技术是指通过使用卫星、飞机或其他平台上的传感器,来从地球表面采集数据和图像的一种技术。
它主要基于电磁波辐射与物体的相互作用原理,从而获取目标区域的信息。
遥感技术的原理主要包括以下几个方面:
1. 电磁波辐射:地球上的物体会通过吸收、反射和发射电磁波与环境进行相互作用。
根据不同的物体特性和表面材质,对入射的电磁波会有不同的响应和反射特征。
2. 能谱特征:通过对不同波段的电磁辐射进行测量和分析,可以获取到待观测物体的能谱特征。
不同物质在不同波段上的反射和吸收特性不同,可以通过这些特性来对物体进行分类和识别。
3. 光学成像:遥感技术常用的平台包括卫星和飞机,它们上面搭载了不同类型的光学传感器。
这些传感器可以在不同的波段范围内获取地物的光谱信息,并通过逐点扫描的方式来获取高分辨率的图像。
4. 空间分辨率:遥感图像的空间分辨率决定了图像可以分辨的最小物体大小。
较高的空间分辨率意味着可以获取到更小尺寸的物体信息。
5. 光谱分辨率:遥感图像的光谱分辨率决定了可以观测到的波段范围和波段数量。
不同的波段上的反射率可以用来区分不同
材质和地物类型。
通过利用遥感技术,可以获取到地球表面的各种信息,例如地形地貌、海洋气象、植被覆盖、土地利用等。
这些数据和图像可以广泛应用于环境监测、农业、城市规划、天气预测等各个领域。
遥感技术的原理优势应用一、遥感技术的原理•遥感技术是通过卫星、无人机等载荷设备获取地球表面信息的一种技术。
其原理主要基于电磁波的辐射、反射和传播规律。
•遥感技术利用传感器捕捉地表反射、发射或辐射的电磁能量,将其转化为数字图像或其他形式的信息。
•遥感技术利用卫星和无人机等载荷设备对地面进行全方位、多角度观测,可以获取地球上的各种信息,包括地形、植被、水文、气候、土壤等。
二、遥感技术的优势遥感技术具有以下优势:1.获取大范围、无偏差的数据:遥感技术可以覆盖广阔的地理范围,获取大量数据,而且不受人为主观因素的限制,数据具有客观性和无偏差性。
2.周期性观测和重复性观测:遥感技术可以进行周期性的观测,从而获取同一地区不同时期的数据,并可以对数据进行比较分析,研究地表变化情况。
3.高时空分辨率的数据:遥感技术可以获取高分辨率的数据,即可以观测到较小的地物和地表细节,也可以观测到瞬时的地表变化。
4.多源数据融合:遥感技术可以融合多个传感器的数据,同时获取多种地球表面信息,提高信息提取的准确性和精度。
5.非接触式观测:遥感技术不需要直接接触地面,可以在较远的距离进行观测,减少了人为干扰和对环境的破坏。
三、遥感技术的应用领域遥感技术在许多领域中都得到了广泛应用,主要包括以下几个方面:1.农业:遥感技术可以用于农作物生长监测、土壤质量评估、农作物面积统计等。
通过遥感数据,可以提前预测农作物的生长状态和产量,为农业生产提供科学依据。
2.城市规划:遥感技术可以用于城市土地利用调查、建筑物高度测量、城市扩张监测等。
通过遥感数据,可以对城市的发展进行评估和规划,提高城市规划的科学性和可行性。
3.环境保护:遥感技术可以用于环境污染监测、水体质量评估、森林覆盖监测等。
通过遥感数据,可以及时监测环境变化,评估环境质量,提供科学依据和决策支持。
4.资源调查:遥感技术可以用于矿产资源调查、能源资源勘探、水资源管理等。
通过遥感数据,可以快速获取资源信息,为资源开发和管理提供科学依据。
遥感技术的原理与应用1. 引言遥感技术是通过获取并解释遥感数据来获取地球表面信息的一种方法。
它利用传感器在地球表面的航空或卫星上获取的电磁辐射数据,以及地面观测站点上的辐射计测量数据来分析和解释地球表面的特征。
本文将介绍遥感技术的原理以及其在不同领域的应用。
2. 遥感技术的原理遥感技术的原理是基于可见光和其他部分电磁波的相互作用。
通过遥感仪器捕捉的电磁辐射数据可以用来推测地球表面的属性和特征。
以下是遥感技术的基本原理:2.1. 电磁辐射电磁辐射是由电场和磁场垂直传播的能量波动。
电磁波在空间中传播,并且具有特定的波长和频率。
不同波长的电磁波与物体的相互作用方式也不同。
遥感技术利用不同波段的电磁辐射来获取地球表面的信息。
2.2. 能量与物质的相互作用不同波长的电磁波会以不同的方式与地球表面物质相互作用。
这些相互作用可以通过吸收、散射和辐射等方式进行。
遥感技术利用这些相互作用来获取地球表面的特征。
2.3. 遥感数据获取遥感仪器可以通过卫星或航空平台捕捉到地球表面的电磁辐射数据。
这些数据可以包括可见光、红外线、微波等不同波段的辐射数据。
通过分析这些数据,可以获取地球表面的特征信息。
3. 遥感技术的应用遥感技术在很多领域都有广泛的应用。
以下是几个常见的应用领域:3.1. 地质学在地质学中,遥感技术被广泛用于矿产资源勘查、地质灾害预警等方面。
通过分析遥感数据,可以识别出地球表面的不同岩矿类型,帮助科学家寻找矿藏和确定地质灾害风险。
3.2. 农业遥感技术在农业领域的应用主要包括农作物生长监测、土壤湿度监测和农田施肥等方面。
通过获取遥感数据,农业专家可以根据植被指数和叶面积指数等数据来判断农作物的生长情况,帮助农民制定农作物的种植计划。
3.3. 城市规划遥感技术在城市规划中的应用主要是通过获取城市地区的遥感数据来了解城市的空间格局、土地利用情况等。
这些数据可以帮助城市规划师制定城市的发展规划,合理利用土地资源,提高城市的可持续发展性。
遥感工作原理
遥感是指通过从遥远的地球表面或大气层上获取的能量来收集地球表面和大气层信息的一种科学技术。
遥感系统通常由传感器、数据传输和处理系统组成。
遥感工作原理主要是基于能量的电磁感应和辐射传输原理。
当太阳辐射照射到地球表面或大气层时,不同的物体和表面会对太阳能量进行吸收、散射和反射。
这些散射和反射的能量会通过传感器接收并传输到数据处理系统进行分析。
常用的遥感传感器根据所使用的能量波段可以分为光学传感器和微波传感器两类。
光学传感器通过接收可见光和红外辐射来获取地球表面信息。
可见光传感器获取的是物体的颜色、形状和纹理等信息,而红外传感器则可以探测物体的温度和热辐射特性。
微波传感器则利用微波信号的穿透能力,获取地球表面和大气层的信息。
微波在雾、云层以及一些地质层面上都有很好的穿透能力,可以获取地下水、地表土壤湿度等信息。
通过遥感技术可以获取到的地球表面和大气层信息包括地质结构、地表温度、气候变化、水资源等。
这些信息对于地质勘探、环境监测、灾害预警等应用具有重要意义。
需要注意的是遥感技术也有一些限制,例如受大气干扰、云层阻挡等影响,有时无法直接获取到所需的信息。
因此,遥感数
据的处理和分析也是遥感工作中不可或缺的一环。
通过数字图像处理、数据融合等技术,可以提高图像质量和信息提取的准确性。
遥感技术基本原理
遥感技术基本原理可分为以下几个方面:
1. 电磁辐射原理:遥感技术利用传感器测量地球表面反射、辐射或发射的电磁辐射。
根据不同波长范围的辐射,遥感可分为光学遥感、红外遥感和微波遥感等。
2. 辐射能量与物体相互作用:物体在接收到辐射能量后,会发生不同的反射、散射、吸收和发射现象。
通过测量这些现象,可以推断出地表物体的特性和状况。
3. 数字图像处理:遥感数据一般以数字图像的形式存储。
数字图像处理技术用于提取、增强和解译遥感图像中的信息,包括图像融合、分类、变换等。
4. 地球表面特征的预测和解译:通过遥感技术获取的数据,结合地物特征、统计学方法等,可以对地球表面的特征进行预测、解译和分析,如土地利用覆盖、植被分布、水资源等。
5. 地学模型与遥感数据的集成:遥感技术与地学模型的集成,可通过模型求解来推断遥感数据所反映的地球表面现象,如气候变化、地表沉降等。
6. 数据获取与传输技术:遥感技术依赖于卫星、飞机等平台获取数据,并通过无线传输技术将数据传输到地面站和数据中心,进行处理和存储。
通过了解和应用上述原理,遥感技术可以广泛应用于环境监测、资源调查、灾害监测、农业管理等领域,为人类社会的可持续发展提供重要支持。
遥感技术的原理及其应用1. 引言遥感技术是通过采集、处理和分析地球表面的各种信息而不需直接接触目标的一种观测技术。
它广泛应用于农业、城市规划、环境保护、气象预测等各个领域。
本文将介绍遥感技术的原理和其在不同领域的应用。
2. 遥感技术的原理遥感技术基于电磁波与地物之间的相互作用原理。
当电磁波通过地物时,会因地物的不同特性而产生反射、散射、透射等现象,这些现象会被遥感设备记录下来并通过处理得到有用的信息。
2.1 电磁波的基本概念电磁波是由电场和磁场交替变化而形成的一种波动现象。
它的特性由波长、频率和振幅来描述。
电磁波的频率和波长在不同范围内对应着不同的辐射,如射频、微波、红外线、可见光、紫外线、X射线和γ射线等。
2.2 遥感设备的工作原理遥感设备通常由传感器、平台和数据处理系统组成。
传感器负责接收和记录地物反射、散射等信息,平台提供传感器的支撑和移动,数据处理系统对传感器接收到的数据进行处理和分析。
2.3 地物与电磁波的相互作用不同的地物对电磁波的相互作用是基于地物的组成、形态和结构等特性。
常见的相互作用包括反射、散射和透射。
3. 遥感技术的应用3.1 农业领域遥感技术在农业领域中的应用包括农作物生长监测、土壤湿度测量、气象预测等。
通过遥感技术,可以实时监测农作物的生长状况,提供精准的灌溉和施肥建议,提高农作物产量和品质。
3.2 城市规划遥感技术对于城市规划的应用主要体现在土地利用调查、建筑物高度测量和城市扩展规划等方面。
通过遥感技术,可以高效地获取大范围的土地利用情况,为城市规划决策提供数据支持。
3.3 环境保护遥感技术在环境保护中起到了重要的作用。
通过遥感技术可以监测森林覆盖率、海洋污染、空气污染等环境指标,及时发现并采取措施解决环境问题。
3.4 气象预测遥感技术在气象预测中的应用主要体现在天气预报、气候变化分析等方面。
通过遥感技术,可以获取大范围的气象信息,提高气象预测的准确性。
4. 总结遥感技术以电磁波与地物之间的相互作用为基础,通过采集、处理和分析地球表面的信息,为农业、城市规划、环境保护、气象预测等各个领域提供了强大的数据支持。
遥感技术的原理与应用遥感,也叫遥测遥感技术,是指利用传感器和卫星等远距离探测技术获取地球表面信息的技术。
遥感技术可以获取地球大范围、连续的、实时的、快速的不同层次、不同时间尺度的图像和数据,为自然资源调查、环境监测、水文水资源调查、灾害预警、城市规划、农业生产、林业经营、海洋调查等领域提供了广阔的应用前景。
遥感技术的原理遥感技术的基本原理是利用物体对电磁波的反射、辐射或传输特性来提取有关于物体的信息。
电磁波包括可见光、近红外线、红外线、微波等,在地球大气不同层次的介质中传播,与地球上不同的物体交互作用并被散射、反射、透过、辐射等,再由探测器返回地面。
遥感技术的应用1.自然资源调查利用遥感技术可以进行大规模的土地资源调查,对土地利用状态和方式进行监测、评估、预测和分析,为农业生产、生态环境保护、城市规划等提供数据支持。
2.环境监测遥感技术可以快速、广泛、动态地监测环境污染源、污染程度和污染物在大气、水源等介质中的扩散和运移过程,为环境保护和生态环境治理提供数据支持。
3.水文水资源调查利用遥感技术可以获取地表水资源、地下水资源、水土流失等水文水资源信息,辅助决策和规划。
4.灾害预警遥感技术可以对自然灾害的形成、演变、影响范围等进行及时监测和预警,提供预防自然灾害的预警和指导信息。
5.城市规划遥感技术可以获取城市空间结构、土地利用变化、建筑物高度、道路交通情况等信息,为城市规划和土地利用管理提供数据支持。
6.农业生产利用遥感技术可以进行农业作物遥感监测,提高农业生产效益,为农业决策和精准农业提供技术支持。
7.林业经营遥感技术可以实现森林资源动态监测、调查、统计和土地分类以及森林病虫害的应对等一系列生态和经济管理活动的支持,为林业经营管理提供数据支持。
8.海洋调查遥感技术可以获取海水中的浮游动植物、河口等区域的悬浮物、沉积物、水温、水深等信息,为海洋调查和海洋经济活动提供数据支持。
结语总之,遥感技术是现代地球科学和信息技术的重要组成部分,其应用范围广泛,可以为各个领域的决策者和研究者提供准确和全面的地球信息。
遥感技术系统及其技术原理概念:遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线结目标进行探测和识别的技术。
例如航空摄影就是一种遥感技术。
人造地球卫星发射成功,大大推动了遥感技术的发展。
现代遥感技术主要包括信息的获取、传输、存储和处理等环节。
完成上述功能的全套系统称为遥感系统,其核心组成部分是获取信息的遥感器。
遥感器的种类很多,主要有照相机、电视摄像机、多光谱扫描仪、成象光谱仪、微波辐射计、合成孔径雷达等。
传输设备用于将遥感信息从远距离平台(如卫星)传回地面站。
信息处理设备包括彩色合成仪、图像判读仪和数字图像处理机等。
遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。
它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。
任何物体都有不同的电磁波反射或辐射特征。
航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来,供识别和判断。
把遥感器放在高空气球、飞机等航空器上进行遥感,称为航空遥感。
把遥感器装在航天器上进行遥感,称为航天遥感。
完成遥感任务的整套仪器设备称为遥感系统。
航空和航天遥感能从不同高度、大范围、快速和多谱段地进行感测,获取大量信息。
航天遥感还能周期性地得到实时地物信息。
因此航空和航天遥感技术在国民经济和军事的很多方面获得广泛的应用。
例如应用于气象观测、资源考察、地图测绘和军事侦察等遥感技术系统包括:信息源即波谱特征 spectrum feature、信息的获取 Information obtain、信息的接收 Receive、信息的处理 Processing(辐射校正、姿态校正、几何校正、增强处理等)、信息的应用 applying空间信息获取系统地球表面地物目标空间信息获取主要由遥感平台、遥感器等协同完成。
遥感平台 (Platform for Remote Sensing ) 是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。
遥感技术的工作原理和应用1. 概述遥感技术是一种通过接收、记录和解释来自地球表面的电磁辐射,以获取有关地球表面特征的信息的技术。
它可以利用卫星、飞机等遥感平台来获取大范围、多角度的遥感影像,使我们能够实时监测和分析地表变化,广泛应用于地球科学、环境保护、气象预测等领域。
2. 工作原理遥感技术的工作原理主要包括以下几个步骤:2.1 辐射传输地球表面的目标物体会发射或反射电磁辐射,这些辐射会经过大气层的传输。
在辐射传输过程中,大气层对不同波长的辐射有不同的吸收、散射和透射作用,因此需要对大气层进行辐射校正,以消除大气层的影响。
2.2 接收和记录接收和记录是指通过遥感平台(如卫星、飞机等)接收传感器所接收到的电磁波,并将其转化为数字数据记录下来。
遥感平台上的传感器通常包括光学传感器、红外传感器和微波传感器等,它们可以接收不同波长的电磁波。
2.3 数字图像处理接收和记录的数字数据需要经过一系列的图像处理步骤,以提取出有用的信息。
常用的图像处理方法包括图像增强、图像分类、图像变换等。
这些处理过程可以帮助我们更好地理解和分析遥感图像,从而获取目标物体的信息。
2.4 信息提取信息提取是指根据处理后的遥感图像,通过不同的算法和技术,提取出目标物体的特征和属性。
这些特征和属性可以包括目标物体的位置、形状、颜色等,可以用于进行地表变化监测、环境质量评估等应用。
3. 应用领域遥感技术在各个领域都有广泛的应用,以下为一些常见的应用领域:3.1 地球科学利用遥感技术可以获取地球表面的各种信息,如土地利用、地形地貌、植被覆盖等,有助于地球科学家了解地球表面的变化和演化过程。
在地震、火山等自然灾害监测和预测中也有重要应用。
3.2 环境保护遥感技术可以监测大气、水质、土壤和植被等环境要素的变化,可以用于环境质量评估、水源保护、森林管理等方面。
例如,通过监测海洋表面温度来预测和监测海洋生态系统的变化。
3.3 城市规划遥感技术可以提供大量的城市信息,如道路网络、建筑物布局、绿地分布等,对城市规划和地理信息系统有着重要的作用。
遥感的原理
遥感的原理是利用传感器从地球上空获取能量反射的传感器数据,并进行分析和解释。
遥感技术利用电磁辐射,如可见光、红外线、微波等,以及声波和雷达波等,通过感应和测量地球上的物体和环境特征来收集信息。
遥感数据可以提供关于地表物体的形状、大小、组成、位置和动态变化等信息。
遥感的工作原理基于光学、热辐射和雷达的原理。
在遥感中,光学传感器主要利用可见光和红外线光谱范围的电磁辐射来感应地表物体。
光学遥感通过分析物体对不同波长的光的反射、透射和吸收来推断物体的性质和组成。
热辐射遥感则利用物体对红外辐射的特殊响应,来获取物体的温度分布和热特征。
雷达遥感则利用微波辐射来穿透云层和雾气,感知地表物体下的信息,可以实现地形测量和地表覆盖类型的识别。
在遥感中,传感器将从地球上空接收到的辐射转换为数字信号,并存储在遥感图像中。
这些图像可以是二维或三维的,提供了地球表面的详细信息。
遥感图像可用于监测和研究许多领域,如农业、森林资源管理、城市规划、环境监测和自然灾害预警等。
总的来说,遥感的原理是通过感应和分析地球表面反射和发射的电磁辐射来获取地表物体特征的一种技术。
它为我们提供了一种非接触且全球范围内获取地球信息的方法,对于人类认识和了解地球的各种物理、化学和生态过程具有重要意义。
测绘技术中的遥感技术详解遥感技术作为测绘技术中的一种重要手段,近年来得到了广泛的应用和发展。
它能够通过从远处获取地物信息,为地理空间数据的获取、监测和分析提供有效的手段和工具。
本文将对遥感技术在测绘领域中的应用进行详细解析。
一、遥感技术的基本原理遥感技术是指通过照相机、扫描仪、雷达和激光器等设备,以及相应的电子传感器,从卫星、飞机或地面站点对地球进行观测和记录,然后将所得数据进行处理、解译和应用的一种技术。
其基本原理是利用光学、微波等各种传感器,利用电磁波与物质相互作用的原理,在无需实地勘测的情况下获取地球表面的信息。
二、遥感技术的分类与应用遥感技术可以根据观测平台的不同划分为航空遥感和卫星遥感。
航空遥感是指通过飞机等空中平台获取地球表面信息的技术,具有较高的分辨率和灵活性;卫星遥感则是通过卫星获取信息的技术,具有广域覆盖和周期观测的优势。
1. 地质与灾害监测遥感技术在地质勘探和灾害监测中发挥着重要作用。
通过遥感图像的获取和分析,可以识别地质构造、岩性、矿产等地质信息,并利用地表形态和物质分布的特征,进行地质资源储量和分布的评估。
同时,遥感技术还可以对地震、火山、洪涝等自然灾害进行动态监测,及时预警和减少损失。
2. 土地利用规划遥感技术在土地利用规划中的应用主要体现在土地分类和变化监测方面。
通过遥感技术可以获取大范围的土地利用信息,并进行土地分类、变化检测和动态监测,为城市规划、农田利用、生态环境保护等提供决策支持。
3. 环境监测与生态保护遥感技术在环境监测与生态保护中起到了至关重要的作用。
通过遥感技术可以对水体质量、空气质量、森林覆盖度等环境指标进行监测和评估,及时发现并解决环境问题。
另外,遥感技术还可以进行植被监测和生态系统评估,为实现可持续发展提供科学依据。
4. 海洋资源开发与保护遥感技术在海洋资源开发和保护中具有独特的优势。
通过遥感技术可以获取海洋资源的分布和变化情况,通过对海洋环境的监测和评估,为海洋资源的开发利用和保护提供技术支持。
遥感技术的工作原理及应用1. 什么是遥感技术遥感技术是一种通过空中或卫星等设备获取地球表面信息的技术。
它采用不接触的方式,利用传感器等设备获取地球表面的电磁波辐射信息,并通过数据处理和分析,得到各种地理和环境信息。
遥感技术可以实现对地球表面的全球性、快速、大范围的观测,并且具有较高的时空分辨率,被广泛应用于地球科学、环境保护、农业、城市规划等领域。
2. 遥感技术的工作原理遥感技术的工作原理主要包括以下几个步骤:2.1 辐射传输地球表面上的物体会反射、辐射和透射电磁波,这些电磁波包括可见光、红外线和微波等波段。
当这些电磁波通过大气层时,会受到散射、吸收和透射等作用,从而改变它们的能量和方向。
2.2 感应器接收感应器是用来接收电磁波的设备,它可以通过摄像机、卫星、飞机等设备进行观测。
感应器接收到地球表面反射、辐射和透射的电磁波后,会将其转换为数字信号,并传送到数据处理系统进行处理。
2.3 数据处理数据处理是将感应器接收到的数字信号进行处理和分析的过程。
在数据处理过程中,需要进行辐射校正、大气校正、几何校正、影像去噪等处理,以获取准确的地球表面信息。
2.4 数据分析与应用数据处理完成后,可以进行数据分析和应用。
通过对遥感图像和数据进行解译和分析,可以获得地表温度、植被覆盖度、土地利用类型等信息,用于环境监测、气候变化分析、农业生产预测等领域。
3. 遥感技术的应用遥感技术在各个领域都有广泛的应用,以下列举几个典型的应用案例:3.1 农业遥感技术可以用于农业生产的监测和管理。
通过获取植被的生长状况和土地利用类型等信息,可以进行农作物的生长预测、灾害监测和农田规划等工作,提高农业生产的效率和质量。
3.2 环境保护遥感技术可以用于环境保护和资源管理。
通过获取地表水质、土壤湿度和森林覆盖率等信息,可以监测和评估环境的变化和破坏,及时采取相应的措施进行保护。
3.3 城市规划遥感技术可以用于城市规划和城市管理。
通过获取城市的地貌、建筑物分布和道路网络等信息,可以进行城市规划、交通管理和资源分配等工作,提高城市的发展和管理水平。
遥感技术的基本原理
遥感技术是利用航天器、飞机和地面观测点等平台,通过对地球表面物体反射、辐射和散射等信息的获取和分析,来研究和监测地球表面和大气变化的一种技术手段。
它的基本原理可以简单概括为以下几个方面:
1. 电磁辐射原理:遥感技术主要基于物体对电磁波的相互作用来获取信息。
地球表面物体受到太阳辐射的照射后,会根据其属性和组成的不同,吸收、反射或散射不同波长的电磁辐射。
利用遥感仪器可以测量到各种波长的电磁辐射,并通过光谱分析等手段,推断出地面物体的属性和组成。
2. 多光谱成像原理:遥感技术通常采用多光谱成像,即利用不同波段的光谱信息来获取地面物体的特征。
多光谱成像可以提供物体的颜色和反射率等信息,从而识别地表物体的类型如植被、水体或城市建筑等。
3. 高光谱成像原理:高光谱遥感技术相比多光谱遥感技术能够获取更高维度的光谱信息。
它可以对地面物体的光谱进行更加精细的分析,从而提供更多的物质信息和精准的物体识别能力。
4. 合成孔径雷达(SAR)原理:合成孔径雷达利用雷达波束的连续接收和信号处理技术,来获取地球表面物体的雷达信号。
相比传统光学遥感技术,SAR不受天气和时间的限制,且可
以获取地表的极化参数、高程数据等。
5. 精度定位原理:遥感技术的数据处理中需要对获取的影像进
行精度定位,以获取地理空间信息。
这通常通过电磁辐射学和地理配准等方法来实现。
总之,遥感技术的基本原理在于利用不同传感器和平台获取地球表面物体的电磁辐射信息,通过对这些信息的分析和处理,来研究和监测地球表面和大气的变化。
简述遥感的基本原理
遥感是一种通过探测和记录地球表面的电磁辐射来获取地球信息的技术。
它利用遥感卫星、飞机等载体,通过接收地球表面反射的电磁波或地球自身辐射的电磁波,来获取地球表面的信息。
遥感的基本原理是利用电磁波与地物之间的相互作用来获取地球表面的信息。
电磁波是一种由电场和磁场相互作用而产生的能量传播现象,它在空间中以波的形式传播。
电磁波包括可见光、红外线、微波等不同波长的波段,而不同波段的电磁波与地物之间的相互作用也不同。
例如,可见光主要与地表物体的颜色和纹理有关,红外线则与地表物体的温度有关,微波则可以穿透云层和植被,获取地表物体的内部信息。
遥感技术通过感知和记录电磁波在地球上的分布和变化,来获取地球表面的信息。
遥感卫星或飞机上搭载的传感器可以接收到地球表面反射的电磁波或地球自身辐射的电磁波,并将其转化为数字信号。
接收到的数字信号经过处理和解译,可以得到地球表面的各种信息,如地表反射率、温度、湿度、植被覆盖程度等。
这些信息可以用于地质勘探、环境监测、农业生产、城市规划等领域。
遥感技术的基本原理是通过探测和记录地球表面的电磁辐射来获取地球信息。
它利用电磁波与地物之间的相互作用,通过感知和记录电磁波在地球上的分布和变化,来获取地球表面的各种信息。
这种
技术可以广泛应用于各个领域,为人们提供了更多的地球信息,促进了人类社会的发展。
遥感技术的工作原理遥感技术是一种通过获取远离目标的信息来研究地球表面和大气现象的技术。
它利用各种传感器设备,从地面、航空器和卫星上获取数据,进而分析和解释地球表面和大气的物理、化学和生物特性。
遥感技术广泛应用于环境监测、资源调查、军事侦察、气象预测等领域。
本文将详细介绍遥感技术的工作原理,以及其在地球科学研究中的应用。
一、遥感技术的基本原理遥感技术的基本原理可以概括为“辐射-传输-目标-接收”四个步骤。
首先,地球表面或大气中的目标物质会辐射出电磁辐射。
然后,这些辐射在传输过程中与大气发生相互作用,其中一部分会被散射、吸收或发射。
接着,接收器(传感器)接收到经过传输过程后的辐射能量,并将其转化为电信号。
最后,这些电信号被数字化处理,并转化为可视化图像或数值信息。
在这个过程中,遥感技术关键的部分是通过传感器捕捉到目标的反射或发射的电磁辐射。
根据所选择的传感器,可以获得不同波段的电磁辐射数据,包括可见光、红外线、热辐射等。
每个波段的电磁辐射与目标的物理特性有关,通过分析不同波段的数据,可以获取目标的空间分布、温度、化学成分等信息。
二、遥感技术的传感器类型根据使用的平台和感知技术,遥感传感器可分为航空遥感传感器和卫星遥感传感器。
1. 航空遥感传感器航空遥感传感器主要安装在飞机或无人机上,通过将传感器设备搭载到飞行器上,可以获取高空的遥感数据。
这些传感器采集到的数据精度高,对细小目标的探测能力强。
常见的航空传感器包括航空摄影机、热红外传感器和多光谱扫描仪。
2. 卫星遥感传感器卫星遥感传感器是安装在卫星上的遥感设备,可以提供全球范围内的遥感数据。
卫星传感器的数据分辨率相对较低,但其覆盖范围广,适用于大面积观测。
常见的卫星传感器有LANDSAT、MODIS和SPOT等。
三、遥感技术在地球科学中的应用遥感技术在地球科学研究中发挥着重要的作用,下面将介绍其在环境监测、资源调查和军事侦察方面的应用。
1. 环境监测遥感技术可用于监测大气污染、水质变化、土地覆盖和植被状况等环境因素。
测绘技术中的遥感技术简介与应用实践遥感技术是一种通过获取地面信息的传感器测量的电磁辐射,来获取地球表面信息的方法,被广泛应用于测绘技术中。
它的应用范围非常广泛,可以用于土地利用规划、资源调查、环境监测等方面。
本文将从遥感技术的基本原理、常见遥感仪器和实际应用案例三个方面进行阐述。
一、遥感技术的基本原理遥感技术的基本原理是通过感知地球表面的电磁辐射,然后将获取的电磁辐射转化为可视化的图像或数据。
遥感技术可以获取到的电磁辐射包括可见光、红外线、微波等多个波段。
不同波段的电磁辐射可以提供不同的地表信息,如可见光可以提供地物的颜色、形状等信息,红外线可以提供地物的温度信息。
遥感技术主要分为被动遥感和主动遥感两种类型。
被动遥感是通过接收地球表面反射或发射的电磁辐射来获取信息,主要用于获取地物的位置、形状、颜色等表面信息。
而主动遥感则是通过向地球表面发射电磁波并测量其返回信号来获取信息,主要用于获取地物的高程、厚度等更深层次的信息。
二、常见的遥感仪器1. 气象卫星气象卫星是一种用于获取大气和水文信息的遥感仪器,它可以通过接收地球表面反射的太阳光来获取云层、降水等大气信息,并通过测量地球表面发出的红外线来获取地表温度等信息。
气象卫星通常具有全球覆盖能力,可以提供连续观测的数据,被广泛用于天气预报和气候研究。
2. 雷达测量仪雷达测量仪是一种主动遥感仪器,它通过向地面发射微波信号,并测量信号返回的时间和强度来获取地表的高程和表面特征。
雷达测量仪可以在夜晚或云雾等天气条件下工作,具有较高的垂直精度和地面分辨率,被广泛应用于地形测量和地质勘探。
3. 红外线相机红外线相机是一种用于接收地面红外辐射的遥感仪器,它可以获取地表和地下物体的温度分布信息。
红外线相机具有较高的空间分辨率和较强的穿透力,可以应用于火灾监测、农作物生长状况监测等方面。
三、遥感技术的应用实践案例1. 土地利用规划遥感技术广泛应用于土地利用规划中,可以通过获取地表的图像和数据来识别不同类型的土地利用,并评估土地利用的质量和效益。
遥感技术系统及其技术原理是什么?试举例说明其农业应用。
概念:遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线结目标进行探测和识别的技术。
例如航空摄影就是一种遥感技术。
人造地球卫星发射成功,大大推动了遥感技术的发展。
现代遥感技术主要包括信息的获取、传输、存储和处理等环节。
完成上述功能的全套系统称为遥感系统,其核心组成部分是获取信息的遥感器。
遥感器的种类很多,主要有照相机、电视摄像机、多光谱扫描仪、成象光谱仪、微波辐射计、合成孔径雷达等。
传输设备用于将遥感信息从远距离平台(如卫星)传回地面站。
信息处理设备包括彩色合成仪、图像判读仪和数字图像处理机等。
遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。
它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。
任何物体都有不同的电磁波反射或辐射特征。
航空航天遥感就是利用安装在飞行器上的遥感器感测地物目标的电磁辐射特征,并将特征记录下来,供识别和判断。
把遥感器放在高空气球、飞机等航空器上进行遥感,称为航空遥感。
把遥感器装在航天器上进行遥感,称为航天遥感。
完成遥感任务的整套仪器设备称为遥感系统。
航空和航天遥感能从不同高度、大范围、快速和多谱段地进行感测,获取大量信息。
航天遥感还能周期性地得到实时地物信息。
因此航空和航天遥感技术在国民经济和军事的很多方面获得广泛的应用。
例如应用于气象观测、资源考察、地图测绘和军事侦察等遥感技术系统包括:信息源即波谱特征 spectrum feature、信息的获取 Information obtain、信息的接收 Receive、信息的处理 Processing(辐射校正、姿态校正、几何校正、增强处理等)、信息的应用 applying空间信息获取系统地球表面地物目标空间信息获取主要由遥感平台、遥感器等协同完成。
遥感平台 (Platform for Remote Sensing ) 是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。
遥感器 ( Remote Sensor) 是接收与记录地表物体辐射、反射与散射信息的仪器。
目前常用的遥感器包括遥感摄影机、光机扫描仪、推帚式扫描仪、成像光谱仪和成像雷达。
按其特点,遥感器分为摄影、扫描、雷达等几种类型。
遥感数据传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。
遥感器接收到地物目标的电磁波信息,被记录在胶片或数字磁带上。
从遥感卫星向地面接收站传输的空间数据中,除了卫星获取的图像数据以外,还包括卫星轨道参数、遥感器等辅助数据。
这些数据通常用数字信号传送。
遥感图像的模拟信号变换为数字信号时,经常采用二进制脉冲编码的 PCM 式( pulse code modulation: 脉冲编码调制)。
由于传送的数据量非常庞大,需要采用数据压缩技术。
卫星地面接收站的主要任务是接收、处理、存档和分发各类地球资源卫星数据。
地面站接收的卫星数据通常被实时记录到 HDDT(high density digital tape,高密度磁带) 上,然后根据需要拷贝到 CCT(computer compatible tape ,计算机兼容磁带 ) 、光盘、盒式磁带等其他载体上。
CCT 、光盘、盒式磁带等是记录、保存、分发卫星数据等最常用的载体。
遥感图像处理遥感图像处理是在计算机系统支持下对遥感图像加工的各种技术方法的统称。
遥感图像处理依赖于一定的图像处理设备。
对于数字图像处理系统来说,它包括计算机硬件和软件系统两部分。
硬件部分包括:计算机 ( 完成图像数据处理任务 ) 、显示设备 ( 高分辨率真彩色图像显示)、大容量存贮设备、图像输入输出设备等。
软件部分包括:由数据输入、图像校正、图像变换、滤波和增强、图像融合、图像分类、图像分析以及计算、图像输出等功能模块。
遥感信息提取与分析遥感信息提取是从遥感图像(包括数字遥感图像)等遥感信息中有针对性地提取感兴趣的专题信息,以便在具体领域应用或辅助用户决策。
遥感信息分析指通过一定的方法或模型对遥感信息进行研究,判定目标物的性质和特征或深入认识目标物的属性和环境之间的内在关系原理任何物体都具有光谱特性,具体地说,它们都具有不同的吸收反射、辐射光谱的性能。
在同一光谱区各种物体反映的情况不同,同一物体对不同光谱的反映也有明显差别。
即使是同一物体,在不同的时间和地点,由于太阳光照射角度不同,它们反射和吸收的光谱也各不相同。
遥感技术就是根据这些原理,对物体作出判断。
遥感技术通常是使用绿光、红光和红外光三种光谱波段进行探测。
绿光段一般用来探测地下水、岩石和土壤的特性;红光段探测植物生长、变化及水污染等;红外段探测土地、矿产及资源。
此外,还有微波段,用来探测气象云层及海底鱼群的游弋。
在农业上的应用:遥感技术在农业资源调查上的应用中国的农业遥感技术起步于20世纪80年代初.二十余年取得了大量赶超世界先进水平的理论研究与应用成果。
比如.作为我国农业遥感应用的代表,由中国科学院资源环境局主持的“黄土高原遥感专题研究”项目,在林草资源遥感调查、土壤侵蚀定量遥感调查、土地类型遥感综合研究、草场生物量的遥感估算、农业地物光谱特征及其应用基础研究以及黄土区暴雨与下垫面关系的遥感分析等许多方面取得了大量成果.为黄土高原的综合治理提供了全方位的技术支持。
武汉测绘科技大学在湖北省利川市利用多光谱影像进行了草场资源调查.6个人用半年时间就完成了近百人需要历时3年才能完成的工作量.且吻合率达96%,成为遥感技术在农业资源调查上应用的成功范例。
我国利用560幅陆地卫星图像.仅用两年时间完成了全国15种土地利用类型的分析和量算统计工作.提供了全国和分省的土地利用基本数据和有关图件。
我国近年完成的“三北”防护林遥感综合调查.在包括西北大部、华北北部和东北西北部总面积为128万l【111z的“三北”造林一期工程的调查中.完成了对现有防护林类型、分布、面积和保存率;草地数量、质量和分布;土地资源类型、分布、数量及利用现状的调查。
提供了200余幅各类遥感专题系列图.建成了全区资源与环境信息系统。
为掌握防护林区现状、林区的进一步发展和规划奠定了基础1.2农业遥感专用软件相继出现我国农业遥感应用技术日趋深入.还表现在应用软件的开发和应用方面。
进入20世纪90年代中后期.一大批较为成熟的农业遥感专用软件相继出现。
比如.可应用于农业资源调查与监测的软件有:由中国农业工程研究设计院农业遥感研究室开发的土地利用现状调查和数据处理系统软件:由中国农业科学院草原研究所开发的北方草地产量动态监测系统软件:由农业部资源监测总站开发的耕地变化监测系统软件:由成都农业遥感分中心开发的湿地资源调查系统:由中国农业工程研究设计院农业遥感研究室开发的黄淮海盐碱地调查系统软件以及由农业部资源监测总站开发的棉花种植面积遥感调查系统软件等。
可应用于作物产量预测的软件有:由南京农业遥感分中心开发的南方水稻遥感估产系统软件:由北方农业遥感中心开发的冬小麦估产系统软件:由中国农业工程研究设计院农业遥感研究室开发的遥感光谱法水稻估产系统软件以及由北京大学遥感与地理信息系统研究所开发的农作物遥感估产信息系统软件等。
可应用于农业灾害监测与评估的软件有:由中国农科院草原研究所开发的北方草场火灾、雪灾监测系统软件以及由南京大学大地海洋科学系遥感室开发的东南沿海小河流域防洪信息系统软件等罔。
这些新的遥感处理软件使科技人员的工作效率大大提高。
1.3遥感技术在灾情监测与预报上的应用对灾情.结合陆地卫星与气象卫星所获得的资料,利用当时的卫星影像与常年卫星影像进行对比.可获得有关洪水泛滥成灾面积和灾情程度的较准确的结果。
对旱灾的面积和危害程度的监测预报也通过卫星资料来进行。
其他如土壤的侵蚀、沙化。
草原的退化以及由某些工程引起的环境恶化等.均可通过卫星和航空遥感来进行监测。
我国洪涝灾害遥感调查是在为山区大型工程建设或为大江大河洪涝灾害防治服务中逐渐发展起来的。
湖南省率先利用遥感技术在洞庭湖地区开展了水利工程的地质环境及地质灾害调查工作。
有关单位先后在雅砻江二滩电站、红水河龙滩电站、长江三峡工程、黄河龙羊峡电站、金沙江下游落渡、白鹤滩及乌东清电站库区开展了大规模的区域性滑坡、泥石流遥感调查。
20世纪80年代中期.分别在宝成、宝天、成昆等铁路沿线进行了大规模的航空摄影.为调查地质灾害分布及其危害提供了信息源。
20世纪90年代起。
在主干公路及铁路选线.如京九铁路沿线等也使用了地质灾害遥感调查技术。
20世纪90年代末期在全国开展的“省级国土资源遥感综合调查”工作中.各省(区)都设立了专门的中小比例尺“地质灾害遥感综合调查”课题.主要是识别地质灾害微地貌类型及活动性.评价地质灾害对大型工程施工及运行的影响等。
近年来,在重大工程论证中,都开展了工程地质遥感调查工作,如杭州湾跨海大桥、向山港跨海大桥等。
大兴安岭发生特大森林火灾时.中国科学院卫星地面站提供的火情现势卫星影像图对现场指挥、调度扑救起到了决定性作用。
长江、嫩江流域发生特大洪灾时.航空、航天平台的遥感实时监测,为指挥救灾、恢复生产发挥了巨大作用。
1.4遥感技术在农业环境保护方面的应用环境卫星遥感监测是环境管理的重要手段之一,连续监测、定时监测和严格的管理相结合.能准确地反映环境质量状况,能有针对性地加强监督管理。
在大气遥感监测方面.我国重点开展了四个方面的工作:一是利用遥感技术监测大气污染与污染源.如辽宁省环保所应用遥感技术对抚顺露天煤矿进行了监测:分析了矿坑上空逆温层的形成与大气污染物扩散的关系,搞清了矿坑内产生污染的条件.为露天矿场的污染防治和环境污染预报提供了科学依据:中国环境科学研究院在太原市进行了以大气污染为目标的遥感监测:北京市环境保护科学研究院曾对规划市区的烟囱高度、分布进行了航空遥感分析等.这些都为污染防治和环境污染预报提供了科学依据。
二是通过遥感图像上植物的季相节律变化和遭受污染后的反应差异.以植物对污染的指示性反演大气污染,如确定大气污染的范围、程度和扩散变化.如进行津渤环境遥感试验时曾利用遥感图像上呈现的树冠影像的色调和大小差异.圈定了二氧化硫和酸气、氟化氢等典型污染场。
三是以地面采样的分析结果作参照量.与遥感图像进行相关分析,如进行津渤环境遥感试验时.曾采集树木叶片测定其含硫、含氯量以及树皮的pH值,分析二氧化硫、氯气及酸雾的污染。
四是利用飞机携带大气监测仪器.在污染地区上空分层采样并进行数据处理分析,如天津、太原曾用该方法监测大气气溶胶、飘尘及二氧化硫的时空分布特征和运移规律嘲。
在水污染的监测方面.我国先后对海河、渤海湾、蓟运河、大连湾、长春南湖、于桥水库、珠江、苏南大运河、滇池等大型水体进行了遥感监测:研究了有机污染、油污染及富营养化等:利用水体叶绿素与富营养化间的关系研究了滇池水体污染与富营养化状况:利用卫星遥感资料估算了渤海湾表层水体叶绿素的含量.建立了叶绿素含量与海水光谱反射率之间的相关模式.定量地划分了有机污染区域;利用水体热污染原理先后对湘江、大连湾、海河、闽江、黄浦江等进行了红外遥感监测问。