高中物理史 原子物理学
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
选择题对“原子物理学”的考查[A组基础题练熟练快]1.(2019·甘肃张掖三诊)下列说法正确的是( )A.光电效应和康普顿效应揭示了光具有波粒二象性B.牛顿第一定律是利用逻辑推理对实验事实进行分析的产物,能够用实验直接验证C.英国物理学家汤姆孙发现了电子,否定了“原子不可再分”的观点D.爱因斯坦首先把能量子的概念引入物理学,否定了“能量连续变化”的观点解析:光电效应和康普顿效应揭示了光具有粒子性,A错误;牛顿第一定律是利用逻辑推理对实验事实进行分析的产物,不能够用实验直接验证,B错误;英国物理学家汤姆孙发现了电子,否定了“原子不可再分”的观点,C正确;普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,D错误.答案:C2.(2019·宜宾二诊)我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是( ) A.爱因斯坦提出光子说,并成功地解释了光电效应现象B.德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念C.玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念D.普朗克把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性解析:爱因斯坦提出光子说,并成功地解释了光电效应现象,选项A正确;玻尔第一次将量子观念引入原子领域,提出了定态和跃迁的概念,选项B错误;普朗克在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念,故C错误;德布罗意把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性,选项D错误.答案:A3.2018年中国散裂中子源(CSNS)将迎来验收,目前已建设的3台谱仪也将启动首批实验.有关中子的研究,下列说法正确的是( )A.Th核发生一次α衰变,新核与原来的原子核相比,中子数减少了4B.一个氘核和一个氚核经过核反应后生成氦核和中子是裂变反应C.卢瑟福通过分析α粒子散射实验结果,发现了质子和中子D.中子和其他微观粒子,都具有波粒二象性解析:α衰变的本质是发生衰变的核中减少2个质子和2个中子形成氦核,所以一次α衰变,新核与原来的核相比,中子数减少了2,选项A错误;裂变是较重的原子核分裂成较轻的原子核的反应,而该反应是较轻的原子核的聚变反应,选项B错误;卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型,查德威克通过α粒子轰击铍核(94Be)获得碳核(12 6C)的实验发现了中子,选项C错误;所有粒子都具有波粒二象性,选项D正确.答案:D4.(2019·湖南师大附中模拟)图甲为研究光电效应的电路图;图乙为静止在匀强磁场中的某种放射性元素的原子核AZ X 衰变后产生的新核Y 和某种射线的径迹.下列说法不正确的是( )A .图甲利用能够产生光电效应的两种(或多种)频率已知的光进行实验可测出普朗克常量B .图甲电源的正负极对调,在光照条件不变的情况下,可研究得出光电流存在饱和值C .图乙对应的衰变方程为A Z X→42He +A -4Z -2YD .图乙对应的衰变方程为 A Z X→ 0-1e + A Z +1Y解析:根据光电效应方程得eU 遏=hν-W 0,其中W 0为金属的逸出功,所以h =eU 遏+W 0ν,图甲利用能够产生光电效应的两种(或多种)频率已知的光进行实验可测出普朗克常量,故A 正确;对于一定的光照条件,产生的光电子数目相等,将电源的正负极对调,调节电压,最多能使所有光电子达到另一极板,此时即可研究得出光电流饱和值,故B 正确;由图乙可看出,原子核衰变后放出的粒子与新核所受的洛伦兹力方向相同,而两者速度方向相反,则知两者的电性相反,新核带正电,则放出的必定是β粒子(电子),发生了β衰变,故C 错误,D 正确.答案:C5.(2019·辽宁大连联考)下列说法正确的是( )A .频率越低的光,粒子性越显著B .无论光强多强,只要入射光的频率小于金属的截止频率,就不能发生光电效应C .氢原子吸收光子后,电子运动的轨道半径变大,动能也变大D .发生β衰变时,新核的核电荷数不变解析:频率越低的光,光子的能量值越小,其动量越小,粒子性越不显著,故A 错误.光电效应实验中,无论入射光多强,只要入射光的频率低于金属的截止频率,就不可能发生光电效应,故B 正确;氢原子吸收光子后,电子运动的轨道半径变大,根据k e 2r 2=mv 2r,可知电子的动能减小,故C 错误;发生β衰变时,原子核内的一个中子转化为一个质子和一个电子,新核的质量数不变,核电荷数增加一个,故D 错误.答案:B6.(多选)(2019·全国大联考)关于近代物理,下列说法正确的是( )A.放射性元素的半衰期与压强有关,压强越高,半衰期越大B.光电效应中,光电子的最大初动能与照射光光子能量成正比C.比结合能是结合能与核子数之比,比结合能越大,原子核越稳定D.一个处于n=6的激发态的氢原子向低能级跃迁时最多能辐射出5种不同频率的光解析:放射性元素的半衰期与外部的物理条件以及所处的化学状态均无关,选项A错误;根据爱因斯坦光电效应方程E km=hν-W0,光电效应中,光电子的最大初动能E km随照射光光子能量hν的增大而增大,但不是成正比关系,选项B错误;比结合能是结合能与核子数之比,比结合能越大,原子核分解成核子需要的能量越大,原子核越稳定,选项C正确;一个处于n=6的激发态的氢原子向低能级跃迁时最多能辐射出(6-1)即5种不同频率的光,选项D 正确.答案:CD7.(多选)(2019·安徽宣城二次调研)下列四幅图涉及不同的物理知识,其中说法正确的是( )A.图甲:卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B.图乙:用中子轰击铀核使其发生裂变,链式反应会释放出巨大的核能C.图丙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的D.图丁:汤姆孙通过电子的发现揭示了原子核内还有复杂结构解析:卢瑟福通过分析α粒子散射实验结果,得出原子的核式结构模型,故A错误;用中子轰击铀核使其发生裂变,裂变反应会释放出巨大的核能,故B正确;玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的,故C正确;汤姆孙通过电子的发现揭示了原子有一定结构,天然放射现象的发现揭示了原子核内还有复杂结构,故D错误.答案:BC8.(多选)(2019·哈尔滨六中二模)某半导体激光器发射波长为1.5×10-6m,功率为5.0×10-3 W的连续激光.已知可见光波长的数量级为10-7 m,普朗克常量h=6.63×10-34J·s,该激光器发出的( )A.是紫外线B.是红外线C.光子能量约为1.3×10-13 JD.光子数约为每秒3.8×1016个解析:波长的大小大于可见光的波长,属于红外线,故A错误,B正确.光子能量ε=h cλ=6.63×10-34×3×1081.5×10-6J=1.326×10-19 J,故C错误.每秒钟发出的光子数n=Ptε≈3.8×1016,故D正确.答案:BD9.(多选)(2019·广东珠海联考)下列说法正确的是( )A.α粒子散射实验说明原子内部具有核式结构B.在21H+31H→42He+X中,X表示质子C.重核的裂变和轻核的聚变都是质量亏损的放出核能过程D.一个氢原子从n=1能级跃迁到n=2能级,必需吸收光子解析:卢瑟福的α粒子散射实验说明原子的核式结构模型,故A正确.根据质量数与质子数守恒,可知,X的质量数是1,电荷数是0,表示中子,故B错误.重核的裂变和轻核的聚变都存在质量亏损,从而放出核能,故C正确.根据跃迁公式,可知,一个氢原子从n=1能级跃迁到n=2能级,必须吸收能量,可能是吸收光子,也可能是电子与其他的电子发生碰撞而吸收能量,故D错误.故选A、C.答案:AC[B组中难题目练通抓牢]10.(2019·天一大联考)如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5 V.若光的波长约为6×10-7 m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19 C,则下列判断正确的是( )A.该光电管K极的逸出功大约为2.53×10-19 JB.当光照强度增大时,极板间的电压会增大C.当光照强度增大时,光电管的逸出功会减小D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小解析:该光电管K 极的逸出功大约为W 0=hc λ-Ue =2×10-256×10-7 J -0.5×1.6×10-19 J≈2.53×10-19 J ,选项A 正确;当光照强度增大时,极板间的电压不变,选项B 错误;光电管的逸出功由材料本身决定,与光照强度无关,选项C 错误;在光电效应中,根据光电效应方程知,E km =hν-W 0=eU ,改用频率更大的光照射,光电子的最大初动能变大,两极板间的最大电压变大,故D 错误;故选A.答案:A11.(2019·全国大联考)中国科学家吴宜灿获得2018年欧洲聚变核能创新奖,获奖理由:开发了一种新的基于CAD 的粒子传输软件,用于核设计和辐射安全计算.下列关于聚变的说法中,正确的是( )A .同样质量的物质裂变时释放的能量比同样质量的物质聚变时释放的能量大很多B .裂变过程有质量亏损,聚变过程质量有所增加C .核反应堆产生的能量来自轻核聚变D .聚变反应比裂变反应每个核子释放的平均能量一定大解析:同样质量的物质聚变时释放的能量比同样质量的物质裂变时释放的能量大很多,故A 错误;重核的裂变和轻核的聚变都会放出核能,根据爱因斯坦的质能方程E =mc 2,一定有质量亏损,故B 错误;核反应堆产生的能量来自重核裂变,故C 错误;在一次聚变反应中释放的能量不一定比裂变反应多,但平均每个核子释放的能量一定大,故D 正确.答案:D12.(2019·福建福州质检)研究光电效应现象的实验装置如图(a)所示,用光强相同的黄光和蓝光照射光电管阴极K 时,测得相应的遏止电压分别为U 1和U 2,产生的光电流I 随光电管两端电压U 的变化规律如图(b)所示.已知电子的质量为m ,电荷量为-e ,黄光和蓝光的频率分别为ν1和ν2,且ν1<ν2.则下列判断正确的是( )(a) (b)A .U 1>U 2B .图(b)中的乙线是对应黄光照射C .根据题述条件无法算出阴极K 金属的极限频率D .用蓝光照射时,光电子的最大初动能为eU 2解析:根据光电效应方程则有:E km1=hν1-W 0=eU 1,E km2=hν2-W 0=eU 2,由于蓝光的频率ν2大于黄光的频率ν1,则有U 1<U 2,所以图(b)中的乙线是对应蓝光照射;用蓝光照射时,光电子的最大初动能为eU 2,阴极K 金属的极限频率ν0=W 0h =ν2-eU 2h,故D 正确,A 、B 、C 错误.答案:D[C 组 探究创新从容应对]13.(2019·湖南衡阳联考)在匀强磁场中,一个原来静止的原子核,由于衰变放射出某种粒子,结果得到一张两个相切圆1和2的径迹照片如图所示,已知两个相切圆半径分别为r 1、r 2,则下列说法正确的是( )A .原子核可能发生α衰变,也可能发生β衰变B .径迹2可能是衰变后新核的径迹C .若衰变方程是238 92U→234 90Th +42He ,则衰变后新核和射出的粒子的动能之比为117∶2D .若衰变方程是238 92U→234 90Th +42He ,则r 1∶r 2=1∶45解析:原子核衰变过程系统动量守恒,由动量守恒定律可知,衰变生成的新核与粒子的动量方向相反,粒子速度方向相反,由左手定则可知,若生成的新核与粒子电性相反则在磁场中的轨迹为内切圆,若电性相同则在磁场中的轨迹为外切圆,故A 错误;核反应过程系统动量守恒,原子核原来静止,初动量为零,由动量守恒定律可知,原子核衰变生成的新核与粒子动量p 大小相等,方向相反,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB =m v 2r ,解得:r =mv qB =p qB,由于p 、B 相同,则电荷量q 越大,轨道半径越小,由于新核的电荷量大,所以新核的半径小于粒子的轨道半径,所以r 2为粒子的运动轨迹,故B 错误;核反应过程系统动量守恒,原子核原来静止,初动量为零,由动量守恒定律可知,原子核衰变生成的新核与粒子动量p 大小相等,方向相反,由动能与动量的关系E k =p 22m,所以动能之比等于质量的反比,即为2∶117,故C 错误;由B 项分析知,r 1∶r 2=2∶90=1∶45,故D 正确.答案:D14.(多选)(2019·西南名校联盟联考)如图为英国物理学家查德威克发现中子的实验示意图,利用钋(210 84Po)衰变放出的α粒子轰击铍(94Be)时产生了未知射线.查德威克曾用这种射线分别轰击氢原子(11H)和氮原子(14 7N),结果打出了一些氢核和氮核.他测量了被打出的氢核和氮核的速度,并认为速度最大的氢核和氮核是由未知射线中的粒子分别与它们发生弹性正碰的结果,设氢核的最大速度为v H ,氮核的最大速度为v N ,氢核和氮核在未被打出前可认为是静止的.查德威克运用能量和动量的知识推算了这种未知粒子的质量.设氢原子的质量为m ,以下说法正确的是( )A .钋的衰变方程为210 84Po→208 82Pb +42HeB .图中粒子A 是中子C .未知粒子的质量为14v N -v H v H -v Nm D .未知粒子的质量为14v N +v H v H -v Nm 解析:根据质量数和电荷数守恒可知,A 中的核反应是错误的,选项A 错误;根据题意可知,图中不可见粒子A 是中子,选项B 正确;氢原子的质量为m ,则氮核的质量为14m ,设未知射线粒子的质量为m 0,碰前速度为v 0,则由动量守恒和能量守恒可知:m 0v 0=m 0v 1+mv H ;12m 0v 20=12m 0v 21+12mv 2H ;联立解得:v H =2m 0v 0m 0+m ;同理未知射线与氮核碰撞时,氮核的速度:v N =2m 0v 0m 0+14m;由两式可得:m 0=14v N -v H v H -v Nm ,故选项C 正确,D 错误;故选B 、C. 答案:BC高中物理 第一章 单元高考过关[时间:45分钟 满分:100分]一、选择题(每小题5分,共50分)2017年清明小长假,人们纷纷走出户外祭扫、踏青、赏花、观光……全国大江南北掀起了节日旅游热,显示了中国传统文化的魅力。
新课标高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
原子物理公式总结归纳本文对原子物理领域中常见的公式进行总结归纳,通过对这些公式的理解和应用,可以更好地理解和描述原子的结构、性质和相互作用。
以下是一些重要的原子物理公式:1. 波长和频率公式波长(λ)和频率(ν)之间的关系可以由以下公式表示:c = λν其中,c是光速,约等于3×10^8米/秒。
这个公式说明了电磁辐射的波长和频率之间的相互关系。
2. 波粒二象性公式根据量子力学的理论,物质不仅可以表现出粒子性,还可以表现出波动性。
波长(λ)和动量(p)之间的关系由德布罗意波动方程给出:λ = h / p其中,h是普朗克常量,约等于6.626×10^-34焦秒。
这个公式表明了物质粒子的波长和其动量之间的关系。
3. 能量和频率公式能量(E)和频率(ν)之间的关系由普朗克-爱因斯坦关系给出:E = hν这个公式说明了能量和频率之间的相互关系,其中h是普朗克常量。
4. 不确定性原理根据海森堡的不确定性原理,位置(Δx)和动量(Δp)之间存在一种不确定性关系:ΔxΔp ≥ h/ (4π)这个公式表明了在测量粒子位置和动量时,存在一个不确定性的限制。
5. 玻尔模型的能级公式根据玻尔模型,原子的电子只能处于特定的能级上。
原子的能级与电子的主量子数(n)有关,能级(E)与主量子数之间的关系由以下公式给出:E = -13.6eV / n^2其中,-13.6eV是氢原子的电离能。
6. 玻尔半径公式玻尔半径(r)是描述电子轨道半径的物理量,它与氢原子的电离能(E)和光速(c)之间的关系由以下公式给出:r = h / (2πm_e c)其中,m_e是电子的质量。
7. 缝隙能和晶格常数的关系在固体物理中,缝隙能(E_g)与晶格常数(a)之间的关系由以下公式给出:E_g = h^2 / (8ma^2)其中,m是电子的有效质量。
8. 微扰理论的能量修正公式微扰理论是处理原子和分子量子态的重要方法。
根据微扰理论,能量的修正可以通过下面的公式给出:ΔE = ∑ |C_n|^2E_n其中,C_n是波函数在扰动态上的展开系数,E_n是未扰动态的能量。
(一)普通物理和高中物理在原子物理学方面的整体分析原子物理学是继力学、热学、电学、光学之后在普通物理阶段开设的最后一门普通物理学课程,是研究原子、原子核性质、结构及其运动规律的一门科学,由于原子物理学研究物质的微观结构,所以它是联系经典物理和量子物理的桥梁,为量子力学建立了实验基础,提供了实验依据。
普通物理中原子物理学主要讲述了光的粒子性和电子的波动性、原子的基本情况、原子的能级和辐射即氢原子光谱、玻尔的氢原子理论等、量子力学初步即物质二象性、测不准原理、薛定谔波动方程等、碱金属原子和电子自旋、多电子原子、在磁场中的原子、塞曼效应、X射线、分子结构和分子光谱、原子核以及基本粒子等。
而高中物理选修3—5涉及到的原子物理学的知识主要有原子的核式结构模型、氢原子光谱、玻尔的原子模型、原子核的组成、放射性元素的衰变、核反应、人工放射性同位素、核力、结合能、原子核的裂变反应和聚变反应、光电效应、黑体辐射、康普顿效应等。
光的粒子性和电子的波动性这部分知识,普通物理中主要讲述了黑体辐射和普朗克量子化假设、光电效应和爱因斯坦光量子理论、康普顿效应、德布罗意波等,并从实验出发得出了理论解释,分析了本质原因,而高中物理对这部分的讲解只是从现象出发,直接给出结论,并没有理论推导证明。
对于原子结构模型这部分知识,普通物理从介绍原子出发,说明了原子的质量和大小、原子的结构、提出汤姆逊模型,通过〈 粒子散射理论总结出卢瑟福的原子核式结构模型。
而高中物理知识简单的介绍了汤姆逊的“枣糕模型”、〈 粒子散射实验,通过简短的说明讲述了卢瑟福的原子核式结构模型,只是定性的解释,并没有从定量的角度上加以分析。
玻尔氢原子理论这部分,普通物理中首先介绍了光谱,然后介绍了氢原子光谱的实验规律,最后介绍了玻尔理论,即玻尔的基本假设、玻尔的氢原子图像以及氢原子光谱和能级等,系统的阐述了氢原子理论。
而高中物理中只是直接给出电子的轨道是量子化的,给出能级的概念和频率条件,玻尔对氢原子光谱的解释也是要求定性分析并会做简单的计算,并没有从理论上加以推导。
新课标高考高中物理学史2018(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除新课标高考高中物理学史(新人教版)必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;【经典题目】:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
高中物理学史高考中常见知识点汇总Revised by Liu Jing on January 12, 2021高考高中物理学史及热学、原子物理考点总结一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2.1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律)。
3.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力不是维持物体运动状态的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5.1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7.17世纪,德国天文学家开普勒提出开普勒三大定律;8.牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;二、相对论:9.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);10.19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
11.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
原子物理学笔记高中的时候,学校新开了一门让我又爱又怕的课程——原子物理学。
这门课就像是一个神秘的宇宙,充满了让人摸不着头脑但又忍不住想要探索的奥秘。
老师在讲台上眉飞色舞地讲着,我在下面手忙脚乱地记着笔记。
那些关于原子结构、原子核、电子跃迁的知识,一股脑地涌过来,差点把我淹没。
就说原子结构吧,想象一下,原子就像一个小小的太阳系,原子核如同太阳位于中心,而电子就像行星围绕着它转。
但这可不是简单的公转哦,电子的运动轨迹复杂得让人头疼。
老师说电子的位置是不确定的,要用“概率云”来描述,这可太抽象啦!我就在笔记上画了个歪歪扭扭的太阳系,旁边写着“电子:你猜我在哪?”讲到原子核的时候,那可真是个神秘的“小核心”。
原子核里面有质子和中子,它们紧紧地抱在一起。
质子带正电,中子不带电,它们就像一对好兄弟,共同守护着原子核的稳定。
老师为了让我们更好地理解,打了个比方:“这质子和中子啊,就像两个小伙伴,手拉手,谁也不松开。
”我赶紧在笔记上写:“原子核兄弟情,不离不弃。
”还记得有一次实验课,我们要观察原子的光谱。
那仪器看起来高大上极了,一堆按钮和显示屏。
我小心翼翼地操作着,眼睛紧紧盯着那出现的一道道光线。
哇,那光谱线五颜六色的,美丽极了!就像天上的彩虹被装进了这个小小的仪器里。
我一边看一边在笔记上写:“红的、绿的、紫的,这原子的光谱简直是大自然的调色盘!”学习电子跃迁的时候,我感觉自己的脑袋都要转不过来了。
电子从一个能级跳到另一个能级,会吸收或释放能量,这能量还能以光的形式表现出来。
我就想啊,这电子可真调皮,跳来跳去的。
我在笔记上画了个蹦蹦跳跳的电子,旁边写着:“电子:我跳跳跳,能量变变变!”为了学好这门课,我每天都抱着厚厚的课本和笔记,在教室里、图书馆里埋头苦读。
有时候,为了搞清楚一个概念,我能琢磨上好几个小时。
有一次,我在图书馆里研究原子物理学的题目,旁边坐了一个学霸。
我看着一道怎么也解不出来的题,愁眉苦脸。
学霸可能是看不下去了,凑过来瞅了一眼,然后三言两语就给我讲明白了。
原子物理知识点整理归纳1、原子的组成?各粒子的发现者?如何发现的?2、汤姆孙是如何证明阴极射线是带负电的?又是如何得出这种带电粒子是原子的组成部分?3、汤姆孙提出的原子模型是什么样?后来被哪种实验事实所否定?4、α粒子散射实验的装置?实验现象?汤姆孙原子模型不能解释此实验中的何种现象?5、卢瑟福针对α粒子散射实验现象提出了什么样的原子模型?6、为什么卢瑟福认为电子一定要绕核旋转?7、卢瑟福是如何猜想出原子核内可能存在着不带电的中子的?8、原子核常用X AZ 来表示,请你讲出各符号的物理意义?为什么有时可简化写成X A呢?9、何为同位素?元素的化学性质决定于什么?10、 叫天然放射现象, 发现天然放射现象,揭开了人类研究 结构的序幕。
通过对天然放射现象的研究,人们发现原子序数 (填≥、<)83的所有元素都有放射线,原子序数 (填≥、<)83的元素有些也具有放射性。
11、放射线有三种:α射线、β射线、γ射线;请分别讲出它们的本质、来源、速度、电离本领、穿透本领、原子核自发地放出某种粒子而转变为 变化叫做原子核的衰变。
13、原子核发生衰变的种类: 。
14、α衰变:α衰变的实质是其元素的原子核同时放出由 质子和 中子组成的粒子(即氦核),每发生一次α衰变,新元素与原元素比较,核电荷数减少 ,质量数减少 ,即X A Z → + He 42。
15、β衰变:β衰变的实质是其元素的原子核内的一个 变成 时放出一个电子,每发生一次β衰变,新元素与原元素比较,核电荷数增加 ,质量数 ,即X A Z→ +e 01。
16、γ衰变:γ衰变是伴随着 和 同时发生的,γ衰变 (改变、不改变)原子核的电荷数和质量数,其实质是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出光子。
17、半衰期(1)定义:放射性元素的 发生衰变需要的时间。
(2)半衰期的大小由放射性元素的原子核 决定,跟原子所处的 (如压强、温度等)或 (如单质或化合物)无关。
高考高中物理学史归纳总结必修部分:(必修1、必修2)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
一、力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快:并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德等的观点(即:质量大的小球下落快是错误的)2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察一假设一数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,占希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律。
9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。
10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
新课标高考物理学史(人教版)高中物理学史一、力学1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。
2.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。
3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
6.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。
周期是2s的单摆叫秒摆。
7.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。
(相互接近,f增大;相互远离,f减少)二、电磁学1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。
3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
5.1841~1842年焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。
6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。
新课标高考高中物理学史(新人教版)必修部分:(必修1、必修2 )一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。
2、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
3、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
4、英国物理学家胡克对物理学的贡献:胡克定律。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳“地心说”。
7、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
8、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
9、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
10、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
高中物理物理学史总结必考部分全1、牛顿英国物理学家牛顿被称为站在巨人的肩膀上、具体有以下一些,所以牛顿肯定在这些人之后:①牛顿三大运动定律惯性定律、F=ma、相互作用力;②万有引力定律;对物理学的贡献:①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学也称牛顿力学或古典力学体系,物理学从此成为一门成熟的自然科学②经典力学的建立标志着近代自然科学的诞生经典题目:牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出引力常数对牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动对牛顿提出的万有引力定律奠定了天体力学的基础对2、伽利略意大利物理学家对物理学的贡献:①发现摆的等时性②物体下落过程中的运动情况与物体的质量无关③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页通过理想斜面实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的力是维持物体运动的原因的错误观点;经典题目:伽利略根据实验证实了力是使物体运动的原因错伽利略认为力是维持物体运动的原因错亚里士多德伽俐略首先将物理实验事实和逻辑推理包括数学推理和谐地结合起来对伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去对3、胡克英国物理学家对物理学的贡献:胡克定律经典题目:胡克认为只有在一定的条件下弹性限度内,弹簧的弹力才与弹簧的形变量成正比对4、★亚里士多德古希腊他的观点大多被伽利略推翻观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因经典题目: 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动5、 开普勒德国天文学家对物理学的贡献: 开普勒三定律研究行星运动轨迹的定律,怎么运动的,而为什么这么运动则由牛顿的万有引力说明经典题目: 开普勒发现了万有引力定律和行星运动规律错万有引力是牛顿6、 卡文迪许贡献:测量了万有引力常量G典型题目: 牛顿第一次通过实验测出了万有引力常量错卡文迪许卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值对7、 库仑法国物理学家贡献:发现了库仑定律并测出了静电力常量k 的值;扭秤实验,同万有引力作比较——标志着电学的研究从定性走向定量典型题目: 库仑总结并确认了真空中两个静止点电荷只能是真空的且必须为点电荷,不是点电荷的有区别之间的相互作用对库仑发现了电流的磁效应错奥斯特8、 密立根贡献:密立根油滴实验——测定元电荷:e=1.60C 1910-⨯;9、 奥斯特丹麦物理学家、★法拉第奥斯特和法拉第要对比着全看贡献: 电流的磁效应电流能够产生磁场经典题目: 奥斯特最早发现电流周围存在磁场对法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应错奥斯特贡献:①用电场线的方法表示电场 ②发现了电磁感应现象 ③发现了法拉第电磁感应定律E=n △Φ/△t经典题目: 奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象对法拉第发现了磁场产生电流的条件和规律对;奥斯特对电磁感应现象的研究,将人类带入了电气化时代错法拉第法拉第发现了磁生电的方法和规律对10、安培法国物理学家贡献:①磁场对电流可以产生作用力安培力,并且总结出了这一作用力遵循的规律②安培分子电流假说;发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则右手螺旋定则判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向;经典题目:安培最早发现了磁场能对电流产生作用对安培提出了磁场对运动电荷的作用力公式错洛伦兹11、洛伦兹荷兰物理学家贡献:1895年发表了磁场对运动电荷的作用力公式洛伦兹力12、楞次发现了楞次定律判断感应电流的方向13、汤姆生英国物理学家贡献:①发现了电子揭示了原子具有复杂的结构②建立了原子的模型——枣糕模型经典题目:汤姆生通过对阴极射线的研究发现了电子对14、★卢瑟福英国物理学家贡献:1、指导助手进行了α粒子散射实验记住实验现象;提出了原子的核式结构记住内容;2、发现了质子经典题目:汤姆生提出原子的核式结构学说,后来卢瑟福用粒子散射实验给予了验证错卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象错卢瑟福的a粒子散射实验可以估算原子核的大小对;卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成对15、波尔丹麦物理学家贡献:波尔原子模型很好的解释了氢原子光谱经典题目:玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律对玻尔理论是依据a粒子散射实验分析得出的错;玻尔氢原子能级理论的局限性是保留了过多的经典物理理论对16、★贝克勒尔法国物理学家贡献:发现天然放射现象揭示了原子核具有复杂结构经典题目:天然放射性是贝克勒尔最先发现的对;贝克勒尔通过对天然放射现象的研究发现了原子的核式结构错17、★伦琴贡献:发现了伦琴射线X射线18、★查德威克卢瑟福的学生贡献:发现了中子19、★约里奥.居里和伊丽芙.居里夫妇小居里夫妇贡献:①发现了放射性同位素②发现了正电子经典题目:居里夫妇用α粒子轰击铝箔时发现电子错;约里奥居里夫妇用α粒子轰击铝箔时发现正电子对20、★普朗克贡献:量子论21、★爱因斯坦贡献:①用光子说解释了光电效应②相对论经典题目:爱因斯坦提出了量子理论,普朗克提出了光子说错爱因斯坦用光子说很好地解释了光电效应对是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说错爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象错22、★麦克斯韦贡献:①建立了完整的电磁理论②预言了电磁波的存在,并且认为光是一种电磁波赫兹通过实验证实电磁波的存在经典题目:普朗克在前人研究电磁感应的基础上建立了完整的电磁理论对麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实对麦克斯韦通过实验证实了电磁波的存在错必修部分:必修1、必修2一、力学:1、1638年,意大利物理学家伽利略在两种新科学的对话中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点即:质量大的小球下落快是错误的;力是改变物体运动状态的原因而不是使物体的原因2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在自然哲学的数学原理著作中提出了三条运动定律即牛顿三大运动定律;4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向;5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比对6、1638年,伽利略在两种新科学的对话一书中,运用观察-假设-数学推理的方法,详细研究了自由落体运动;17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向;7、17世纪,德国天文学家开普勒提出开普勒三大定律;8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;9、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体;选修部分:选修3-1、3-2、3-4、3-5二、电磁学:选修3-1、3-210、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律—库仑定律,并测出了静电力常量k的值;11、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针;12、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场;13、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖;14、1826年德国物理学家欧姆1787-1854通过实验得出欧姆定律;15、1911年,荷兰科学家昂尼斯或昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象;16、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律;17、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应;18、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则右手螺旋定则判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向;19、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力洛仑兹力的观点;20、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流;21、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素;22、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律;23、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律;;六、光学3-4选做:24、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象;25、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波26、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变;27、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:;28.公元前468-前376,我国的墨翟及其弟子在墨经中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作;29.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法;注意其测量方法30.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波;这两种学说都不能解释当时观察到的全部光现象;31、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现;32、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变;33、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;34、激光——被誉为20世纪的“世纪之光”;八、波粒二象性3-5选做:35、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖;36、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性;说明动量守恒定律和能量守恒定律同时适用于微观粒子37、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础;38、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;39、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案;电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高;十、原子物理学3-5选做:40、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线高速运动的电子流;41、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖;42、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖;43、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型;44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型;由实验结果估计原子核直径数量级为10 -15m;1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子;预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成;45、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系;46、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;47、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构;天然放射现象:有两种衰变α、β,三种射线α、β、γ,其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的;衰变快慢与原子所处的物理和化学状态无关;48、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋Po 镭Ra;49、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子;50、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖;51、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素;52、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变;53、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆由浓缩铀棒、控制棒、减速剂、水泥防护层等组成;54、1952年美国爆炸了世界上第一颗氢弹聚变反应、热核反应;人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料;55、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子质子、中子、超子和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.物理学史专项训练在力学理论建立的过程中,有许多伟大的科学家做出了贡献;关于科学家和他们的贡献,下列说法正确的是A. 伽利略发现了行星运动的规律B. 卡文迪许通过实验测出了引力常量C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献2、在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象B.麦克斯韦语言了电磁波;楞次用实验证实了电磁波的存在C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值D.安培发现了磁场对运动电荷的作用规律;洛仑兹发现了磁场对电流的作用规律3、物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步;下列表述正确的是A.牛顿发现了万有引力定律 B.洛伦兹发现了电磁感应定律C.光电效应证实了光的波动性 D.相对论的创立表明经典力学已不再适用4、发现通电导线周围存在磁场的科学家是A.洛伦兹 B.库仑 C.法拉第 D.奥斯特5、物理学中的许多规律是通过实验发现的,以下说法符合史实的是A.法拉第通过实验发现了光电效应 B.奥斯特通过实验发现了电流能产生磁场C.波意耳首先通过实验发现了能量守恒定律 D.牛顿通过理想斜面实验发现了物体的运动不需要力来维持6下面说法正确的是,A卡文迪诗通过扭秤实验,测出了万有引力常量· B.牛顿根据理想斜面实验,提出力不是维持物体运动的原因C.在国际单位制中,力学的基本单位有牛顿、米和秒D.爱因斯坦的相对论指出在任何惯性参照系中光速不变7、许多科学家在物理学发展过程中做出了重要贡献;下列表述正确的是A.开普勒测出了万有引力常数 B.法拉第发现了电磁感应现象C.安培提出了磁场对运动电荷的作用力公式 D.库仑总结并确认真空中两个静止点电荷之间的相互作用规律8、许多科学家在物理学发展过程中做出了重要贡献,下列说法正确的是A.卡文迪许测出了引力常量B.奥斯特发现了电流的磁效应C.亚里士多德通过理想实验提出力并不是维持物体运动的原因D.库仑总结出了真空中两个静止点电荷之间的相互作用规律9、物理学中引入了“质点”、“点电荷”、“电场线”等概念,从科学方法上来说属于A.控制变量 B.类比 C.理想模型 D.等效替代10、通过α粒子散射实验A.发现了电子B.建立了原子的核式结构模型 C.爱因斯坦建立了质能方程D.发现某些元素具有天然放射现象11、物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步,下列表述正确的是A.牛顿通过实验测出了引力常量. B.牛顿发现了万有引力定律C.伽利略发现了行星运动的规律 D.洛伦兹发现了电磁感应定律12、物理学是建立在实验基础上的一门学科,很多定律是可以通过实验进行验证的,下列定律中不可以通过实验直接得以验证的是A. 牛顿第一定律B. 牛顿第二定律 C.牛顿第三定律 D.动量守恒定律13、下列说法正确的是A.牛顿发现了万有引力并测出了万有引力常量 B.爱因斯坦通过油滴实验测量了电子所带的电荷量C.安培提出了磁场对运动电荷的作用力公式 D.库仑总结并确认了真空中两个静止点电荷之间的相互作用规律14、在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步.对以下几位物理学家所作科学贡献的表述中,正确的说法是A.法拉第发现了电流的磁效应 B.爱因斯坦成功地解释了光电效应现象C.库仑发现了磁场产生电流的条件和规律 D.牛顿在实验室测出了万有引力常量15、在物理学发展史上,提出电磁波理论的科学家和提出相对论的科学家分别是A、法拉第爱因斯坦B、麦克斯韦赫兹C、惠更斯牛顿D、麦克斯韦爱因斯坦16、关于物理学研究方法,下列叙述中正确的是A、伽利略在研究自由落体运动时采用了微量放大的方法B、用点电荷来代替实际带电体是采用了理想模型的方法C、探究求合力方法的实验中使用了控制了变量的方法D、法拉第在研究电磁感应现象时利用了理想实验的方法参考答案:1、答案BD;解析行星运动定律是开普勒发现的A错误;B正确;伽利略最早指出力不是维持物体运动的原因,C错误;D正确;2、AC解析选项B错误,赫兹用实验证实了电磁波的存在;选项D错误,洛仑兹发现了磁场对运动电荷的作用规律,安培发现了磁场对电流的作用规律;3、答案A; 解析电磁感应定律是法拉第发现的,B错误;光电效应证实了光的粒子性,C错误;小队论和经典力学研究的领域不同,不能说相对论的创立表明经典力学已不再适用,D错误;正确答案选A;4、答案D解析发现电流的磁效应的科学家是丹麦的奥斯特.而法拉第是发现了电磁感应现象5、答案B解析爱因斯坦提出光子说科学假说,成功地解释了光电效应规律,伽利略通过理想斜面实验发现了物体的运动不需要力来维持;6、AD 解析在国际单位制中,力学的基本单位有米、千克、秒;7、BD 解析洛伦兹提出了磁场对运动电荷的作用力公式8、答案ABD解析奥斯特发现:电流可以使周围的磁针偏转的效应,称为电流的磁效应9、答案C 10、.答案B 11、答案B解析开普勒发现了行星运动的规律12、答案A13、答案D 解析密立根通过油滴实验测量了电子所带的电荷量14、答案B 15、答案D 解析麦克斯韦提出了电磁波理论16、B解析伽利略在研究自由落体运动时采用了猜想与假说或者是逻辑推理的方。
《高中物理学史知识点总结》物理学的发展是一部波澜壮阔的历史画卷,它不仅展现了人类对自然规律的不懈探索,也为现代科技的进步奠定了坚实的基础。
在高中物理学习中,了解物理学史对于深入理解物理概念和规律至关重要。
本文将对高中物理学史知识点进行全面总结。
一、力学部分1. 亚里士多德亚里士多德是古希腊著名的哲学家和科学家。
他认为力是维持物体运动的原因,重物下落比轻物快。
虽然他的观点在现在看来存在错误,但在当时对物理学的发展起到了一定的推动作用。
2. 伽利略伽利略是近代科学的奠基人之一。
他通过理想斜面实验推翻了亚里士多德的观点,指出力不是维持物体运动的原因,而是改变物体运动状态的原因。
他还发明了天文望远镜,对天文学的发展做出了巨大贡献。
3. 牛顿艾萨克·牛顿是英国著名的物理学家、数学家和天文学家。
他提出了万有引力定律和牛顿运动三定律,奠定了经典力学的基础。
万有引力定律解释了天体运动的规律,牛顿运动三定律则描述了物体在力的作用下的运动规律。
二、热学部分1. 布朗英国植物学家布朗在 1827 年发现了布朗运动,即悬浮在液体中的微粒不停地做无规则运动。
布朗运动间接证明了分子的无规则运动。
2. 克劳修斯和开尔文德国物理学家克劳修斯和英国物理学家开尔文分别独立地提出了热力学第二定律。
克劳修斯表述为:热量不能自发地从低温物体传到高温物体。
开尔文表述为:不可能从单一热源吸收热量,使之完全变为有用功而不产生其他影响。
三、电磁学部分1. 库仑法国物理学家库仑通过扭秤实验得出了库仑定律,即真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比。
2. 奥斯特丹麦物理学家奥斯特在 1820 年发现了电流的磁效应,即通电导线周围存在磁场。
这一发现打破了长期以来认为电与磁没有联系的观念。
3. 法拉第英国物理学家法拉第经过十年的不懈努力,终于在 1831 年发现了电磁感应现象,即闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流。
【高中物理】最全的物理学史一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5.英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。
6.1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8.17世纪,德国天文学家开普勒提出开普勒三大定律;9.牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
原子物理学
38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),
②热辐射实验——量子论(微观世界);
39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
狭义相对论的其他结论:
①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)
②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。
③相对论质量:物体运动时的质量大于静止时的质量。
41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。
42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。
说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
1906年,获得诺贝尔物理学奖。
44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。
由实验结果估计原子核直径数量级为10 -15 m 。
45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。
衰变快慢与原子所处的物理和化学状态无关。
46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子。
47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。
50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。
人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;
强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。
54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。