高二数学试题(文数)
- 格式:doc
- 大小:148.65 KB
- 文档页数:7
高二上学期数学试题
数学(文科)
一.选择题(每小题5分,每小题只有一个正确答案,请将正确答案填在答题卡上)1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()
A.3 B.4 C.5 D.6
2.直线的倾斜角α=()
A.30°B.60°C.120°D.150°
3.在等差数列{a n}中,a20l5=a2013+6,则公差d等于()
A.2 B.3 C.4 D.6
4.已知向量=(1,2),=(x,4),若向量∥,则x=()
A.2 B.﹣2 C.8 D.﹣8
5.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()
A.B.C.D.
6.已知等差数列{a n}中,|a3|=|a9|,公差d<0;S n是数列{a n}的前n项和,则()A.S5>S6B.S5<S6C.S6=0 D.S5=S6
7.已知直线l⊥平面α,直线m⊂平面β,给出下列命题
①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正确命题的序号是()
A.①②③B.②③④C.①③D.②④
8.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
9.当时,函数f(x)=sinx+cosx的()
A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣
C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣1
10.函数f(x)=a x-1﹣2(a>0,a≠1)的图象恒过定点A,若点A在直线mx﹣ny﹣1=0上,其中m>0,n>0,则的最小值为()
A.4 B.5 C.6 D.
11.若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的
值是()
A.﹣2 B.0 C.1 D.2
12.已知数列{a n}中,a n+1=3S n,则下列关于{a n}的说法正确的是()
A.一定为等差数列B.一定为等比数列
C.可能为等差数列,但不会为等比数列D.可能为等比数列,但不会为等差数列二.填空题(共4小题,每小题5分,请将正确答案填在答题卡上)
13.不等式|x+1|+|x﹣2|≤5的解集为.
14.已知正项等比数列{a n}的公比q=2,若存在两项a m,a n,使得=4a1,则+的最小值为.
15.已知变量x,y满足,则的取值范围是.
16.等比数列{a n}的前n项和为S n,且a3=2S2+1,a4=2S3+1,则公比q为.三.解答题(共6小题,共70分,解答过程必须写出正确计算、推理过程)17.(10分)设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0,
P ;
(1)若命题p的解集为P、命题q的解集为Q,当a=1时,求Q
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
18.(10分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.
19.(12分)等差数列{a n}中,a2=8,S6=66
(1)求数列{a n}的通项公式a n;
(2)设b n=,T n=b1+b2+b3+…+b n,求T n
20.(12分)设数列{a n}的前n项和为S n,且首项a1≠3,a n+1=S n+3n(n∈N*).
(1)求证:{S n﹣3n}是等比数列;(2)若{a n}为递增数列,求a1的取值范围.
21.(12分)已知向量=(,cos2ωx),=(sin2ωx,1),(ω>0),令f(x)=,且f(x)的周期为π.
(1)求函数f(x)的解析式;
(2)若时f(x)+ m≤3,求实数m的取值范围.
22.(14分)已知函数f(x)=x2+(3﹣a)x+2+2a+b,a,b∈R.
(1)若关于x的不等式f(x)>0的解集为{x|x<﹣4或x>2},求实数a,b的值;(2)若关于x的不等式f(x)≤b在x∈[1,3]上有解,求实数a的取值范围;
(3)若关于x的不等式f(x)<12+b的解集中恰有3个整数,求实数a的取值范围.
数学(文科)参考答案
一.选择题(每小题5分,每小题只有一个正确答案,请将正确答案填在答题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B
D
B
A
D
D
C
A
D
D
D
C
二.填空题(共4小题,每小题5分,请将正确答案填在答题卡上)
[]
3
1625,4515
2
314
3,213
⎥⎦
⎤⎢⎣⎡-
三.解答题(共6小题,共70分, 解答过程必须写出正确计算、推理过程)
17.(10分)解:解:(1)若a=1,由x 2﹣4x+3<0得:1<x <3,)3,1(=∴P -----------------------2
分 由
得:2<x≤3;
(]3,2=∴Q -----------------------------------------------------------------------4分
∴ =⋂Q P (2,3)
---------------------------------------------------------------------------------------------------5分
(2)¬q 为:实数x 满足x≤2,或x >3;
¬p 为:实数x 满足x 2﹣4ax+3a 2≥0,并解x 2﹣4ax+3a 2≥0得x≤a ,或x≥3a --------------------------7分
¬p 是¬q 的充分不必要条件,所以a 应满足:a≤2,且3a >3,解得1<a≤2--------------------------9分
∴a 的取值范围为:(1,
2]------------------------------------------------------------------------------------------10分
18.(10分)解:(1)∵asin2B=
bsinA ,
∴2sinAsinBcosB=sinBsinA ,
-------------------------------------------------------------------------------------2分 ∴cosB=,
∴B=
.----------------------------------------------------------------------------------------------5分
(2)∵cosA=,∴sinA=
-------------------------------------------------------------------------------------7分