2020年九年级数学上期末试卷带答案

  • 格式:doc
  • 大小:685.50 KB
  • 文档页数:18

下载文档原格式

  / 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,
根据题意列出方程x(28-2x)=80,
解得x1=4,x2=10
因为8≤x<14
∴与墙垂直的边 为10m
故答案为C.
【点睛】
本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.
24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6
(1)当每吨销售价为多少万元时,销售利润为0.96万元?
(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?
(2)请写出此题正确的解答过程.
23.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
11.如图, 中, .将 绕点 顺时针旋转 得到 ,边 与边 交于点 ( 不在 上),则 的度数为()
A. B. C. D.
12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )
A. B. C. D.
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
∴a>0,
∵对称轴在y轴的右侧,
∴a,b异号,
∴b<0,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵x=1时,y<0,
∴a+b+c<0,故②错误,
∵x=-1时,y>0,
∴a-b+c>0,
∴a+c>b,故③正确,
∵对称轴x=1,
∴- =1,
∴2a+b=0,故④正确,
∵抛物线与x轴有两个交点,
3.如图,AB是⊙ 的直径,AC是⊙ 的切线,A为切点,BC与⊙ 交于点D,连结OD.若 ,则∠AOD的度数为( )
A. B. C. D.
4.下列图形中既是轴对称图形又是中心对称图形的是( )
A.正三角形B.平行四边形C.正五边形D.正六边形
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
解析:
【解析】
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
8.A
解析:A
【解析】
【分析】
根据一元二次方程根与系数的关系求解即可.
【详解】
设x1,x2是一元二次方程的两个根,

∴x1+x2=3,x1∙x2=-c,
∴该一元二次方程为: ,即
故选A.
【点睛】
此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.
9.B
解析:B
【解析】
【分析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
∴△=b2-4ac>0,故⑤错误,
故选D.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.
11.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得 的度数.
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
A.4个B.3个C.2个D.1个
6.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()
A. B. C. D.
7.如图,某中学计划靠墙围建一个面积为 的矩形花圃(墙长为 ),围栏总长度为 ,则与墙垂直的边 为()
A. 或 B. C. D.
8.以 为根的一元二次方程可能是( )
A. B. C. D.
9.方程x2=4x的解是( )
A.x=0B.x1=4,x2=0C.x=4D.x=2
10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤ =b2-4ac<0中,成立的式子有( )
A.②④⑤B.②③⑤
C.①②④D.①③④
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.Hale Waihona Puke Baidu
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
12.B
解析:B
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.
20.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若 AOC=80°,则 ADB的度数为()
A.40° B.50° C.60° D.20°
三、解答题
21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
14.设 、 是方程 的两个实数根,则 的值为_____.
15.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.
16.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.
17.关于x的一元二次方程 有两个不相等的实数根,则实数a的取值范围是______.
2020年九年级数学上期末试卷带答案
一、选择题
1.若二次函数y=ax2+1的图象经过点(-2,0),则关于x的方程a(x-2)2+1=0的实数根为( )
A. , B. ,
C. , D. ,
2.关于x的方程(m﹣3)x2﹣4x﹣2=0有两个不相等的实数根,则实数m的取值花围是( )
A.m≥1B.m>1C.m≥1且m≠3D.m>1且m≠3
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
22.小明在解方程 时出现了错误,其解答过程如下:
解: (第一步)
(第二步)
(第三步)
(第四步)
(1)小明解答过程是从第几步开始出错的,写出错误原因.
2.D
解析:D
【解析】
【分析】
根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.
【详解】
解:∵(m-3)x2-4x-2=0是关于x的方程有两个不相等的实数根,

解得:m>1且m≠3.
故答案为D.
【点睛】
本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.
C.是轴对称图形,不是中心对称图形,故错误;
D.是轴对称图形,也是中心对称图形,故正确.
故答案选:D.
【点睛】
本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.
5.B
解析:B
【解析】
【分析】
【详解】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
【详解】
x2=4x,
x2﹣4x=0,
x(x﹣4)=0,
x﹣4=0,x=0,
x1=4,x2=0,
故选B.
【点睛】
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
10.D
解析:D
【解析】
【分析】
根据二次函数的性质,利用数形结合的思想一一判断即可.
【详解】
解:∵抛物线的开口向上,
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
∵x=﹣ =1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
【详解】
解:∵二次函数y=ax2+1的图象经过点(-2,0),
∴4a+1=0,
∴a=- ,
∴方程a(x-2)2+1=0为:方程- (x-2)2+1=0,
解得:x1=0,x2=4,
故选:A.
【点睛】
本题考查了二次函数与x轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.
6.B
解析:B
【解析】
【详解】
∵AC>BC,
∴AC是较长的线段,
根据黄金分割的定义可知: = ≈0.618,
故A、C、D正确,不符合题意;
AC2=AB•BC,故B错误,符合题意;
故选B.
7.C
解析:C
【解析】
【分析】
设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.
25.如图,二次函数 的图象经过点 与 .
求a,b的值;
点C是该二次函数图象上A,B两点之间的一动点,横坐标为 ,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
二次函数y=ax2+1的图象经过点(-2,0),得到4a+1=0,求得a=- ,代入方程a(x-2)2+1=0即可得到结论.
∴∠AOD=40 +40 =80
故答案为C.
【点睛】
本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.
4.D
解析:D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故错误;
B.不是轴对称图形,是中心对称图形,故错误;
【详解】
解:画树状图如下:

一共12种可能,两人摸出的小球颜色相同的有6种情况,
所以两人摸出的小球颜色相同的概率是 = ,
故选:B.
【点睛】
此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在
3.C
解析:C
【解析】
【分析】
由AC是⊙ 的切线可得∠CAB= ,又由 ,可得∠ABC=40 ;再由OD=OB,则∠BDO=40 最后由∠AOD=∠OBD+∠OBD计算即可.
【详解】
解:∵AC是⊙ 的切线
∴∠CAB= ,
又∵
∴∠ABC= - =40
又∵OD=OB
∴∠BDO=∠ABC=40
又∵∠AOD=∠OBD+∠OBD
18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.
19.若 、 是方程 的两个实数根,且x1+x2=1-x1 x2,则 的值为________.