钌金属催化剂
- 格式:doc
- 大小:39.00 KB
- 文档页数:3
催化氢化常用的催化剂
常用的催化氢化催化剂主要有以下几种:
1. 铂族金属催化剂:包括铂、钯、钌等。
它们具有良好的催化活性和选择性,用于催化氢化反应可产生较高的转化率和产率。
2. 氢气化钠(NaBH4):它是一种常用的氢源,可以在低温
下催化多种有机物的氢化反应。
3. 钼酸盐(如过钼酸铵、氧化钼等):钼酸盐催化剂在有机合成中广泛应用于氢化反应,特别适用于氢化苯环上的芳基。
4. 锰酸盐(如乾锰酸钠):锰酸盐催化剂可用于不饱和化合物的催化氢化反应。
这些催化剂在催化氢化反应中能够提供活化的氢原子,并参与反应中间体的形成和转化,从而促进反应的进行。
不同的催化剂在不同的反应条件下具有不同的催化活性和选择性,选择合适的催化剂对于实现高效催化氢化反应非常重要。
金属钌催化剂
金属钌催化剂是由金属钌组成的具有催化活性的物质。
钌是一种过渡金属,具有较高的催化活性和化学稳定性,因此被广泛应用于催化反应中。
金属钌催化剂能够参与各种有机和无机反应,包括氧化、还原、重氮化、氢化、烷基化、炔化、异构化等。
在有机合成中,金属钌催化剂可以实现高效、高选择性的转化,促进化学反应的进行。
金属钌催化剂的应用范围非常广泛,包括合成有机化合物、合成高分子材料、能源转化、环境保护等领域。
例如,金属钌催化剂可以用于合成药物、化学原料、农药、生物活性物质等有机化合物;也可以用于制备聚合物、塑料、橡胶等高分子材料;还可以应用于催化裂化、燃料电池、光电催化等领域。
金属钌催化剂的研究和应用对于提高化学反应的效率、减少能源消耗、降低环境污染具有重要意义。
同时,金属钌催化剂的设计和开发也是一个前沿领域,在催化科学和化学工程等领域具有重要的科学和应用价值。
钌市场需求分析1. 引言钌是一种贵金属,具有优异的抗腐蚀性和催化性能,在电子、化工、能源等行业有着广泛应用。
本文将对钌市场需求进行分析,以揭示当前和未来的市场趋势。
2. 钌市场概述钌市场以供应链为基础,涵盖矿产开采、冶炼加工、产品研发和销售等环节。
目前,全球钌市场主要集中在亚洲地区,尤其是中国和韩国。
3. 钌市场需求分析3.1 电子行业需求钌在电子行业中应用广泛,尤其是在半导体制造和信息技术领域。
随着电子消费品和通信设备市场的快速发展,对钌的需求也在不断增长。
预计未来几年,电子行业对钌的需求将持续增加。
3.2 化工行业需求钌催化剂在化工行业中发挥着重要作用。
钌催化剂可以用于氧化反应、烃类转化和农药生产等过程中,具有高催化活性和选择性。
随着可持续化工技术的发展和环境保护要求的提高,对钌催化剂的需求将持续增加。
3.3 能源行业需求钌在能源行业中主要应用于燃料电池和太阳能电池等领域。
燃料电池作为一种清洁能源技术,对钌的需求量大且稳定。
同时,随着太阳能发电技术的进一步发展,对钌的需求也将不断增加。
4. 钌市场发展趋势4.1 新能源需求推动市场增长随着全球对清洁能源的需求不断增加,燃料电池技术和太阳能发电技术等领域将成为钌市场的主要增长驱动力。
预计未来几年,这些新能源领域对钌的需求将继续增长。
4.2 技术创新带来市场机遇技术创新在钌市场中起着重要作用。
随着科技的不断进步,新的钌应用领域将不断涌现,如半导体材料、光触媒和汽车催化剂等。
这些新的市场机遇将进一步推动钌市场的发展。
4.3 国际竞争日趋激烈中国和韩国等亚洲国家是全球钌市场的主要参与者,但随着其他国家和地区的发展,国际竞争将日趋激烈。
为了在竞争中保持优势,企业需要不断提升产品质量和技术水平。
5. 总结本文通过对钌市场需求的分析,揭示了电子、化工和能源行业对钌的需求正在增长,并介绍了钌市场的发展趋势。
企业应密切关注市场变化,及时调整战略,以抓住市场机遇,保持竞争优势。
ru 和 ir 基贵金属催化剂
Ru和Ir是两种重要的贵金属元素,它们在催化剂领域具有重
要的应用价值。
首先,让我们来看一下Ru和Ir在催化剂中的应用。
Ru(钌)是一种重要的贵金属元素,它在催化剂领域有着广泛
的应用。
Ru催化剂在有机合成、氢化反应、氧化反应、还原反应等
方面具有重要作用。
例如,Ru催化剂在有机合成中常用于烯烃的氢
化反应,可以高效地将烯烃转化为烷烃。
此外,Ru催化剂还在氨合成、乙烯氧化、甲醇合成等工业领域有着重要的应用。
Ir(铱)也是一种重要的贵金属元素,在催化剂领域具有重要
的应用。
Ir催化剂在有机合成、氢化反应、氧化反应等方面具有重
要作用。
例如,Ir催化剂在有机合成中常用于羰基化反应、烯烃的
氢化反应等。
此外,Ir催化剂还在石油加工、有机氧化等工业领域
有着重要的应用。
总的来说,Ru和Ir作为贵金属催化剂,在有机合成、氢化反应、氧化反应、还原反应等领域具有着重要的应用价值。
它们的应
用不仅可以提高反应的选择性和产率,还可以促进工业化生产的发展。
同时,随着对环境友好型催化剂需求的增加,Ru和Ir催化剂
的研究和开发也将持续受到关注,以期望找到更加高效、低成本、可持续的替代品。
贵金属合金催化剂贵金属合金催化剂是一类具有高效催化活性和稳定性的催化剂,其中贵金属如铂、钯、铑、钌等常被选作催化剂的活性中心。
贵金属合金催化剂在许多领域都具有广泛的应用,例如环境保护、能源储存和利用、有机合成等。
下面将针对几个具有代表性的贵金属合金催化剂进行介绍。
铂基催化剂是最常见的贵金属合金催化剂之一。
铂基催化剂通常是由铂和其他金属(如钯、钌、铑等)形成合金。
这种合金催化剂具有优秀的稳定性和活性,广泛应用于氧还原反应、有机合成和电化学催化等领域。
例如,铂钯合金催化剂被广泛应用于汽车尾气催化转化系统,用于将有害气体如一氧化碳、氮氧化物和挥发性有机物转化为无害物质。
钯基催化剂也是一类重要的贵金属合金催化剂。
钯基催化剂常用于加氢反应、氧化反应和还原反应等。
例如,钯基催化剂常用于有机合成中的氢化反应,可以高效地将不饱和化合物还原成饱和化合物。
此外,钯基催化剂还广泛应用于环境保护领域,例如,钯基催化剂可以将有害的硝酸盐还原为无害的氮气。
铑基催化剂是另一类常见的贵金属合金催化剂。
铑基催化剂具有优异的催化性能,在有机合成和氧化反应中得到广泛应用。
铑基催化剂常用于羰基化反应、羰基还原反应和偶联反应等。
例如,铑基催化剂可以催化烯烃与二氧化碳发生羰基化反应,用于合成有机酸。
此外,铑基催化剂还常用于医药领域和材料科学中,如用于合成抗癌药物和制备纳米材料等。
钌基催化剂是一类新兴的贵金属合金催化剂,具有良好的催化性能和化学稳定性。
钌基催化剂常用于水电解产氢、氧还原反应和有机合成中的氢转移反应等。
例如,钌基合金催化剂可以催化水分解产生氢气,作为清洁能源的一种重要方法。
此外,钌基催化剂还常用于有机合成中的氢转移反应,例如,钌铱合金催化剂可以催化芳烃的去氢反应,用于合成高附加值的化合物。
综上所述,贵金属合金催化剂在许多领域都具有广泛的应用。
铂基催化剂、钯基催化剂、铑基催化剂和钌基催化剂是常见的几类贵金属合金催化剂,它们在不同的催化反应中发挥着重要的作用。
金属催化剂及其相关催化过程金属催化剂是一类广泛应用于化学反应中的催化剂,通过调变反应物和产物之间的能垒,加速反应速率。
金属催化剂以金属元素或以金属为主要成分的化合物为催化剂的主体。
以下将介绍几个常见的金属催化剂及其相关催化过程。
1.贵金属催化剂贵金属催化剂是指铂、钯、铑、钌等贵金属及其合金催化剂。
这些催化剂活性高、选择性好、稳定性强。
铂催化剂在氢气氧化反应中具有重要的应用。
贵金属催化剂常用于有机合成中的氢化反应、加氢反应、氧化反应等催化过程。
2.过渡金属催化剂过渡金属催化剂主要指镍、铁、铜等过渡金属及其化合物。
这些过渡金属具有良好的催化活性和选择性,常用于有机合成中的氢化反应、偶联反应、氧化反应等催化过程。
例如,铁催化剂在氧气存在下可以促进苯的氢化反应,催化剂中的过渡金属镍可以催化合成氢化物。
3.锂催化剂过渡金属锂及其化合物作为锂催化剂,其催化活性高,常用于电化学反应中。
锂催化剂在锂氧电池中起到催化氧还原反应的作用,提高电池的能量密度和循环寿命。
此外,锂催化剂还可以应用于有机合成中的碳-碳键和碳-氮键偶联反应。
4.铁催化剂铁催化剂是近年来受到广泛关注的一类催化剂,其优势在于价格低廉、丰富资源、环境友好。
铁催化剂常用于有机合成中的氢化反应、还原反应、碳-碳键形成反应等。
其催化活性和选择性可以通过配体的选择和反应条件的调控来进行优化。
金属催化剂的催化过程主要包括吸附、表面反应和解吸三个步骤。
首先,反应物的吸附在催化剂表面,吸附过程可以通过电子转移或键的共享来实现。
吸附后,反应物在催化剂表面进行表面反应,活化反应物,产生过渡态中间体,从而形成产物。
最后,产物通过解吸或反应物再次吸附来离开催化剂表面。
综上所述,金属催化剂是一类重要的催化剂,在化学反应中起到促进反应速率和增强反应选择性的作用。
贵金属催化剂、过渡金属催化剂、锂催化剂和铁催化剂是常见的金属催化剂。
金属催化剂的催化过程包括吸附、表面反应和解吸三个步骤,其催化活性和选择性可以通过调控多种因素进行优化。
钌单原子催化剂钌单原子催化剂是一种新型的催化剂,其特点是在催化反应中仅存在单个钌原子,能够有效提高催化效率和选择性。
本文将介绍钌单原子催化剂的原理、研究现状以及应用前景。
钌单原子催化剂的原理基于多相催化的基本原理,即使用某种化合物将催化剂与反应物接触,以促进反应过程。
催化剂在催化反应中起到的作用是降低反应活化能,提高反应速率和选择性。
传统的多相催化剂多为晶体或纳米粒子结构,而钌单原子催化剂的特殊之处在于其催化反应中仅存在单个钌原子,相比其他催化剂,具有以下优点:1. 活性位点高度可控:由于催化剂仅存在单个钌原子,其活性位点的数量、位置和结构可以被精确控制,从而提高催化效率和选择性。
2. 催化效率高:由于钌单原子催化剂的活性位点与反应物分子间可以发生高度专一的相互作用,从而降低了反应的活化能,提高了反应速率。
钌单原子催化剂的研究始于2013年,至今已有数百篇相关论文发表。
其应用领域主要涉及催化剂、电催化剂及表面催化等方面,包括有机合成、CO2还原、水电解等。
在有机合成领域,钌单原子催化剂可以替代传统的贵金属催化剂,提高产物优化度和反应速率,同时降低成本。
例如,研究人员利用钌单原子催化剂的羰化反应合成了多种有机化合物,提高了反应速率和选择性。
在CO2还原领域,研究人员使用钌单原子催化剂成功将CO2和水转化成甲酸和甲醇等有机化合物。
由于钌单原子催化剂具有高度可控的活性位点,反应速率和选择性得到了极大提升。
在水电解领域,研究人员采用钌单原子催化剂将水分子还原成氢气,并在反应中加入电弧放电,可获得高效的催化效果。
经过实验验证,钌单原子催化剂在水分解反应中具有高效的马达斯效应(Madelung效应),可提高电荷密度及电子转移。
由于其具有高效、高选择性及可控性等特点,钌单原子催化剂在多个领域均有应用前景。
在环保领域,钌单原子催化剂可用于CO2的还原及水分解等反应,将环境中的废气转化为有用的化合物,从而具有显著的减排效果。
钌系催化剂的应用作者:admin 来源:未知日期:2010-6-3 11:04:16 人气:57 标签:钌系催化不饱和化合物加氢反应肉桂醛导读:Ru被认为是适于苯及其衍生物选择性加氢生成环烯的催化剂,也是适于苯环上或与共轭的、单一的双键相邻的羰基选择性加氢的催化剂[1]。
在脂肪族羰基化合物加氢所用…Ru被认为是适于苯及其衍生物选择性加氢生成环烯的催化剂,也是适于苯环上或与共轭的、单一的双键相邻的羰基选择性加氢的催化剂[1]。
在脂肪族羰基化合物加氢所用的催化剂中,钌是最有活性的,尤其是在水存在的条件下。
Pt和Ru可催化α,β_不饱和醛生成α,β_不饱和醇。
与Pt相比Ru具有较高的价格性能比。
肉桂醛是α,β_不饱和醛中有代表性的化合物,其选择性加氢产物肉桂醇是香料、药物以及其它精细化工产品生产的重要原料和中间体,在有机合成中有着广泛的应用。
因此,肉桂醛选择性加氢生成肉桂醇的反应,不仅具有理论上的意义,而且具有实际应用价值。
负载型金属催化剂催化α,β_不饱和醛的多相选择加氢,已越来越引起催化工作者的广泛关注。
将Ni和Ru催化剂分别用来催化葡萄糖加氢生成山梨醇的反应,在低温低压的条件下,Ru催化剂的性能更好,同时可降低生产成本及避免生成焦糖。
而且不像Ni,Ru不会进入糖的溶液,减少了提纯阶段的昂贵费用[5]。
相同条件下活性炭负载的Ru催化剂的活性是硅藻土负载的Ni催化剂的50倍。
Ru催化剂还可用来催化苯及甲苯部分加氢生成环己烯和甲基环己烯,使用水及有机添加剂,可提高生成环烯的选择性[7]。
芳香族化合物在Ru催化剂上生成相应中间产物的速率因取代基性质、数目及位置的不同而各异。
1 Ru加氢催化剂的制备Ru催化剂的制备方法有浸渍法[8]、沉淀法[9]、离子交换法[10]、化学混合法[11]等,离子交换法通常用来制备沸石负载的Ru催化剂。
化学混合法是将RuCl3·xH2O用二元醇溶解,与金属醇盐混合,在60~80℃保持2~4h,并不断加水,使金属络合物混合溶液变为粘性溶液,逐渐变为凝胶。
铱钌催化剂铱钌催化剂是一种在有机合成领域广泛应用的重要催化剂。
它的独特性能和高效性使得铱钌催化剂成为许多有机合成反应的首选催化剂。
1. 引言铱钌催化剂是指以铱或钌元素为催化中心的催化剂。
它们常常被用于进行复杂有机分子的合成,具有高选择性和高效性。
铱钌催化剂可以催化多种反应,例如氢化反应、氢化脱氨化反应、碳-氮键和碳-碳键的形成等。
2. 铱钌催化剂的合成铱钌催化剂的合成方法多种多样,但通常都是通过配位化学的方式来获得。
一种常见的合成方法是将含有铱或钌的金属前体与配体进行配位反应,生成配位化合物,然后通过还原反应将配位化合物还原为金属催化剂。
3. 铱钌催化剂的应用铱钌催化剂在有机合成领域有广泛的应用。
以下是一些典型的应用例子:3.1 烯烃氢化反应铱钌催化剂可以催化烯烃的氢化反应,将烯烃转化为饱和烃。
这种反应对于制备高纯度信号分子、药物和高性能材料等有重要意义。
3.2 氢化脱氨化反应铱钌催化剂可以催化氢化脱氨化反应,将脂肪胺转化为醇和丙烯脱氨化物。
该反应常常被用于合成高级精细化学品和医药中间体。
3.3 碳-氮键和碳-碳键的形成铱钌催化剂可以催化碳-氮键和碳-碳键的形成反应。
这种反应在合成复杂有机分子中起到重要的作用,例如合成天然产物和药物分子等。
4. 铱钌催化剂的优势铱钌催化剂相对于其他常见催化剂具有以下优势:4.1 高选择性铱钌催化剂可以在反应中高选择性地催化目标键的形成,减少了副产物的产生,提高了合成效率。
4.2 可重复使用铱钌催化剂通常具有较高的稳定性,可以通过简单的再生步骤进行多次催化反应,减少了催化剂的用量和废弃物的产生。
4.3 可控性铱钌催化剂的催化反应通常具有较好的可控性,可以通过调节反应条件来合成不同的产物,满足不同合成需求。
5. 结论铱钌催化剂在有机合成领域具有广泛的应用前景。
它们的高选择性、可重复使用和可控性使得铱钌催化剂成为现代有机合成的重要工具。
随着有机合成领域的发展,铱钌催化剂将继续发挥重要的作用,推动有机合成的进一步发展。
钌催化剂氯离子中毒有办法避免吗2016-05-20 12:51来源:内江洛伯尔材料科技有限公司作者:研发部钌催化剂RuCl3结构氯离子和含氯离子的化合物是钌催化剂的氨合成与氮气吸附的毒物,因此除去催化剂中的氯离子是制备高性能钌催化剂的重要保证。
目前常用的除氯办法有以下三种:1、氢气还原脱氯方法是将浸渍了RuCl3溶液的催化剂样品干燥后,置于流动氢气的环境中,在一定温度下进行还原处理。
还原的目的有两个,一是使母体化合物转变为单质钌,二是将残留的Cl-脱除。
这种方法利用了纯RuCl3与氢气发生还原反应的原理。
当没有载体存在时,该反应在175℃左右就可以发生。
但在催化剂还原过程中,生成的HCl有可能被载体再次吸附,因此使得氯离子可能无法被除尽。
Murata等的研究表明单通过氢气还原不可能完全除去Ru/MgO上的氯离子,即使还原的温度高达700℃仍有20 %的氯残留,大部分以MgCl2的形式存在。
他们认为在700-900K还原过程中发生了如下的反应:2RuCl3+3H2=2Ru+6HCl2HCl+MgO=MgCl2+H2O2RuCl3+3MgO=Ru2O3+3MgCl2Ru2O3+3H2=2Ru+3H2ONarita等在用氢气还原Ru/Al2O3催化剂的过程中发现,即使在900K的还原温度下,催化剂中仍然有大量的氯离子被包裹在Al2O3载体中而不能被除去。
Zeng 等研究了不同温度下5wt%Ru/HTAC催化剂上的脱氯情况。
通过元素分析发现,即使是还原温度高达450℃和600℃下对催化剂进行脱氯还原24h,催化剂上仍然分别有0.08%和0.05%的氯存在。
梁长海用AgNO3溶液浸渍在400℃氢还原得到的Ru/AC催化剂,发现在样品表面迅速生成白色的氯化银,证明了以上的猜测。
对于氢气还原法脱氯,对于不同载体的催化剂,国内外做过多方面的研究,主要是从还原温度和还原时间两个方面考察脱氯的效果。
Murata和Aika的研究表明在Ru/MgO的还原过程中,还原的温度越高催化剂中氯离子的量(用Cl/Mg值表示)越少。
烯烃复分解反应打破了通常意义下C=C双键的反应模式,为有机化合物的合成提供了新途径。
钌催化剂广泛应用于复分解反应,其中Grubbs催化剂是烯烃复分解反应中常用的催化剂。
➢Grubbs催化剂的广泛使用,是因为如下特点:
*形成、破坏、重排C=C双键
*对各种官能团的高耐受性
*在空气中的高稳定性
*种类繁多的此类试剂可供选择
Grubbs二代催化剂和Hoveyda-Grubbs改性催化剂的发展在很大程度上是由对更活跃的催化剂的需求所推动的,这些催化剂可以实现一代系统所不能实现的转变,例如对空间要求高的烯烃和缺电子烯烃的转化。
虽然这些改进的催化剂拓宽了烯烃化合反应的领域,但在某些情况下,一代催化剂在给定的化合反应中仍能提供优异或更优的结果。
因此,在许多情况下,并没有一个通用的转位催化剂。
➢钌催化剂广泛应用于以下复分解反应:
1、闭环复分解反应(RCM)
2、交叉复分解反应(CM)
3、开环复分解反应(ROM)
4、烯炔复分解反应
5、开环复分解聚合反应(ROMP)
6、非环双烯复分解聚合反应(ADMET)。
钌金属催化剂
1 钌催化剂简介
金属催化剂是指以金属为主要活性组分的固体催化剂。
主要是贵金属及铁、钴、镍等过渡元素。
有单金属和多金属催化剂。
近半个世纪以来,贵金属催化剂的发展十分迅速,已被广泛应用于石油化工、制药、环境工程和精细化工工业。
其中钌在有机物如烯烃和醇的催化氧化中具有很好的活性;同时还具有良好的加氢性能;可以在常温常压下活化N2和H2分子,适用于低温低压下合成氨;因而对钌催化剂进行研究开发具有重要的理论意义和工业应用前景。
Ru原子的电子结构为
4d75s1,是氧化态最多的元素,每一种电子结构又具有多种几何结构,为多样的Ru配合物合成提供良好的基础,因而广泛应用于烯烃复分解聚合和异构化等有机合成反应中
2 应用实例
以钌催化苯选择加氢制备环己烯的反应为例。
2.1 主催化剂
在苯选择加氢制备环己烯的反应中,Ru、Ni、Pt、Rh、Pd和稀土(La、Eu、Yb)等第Ⅷ族及周边的金属都具有一定的活性。
使用Pt、Ir、Pd等金属的络合物催化加氢制备环己烯时,环己烯选择性几乎100%,收率可达90%,但该过程过于复杂,难以实现工业化;采用苯蒸气为原料进行气固相催化加氢制备环己烯时,Ni、Ru、Rh都是较好的催化剂,但因其反应条件苛刻,使得环己烯得率很低。
大量研究表明,对于目前研究得最多、并且已用于工业生产的气液液固相法催化加氢,Ru是最合适的主催化剂,它可有效抑制环己烯的深度加氢,具有较高的苯选择加氢性能。
但是,Ru催化剂的性能,也受到催化剂前驱体、制备方法、助剂和载体等因素的影响。
对于液相苯部分加氢制备环己烯的反应,钌是最适宜的催化剂。
随着活性组分前驱体RuCl3·3H2O、Ru(acac)3、Ru(Ac)3和Ru(NO)(NO3)3的不同,钌的分散状况、电子云密度等发生变化,从而对反应活性、环己烯的选择性和得率影响较大。
Milone等的研究发现,以RuCl3·3H2O作为前驱体制备的催化剂在催化苯部分加氢时有着较高的环己烯选择性。
其可能的原因是,使用RuCl3·3H2O作为前驱体时,催化剂中将残留少量Cl-,这些残留的Cl-
优先占据催化剂上一些对环己烯吸附能力非常强的活性位,从而有利于环己烯脱附,提高环己烯的选择性。
此外,吸附在催化剂表面的氯离子,还可能与水形成氢键,从而有利于提高催化剂表面的亲水性,而催化剂表面亲水性的提高有利于苯部分加氢生成环己烯。
但在催化剂的表面引入Cl元素,催化活性会显著降低,所以如何控制Cl元素的含量,获得较佳的反应活性和环己烯选择性,是需要解决的一个问题。
2.2 助催化剂
助催化剂也称促进剂,它是催化剂中含量较少的物质。
虽然它本身常无催化活性,但加入后,可大大提高主催化剂的活性、选择性或寿命。
假设在苯选择加氢制备环己烯的钌基催化剂中加入加氢能力比钌弱,但与环己烯间的吸附比钌强的助剂,利用它从钌上夺取环己烯,或者减少钌催化剂活性点附近潜在的氢的数量,使环己烯深度加氢难以进行,从而提高环己烯的选择性。
众多文献报道,在苯选择加氢负载型钌催化剂中加入一种或几种金属元素,如K、Fe、Co、Cu、Ag、Au、Zn、Mn等作助催化剂,可以显著提高催化剂的催化性能。
由于助催化剂本身常无活性,因此助催化剂的加入量有最佳值,即添加量在钌重量的0.01~0.2倍时效果最好。
Zn、Fe、Co、La、Ni和稀土金属等,这些过渡金属具有空的d轨道,可以与环己烯产生强作用力,从而与Ru活性位争夺环己烯,促进环己烯从催化剂上脱附,进而提高环己烯收率;同时,助催化剂的加入还能占据部分钌活性位,从而减少环己烯深度加氢的几率。
同时,有些助剂如Fe、Ce、B的加入还起着结构助剂的作用,提高了活性组分的分散度和稳定性,提供一个不适宜环己烯继续加氢的微环境。
此外,以贵金属Pd、Pt为助剂对Ru-B/ZrO2催化剂进行改性,苯加氢反应结果表明,Pd、Pt元素的加入可明显提高环己烯得率。
2.3 载体
目前,用于苯选择加氢的催化剂包括非负载型和负载型。
其中非负载型催化剂主要有Ru-B、Ru-M-B(M为Zn,Co和Fe等)、Ru-Zn等,已工业化的是Ru-Zn合金催化剂,但是该催化剂钌利用率低,价格昂贵,且对S、As、Pb等元素非常敏感。
载体的加入可以降低贵金属钌的用量,减缓催化剂烧结,延长催化剂寿命。
通过改变载体的表面积、孔径和孔容以及对载体进行修饰,可以有效地控制催化剂的活性和选择性。
常用的载体有:SiO2、Al2O3、ZrO2、活性炭等单组分氧化物、介孔分子筛、ZrO2-ZnO、La2O3-ZnO 等多组分氧化物和BaSO4等不溶盐。
载体的亲水性有利于在水中溶解度较差的环己烯的脱
附和避免其再吸附,因此载体表面的亲水性是决定环己烯选择性的一个重要因素。
2.4 分散剂
分散剂与载体作用类似,主要用于非负载Ru催化剂。
大量专利与文献表明,ZrO2即为一个有效的分散剂。
ZrO2的加入可提高活性组分Ru的分散度,使其催化活性增加;此外,ZrO2具有一定亲水性(尤其是富含表面羟基的单斜相ZrO2),它的存在使催化剂表面形成一滞水层,利于环己烯脱附,阻止环己烯深度加氢,从而提高环己烯选择性。
2.5 催化剂的失活与再生
催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。
中毒又可分为暂时中毒(可逆中毒),永久中毒(不可逆中毒)和选择性中毒
催化剂失活的原因是错综复杂的,每一种催化剂失活并不仅仅按上述分类的某一种进行,而往往是由两种或两种以上的原因引起的。
含膦和含氮配体功能化离子液体实验表明,配体性质对钌催化剂性能影响很大,配位能力较弱的含氮配体功能化离子液体更有利于提高钌催化剂的活性和选择性。
钌催化剂在循环使用时逐渐失活,配体功能化离子液体本身的氧化降解是导致钌催化剂失活的根本原因。
3 前景展望
钌催化剂在加氢、氧化、氢解、氨合成、烃类合成、加氢甲酰化等许多领域具有良好的催化性能,表现出活性高、稳定性好、降低反应能耗等特点,具有广阔的应用前景纳米材料负载Ru 催化剂已经成为氨合成、制氢和有害气体降解等领域的首选催化剂。
但是,从材料角度考虑负载型Ru 催化剂还存在许多问题:如何解决碳材料在高温下与Ru 作用产生甲烷化问题,增强碳载体的稳定性; 如何制备出大比表面积的氧化物载体,提高纳米Ru 粒子的分散度,增强载体与Ru 粒子的相互作用,扩大反应物分子在载体的扩散空间; 根据不同的载体和反应体系,如何选择合适的制备方法,开发出性能更加优良的Ru 基催化剂。
从活性组分Ru的角度考虑,更重要的是要开发出更加经济、快捷和高效的从废弃Ru 催化剂中回收Ru的工艺,这是Ru 催化剂实现工业化的关键步骤。
同时寻找一种与活性组分Ru具有协同作用的非贵金属或其氧化物作为助催化剂添加到负载型Ru 催化剂中,降低Ru 含量,提高催化性能也是Ru 基催化剂研究的一个重要方向。