《人工智能导论》课程整体设计
- 格式:docx
- 大小:29.85 KB
- 文档页数:7
导论课程设计一、教学目标通过本章的学习,学生将掌握导论的基本概念、发展历程和主要技术,了解在各个领域的应用,以及的发展前景和挑战。
具体目标如下:1.知识目标:a.理解的基本概念和原理;b.掌握的主要技术和应用领域;c.了解的发展历程和未来趋势。
2.技能目标:a.能够运用基本概念和原理分析实际问题;b.能够运用主要技术解决简单问题;c.能够评估在各个领域的应用效果。
3.情感态度价值观目标:a.认识对社会和人类生活的影响;b.理解发展的伦理和道德问题;c.培养对技术的兴趣和好奇心。
二、教学内容本课程的教学内容主要包括的基本概念、发展历程、主要技术和应用领域。
具体安排如下:1.第一部分:的基本概念和原理介绍的定义、分类和发展阶段,理解的基本原理和方法。
2.第二部分:的主要技术和应用领域掌握的主要技术,如机器学习、深度学习、自然语言处理等;了解在各个领域的应用,如医疗、教育、交通、金融等。
3.第三部分:的发展历程和未来趋势回顾的发展历程,分析当前的发展状况和未来趋势。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过讲解的基本概念、原理和应用,使学生掌握相关知识。
2.讨论法:学生就的某个主题进行讨论,培养学生的思考和表达能力。
3.案例分析法:分析在实际应用中的案例,使学生更好地理解的应用场景。
4.实验法:安排学生进行实验,提高学生的动手能力和实际问题解决能力。
四、教学资源为了支持本课程的教学内容和教学方法,我们将选择和准备以下教学资源:1.教材:《导论》,用于引导学生系统地学习知识;2.参考书:提供相关的领域的书籍,供学生拓展阅读;3.多媒体资料:收集与相关的视频、动画等资料,丰富教学手段;4.实验设备:准备相应的计算机设备和相关软件,供学生进行实验操作。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式,包括平时表现、作业、考试等。
《人工智能导论》课程标准一、课程性质该课程是全校学生的选修课,目的是让学生了解人工智能的发展及应用;理解人工智能的核心技术概念;学会使用AI开发工具及语言;为进一步学习人工智能相关领域知识打下坚实的基础。
二、课程设计思路该课程从物联网发展趋势,深入了解行业发展趋势,调研目前人工智能领域相关专业学生就业所需知识,调研同类高职院校课程教学情况:教学大纲、课时安排、教学模式、考核方式及成绩评价等方面。
综合分析调研结果,充分考虑高职学生特点和行业现状,制定满足企业需求和适合高职院校学生特点的课程标准。
为学生就业拓展了基础和领域。
三、课程目标(一)总体目标通过本课程的学习了解AI发展中的关键人物及其成果,了解AI的研究内容和应用领域;理解AI的核心概念解析;学会使用AI的开发工具VSCode、Jupyter Notebook及Python语言;能够理解监督学习中的回归和分类算法,能够理解非监督学习中的聚类算法,会运行给定的程序代码并修改某些参数;会在微软机器学习工作室中搭建预测披萨饼价格的实验。
由此培养学生良好的分析问题和解决问题的能力,使学生具有良好的沟通能力与团队协作精神。
(二)具体目标1.专业能力(1)学会使用AI开发环境,VScode、Jupyter Notebook;(2)能够理解Python语言程序;(3)能够理解监督学习中的线性回归和逻辑分类;(4)能够理解非监督学习的聚类;(5)了解numpy、matplotlib、pandas等数据科学分析库的使用方法。
2.方法能力(1)培养良好的资料查阅能力;(2)培养良好的分析问题、解决问题的能力;(3)培养模块化思维能力;(4)培养良好的学习和总结的能力。
3.社会能力(1)培养良好的团队精神和协作能力;(2)培养学生的创新能力。
四、课程内容组织与安排本课程参照国内各高职院校的教学大纲,以实际应用为目标,设计了5个学习单元。
本课程充分考虑了人工智能导论是一门开设比较新的课程,考虑到学生的基础和接受能力,在课程内容的组织与安排上由浅入深、循序渐进。
第三章机器学习课题名称:机器学习学习过程:(4)金融风控系统——京东金融风控(二)知识归纳机器学习:机器学习是用计算机程序模拟人的学习能力,从实际例子中学习得到知识和经验,不断改善性能,实现自我完善。
机器学习是人工智能的一个分支,也是人工智能的一种实现方法。
它从样本数据中学习得到知识和规律,然后用于实际的推断和决策。
它和普通程序的一个显著区别是需要样本数据,是一种数据驱动的方法。
经验(历史数据)计算机系统(机器学习模型)性能(预测精度)机器学习定义机器学习和人类学习的比较机器学习发展:机器学习属于人工智能中一个较为年轻的分支,可以大致分为以下三个发展历程:第一阶段:萌芽阶段第二阶段:发展阶段第三阶段:繁荣阶段机器学习范围:机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。
机器学习与相关学科任务实施1、介绍AlphaGo大战李世石的案例,播放百度Apollo无人驾驶车辆驶过港珠澳大桥的视频、特斯拉无人驾驶宣传视频、新中国成立70周年阅兵无人机梯队视频,在亚马逊网站浏览一件商品查看其推荐的相关商品。
通过这些案例介绍让学生相互讨论,对机器学习有一个初步的认识和接触。
然后让学生查阅思考:(1)、查询机器学习在医疗领域中的应用。
(2)、查阅国家在人工智能领域的政策和方向(提示:百度无人驾驶技术、阿里巴巴城市大脑、腾讯智能医疗、科大讯飞语音识别)。
最后教师总结,给出机器学习的定义,并介绍机器学期和人类学习的比较。
2、介绍机器学习的发展历程,并给出每一个阶段的代表技术和事件。
要求学生查阅资料,找到对机器学习发展有共享的人物和代表事件。
并说明其中有一段事件机器学习停滞不前的原因。
最后教师使用时间轴方式总结机器学习的发展历程。
3、让学生分别找出机器学习在模式识别、计算机视觉、语音识别、自然语。
人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。
课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。
通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。
为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。
(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。
(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。
(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。
(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。
(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。
四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。
人工智能导论教案一、教学目标通过本课程的学习,学生将能够:1. 理解人工智能的基本概念和发展背景;2. 掌握人工智能的主要应用领域和技术方法;3. 了解人工智能对社会、经济和个人生活的影响;4. 培养分析和解决问题的能力以及团队合作与沟通能力;5. 培养创新思维和科学精神。
二、教学内容本课程的教学内容主要包括以下几个模块:1. 人工智能基础知识- 人工智能的定义和发展历程- 人工智能的分类和技术体系- 人工智能与机器学习的关系2. 人工智能技术方法- 机器学习与深度学习- 自然语言处理与文本挖掘- 图像识别与计算机视觉- 机器人技术与智能控制3. 人工智能应用与展望- 人工智能在医疗、金融和交通领域的应用- 人工智能对工作和社会的影响- 人工智能的发展趋势与挑战三、教学方法与手段1. 讲授与讨论相结合通过教师的讲解和学生的讨论,引导学生理解和掌握人工智能的基本概念和技术方法。
2. 实践与案例分析组织学生参与实践性项目,如使用机器学习算法进行数据分析,并分析实际案例,加深对人工智能技术的理解与应用。
3. 小组合作与展示将学生分为小组,开展小组合作项目,培养学生团队合作与沟通能力。
并组织学生作品展示,促进交流与学习。
4. 网络资源与自主学习引导学生利用互联网资源进行自主学习,收集和阅读相关学术论文、技术文档和案例分享。
四、教学评估与考核1. 课堂参与与讨论对学生在课堂上的思考和讨论进行评价,考察学生对人工智能知识的理解与掌握程度。
2. 实践项目与作业考察学生在实践项目和作业中应用人工智能技术解决问题的能力。
3. 个人报告与小组展示要求学生撰写个人报告,对某个领域的人工智能技术进行深入研究与分析。
同时,组织小组展示,评估学生的团队合作与表达能力。
4. 期末考试设计理论与实践相结合的综合考试,考察学生对人工智能理论与技术的整体掌握程度。
五、教学资源1. 教材《人工智能导论》(第二版),作者:李佳明等。
2. 参考书籍- 《统计学习方法》(第二版),作者:李航。
《导论》教学教案一、教学目标1. 让学生了解的定义、发展历程和应用领域。
2. 使学生掌握的基本原理和技术。
3. 培养学生的创新意识和团队合作能力。
二、教学内容1. 的定义与发展历程1.1 的定义1.2 的发展历程1.3 的应用领域2. 的基本原理2.1 机器学习2.2 深度学习2.3 自然语言处理2.4 计算机视觉3. 的技术应用3.1 智能语音识别3.2 智能3.3 自动驾驶3.4 智能医疗三、教学方法1. 讲授法:讲解的定义、发展历程、基本原理和应用领域。
2. 案例分析法:分析典型的技术应用案例。
3. 小组讨论法:分组讨论技术的发展趋势和应用前景。
4. 实践操作法:引导学生动手实践,体验技术。
四、教学资源1. 教材:《导论》2. 课件:的发展历程、基本原理、技术应用等3. 案例资料:典型的技术应用案例4. 编程工具:Python、TensorFlow等5. 网络资源:相关的学术论文、资讯、技术博客等五、教学评价1. 课堂参与度:学生参与课堂讨论、提问和回答问题的积极性。
2. 小组讨论报告:学生分组讨论的技术发展趋势和应用前景报告。
3. 课后作业:学生完成的课后编程练习和思考题。
4. 期末考试:考查学生对基本原理和应用领域的掌握程度。
六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 授课方式:线上线下相结合,以线下授课为主。
3. 教学进程:第1-4课时:的定义与发展历程第5-8课时:的基本原理第9-12课时:的技术应用第13-16课时:典型技术应用案例分析第17-20课时:小组讨论技术的发展趋势和应用前景第21-24课时:实践操作,体验技术第25-28课时:课堂讨论与问答第29-32课时:期末考试七、教学活动1. 授课:讲解的基本概念、发展历程、基本原理和应用领域。
2. 案例分析:分析典型的技术应用案例,如智能语音识别、智能等。
4. 实践操作:引导学生动手实践,如使用Python、TensorFlow等编程工具。
人工智能导论课程教学大纲《人工智能导论》课程教学大纲(二零零六年六月)一、课程名称中文名称: 人工智能导论英文名称:Introduction To Artificial Intelligence二、课程简介人工智能是计算机科学的一门前沿与交叉学科,本课程全面介绍人工智能的基础理论和基本技术,主要包括: 人工智能的发展及其研究领域; 知识的各种表达方法基本的问题求解技术(重点介绍启发式搜索技术); 人工神经网络的基本结构与学习方法; 初步了解遗传算法、机器学习、模式识别等应用领域。
三、适用专业自动化本科专业信息管理和信息系统本科专业四、本门课程在教学计划中的地位、作用和任务“人智能则国智,科技强则国强”这是宋健为人工智能课程的题词。
这一题词充分说明了人工智能与提高民族素质,增强科技实力,建设现代化强国具有极其重要的作用。
现在,人工智能从一门具有实用价值的交叉学科正在成为一个新的、独立的本科专业——智能科学。
通过学习人工智能具有不同背景的各个学科领域的专家都可以从中发现新思想、新方法,从而为自己学科的发展带来革命性的影响。
学生在学习了一系列本科生课程后,再学习人工智能,可以加强程序智能化的训练。
为计算机的智能化和进一步研究智能科学技术打下一个坚实的基础,对提高本科生和研究生创建高品质智能应用系统的能力起着相当重要的作用。
因此本课程在本科学习中处于非常重要的核心地位。
五、课程内容和教学要求1、内容:第一章: 绪言(1) 人工智能的概念(2) 人工智能的研究方法与研究领域(3) 人工智能的发展方向第二章: 知识表示(1) 知识与知识表示(2) 基本的确定性知识表示方法第三章: 基本的问题求解方法(1) 状态图与状态空间(2) 广度优先状态图搜索技术(3) 深度优先搜索算法(4) 启发式搜索技术(5) 与或图概念与搜索1第四章: 机器学习(1) 机器学习的概念(2) 机器学习的分类(3) 一个简单机器学习例子第五章: 人工神经网络(1) 人工神经网络的概念(2) 人工神经网络的发展历史(3) 人工神经网络的类型与结构(4) BP 人工神经网络(5) BP 人工神经网络应用第七章: 遗传算法(1) 遗传算法的概念(2) 基本的遗传算法(3) 应用举例2、要求:1) 了解什么是人工智能,人工智能的发展历史及其研究领域;2) 熟悉知识的概念及知识的类型,模糊知识、不确定知识、语义网络及框架表达法等知识表达技术。
关于《人工智能导论》网络课程的分析与探讨信息技术促进高校远程教育的迅速发展,远程教育的顺利实施离不开优质的课程。
现就安阳师范学院《人工智能导论》网络课程的特点进行分析与探讨。
,了解网络课程研究的现状,及网络课程开发的目的和意义1.《人工智能导论》网络课程的优点分析网络课程是一种新型教学方式,它在的发展仅有几年的时间,并且随着信息技术的发展而不断发展。
但网络课程包含的含义是非常丰富的:技术是一方面,但更为重要的是要有现代教育理念。
《人工智能导论》网络课程除具有一般网络课程的特点外,还有如下特色:1.1 丰富的课程内容课程内容采用以知识点或教学单元为依据的模块化结构,知识点、知识单元的组合采用纵向体系与横向联系相结合的方式,配以良好的导航结构,根据具体的知识要求采用文本、图片等形式,并辅以智能化的自测模块结构,以方便学生对教学效果的检测。
基本结构如下图(1)所示:人工智能技术简介:人工智能(Artificial Intelligence) ,英文缩写为AI 。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门(1) (2) 以蓝色为主色调清新美观。
新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能这门科学的具体目标随着时代的变化而发展。
它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。
目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
1.2 注重教学设计分析注重教学目标及教学内容的分析,注意利用各种信息资源来满足学生学习环节的需要,突出以学生自学为主的基本原则。
针对具体的教学内容,设计相应的学习资源。
1.3 交互手段多样采用多媒体技术与机交互性相结合的思路,交互讲解内容,允许用户通过各种交互手段来控制信息流,使学生在使用该教程时,可以按照自己的意愿选择教学内容和进度,由被动接受知识的地位转到自己掌握学习主动权的地位,更有效、更积极地投入学习,体现在人机交互和人人交互等功能。
《导论》教学教案第一章:概述1.1 教学目标让学生了解的定义、发展历程和应用领域。
让学生理解的基本原理和技术。
1.2 教学内容的定义和发展历程。
的应用领域和挑战。
的基本原理和技术。
1.3 教学方法采用讲授法,讲解的定义和发展历程。
采用案例分析法,分析的应用领域和挑战。
采用讨论法,探讨的基本原理和技术。
1.4 教学评估课堂讨论,了解学生对的理解程度。
第二章:机器学习2.1 教学目标让学生了解机器学习的定义、分类和应用。
让学生理解监督学习和无监督学习的基本原理。
2.2 教学内容机器学习的定义和分类。
监督学习和无监督学习的基本原理。
机器学习应用案例。
2.3 教学方法采用讲授法,讲解机器学习的定义和分类。
采用案例分析法,分析监督学习和无监督学习的基本原理。
采用实践操作法,让学生动手实践机器学习算法。
2.4 教学评估课堂讨论,了解学生对机器学习的理解程度。
课后作业,让学生完成一个简单的机器学习项目。
第三章:深度学习3.1 教学目标让学生了解深度学习的定义、原理和应用。
让学生理解神经网络和卷积神经网络的基本概念。
3.2 教学内容深度学习的定义和原理。
神经网络和卷积神经网络的基本概念。
深度学习应用案例。
3.3 教学方法采用讲授法,讲解深度学习的定义和原理。
采用案例分析法,分析神经网络和卷积神经网络的基本概念。
采用实践操作法,让学生动手实践深度学习算法。
3.4 教学评估课堂讨论,了解学生对深度学习的理解程度。
课后作业,让学生完成一个简单的深度学习项目。
第四章:自然语言处理4.1 教学目标让学生了解自然语言处理的定义、原理和应用。
让学生理解词性标注、句法分析和机器翻译的基本概念。
4.2 教学内容自然语言处理的定义和原理。
词性标注、句法分析和机器翻译的基本概念。
自然语言处理应用案例。
4.3 教学方法采用讲授法,讲解自然语言处理的定义和原理。
采用案例分析法,分析词性标注、句法分析和机器翻译的基本概念。
采用实践操作法,让学生动手实践自然语言处理算法。
大学计算机人工智能教案教材名称:《人工智能导论》主题:介绍人工智能的基本概念、发展历程、应用领域以及未来发展趋势目标:通过理论讲解和实例讲解,让学生了解人工智能的基本概念、应用领域以及未来发展方向,为学生未来从事人工智能相关职业做好铺垫。
教学目标:1.了解人工智能的基本概念与发展历程;2.熟悉人工智能的应用领域;3.了解人工智能未来可能的发展方向。
教学内容:课程单元一:人工智能的基本概念与发展历程1.1 什么是人工智能1.2 人工智能的分类1.3 人工智能的发展历程课程单元二:人工智能的应用领域2.1 自然语言处理2.2 机器学习2.3 计算机视觉2.4 知识图谱课程单元三:人工智能的未来发展趋势3.1 人工智能技术的发展趋势3.2 人工智能领域的未来发展方向3.3 人工智能带来的风险与挑战教学方法:1.讲授结合讨论:在讲授基本概念和发展历程时,着重让学生和老师进行互动和讨论,以此加深对人工智能的理解。
2.案例讲解:通过案例分析,让学生了解人工智能在不同领域的应用,同时也可以让学生了解人工智能应用的实际效果。
3.课堂问答:针对学生在学习过程中出现的问题,让学生与教师进行交互式问答,以此梳理学生的知识体系。
4.学生练习:在讲解完人工智能的应用领域后,让学生进行练习,以此加深学生的理解,并且让他们在实践中掌握知识。
教学资料:1. 《人工智能导论》课本2. 人工智能案例分析3. 学生练习题目教学评价:1.学生的不断提问和回答,说明学生的兴趣和好奇心得到了激发。
2.学生对案例分析的积极参与,说明学生对人工智能应用领域有了很好的了解。
3.学生的练习结果,说明学生对课程的掌握情况。
教学安排:第一、二课时:讲解人工智能的基本概念和发展历程,让学生掌握人工智能的分类方式和技术特点。
第三、四课时:讲解人工智能的应用领域和案例分析,让学生了解人工智能在不同领域的应用以及这些应用对人类的影响。
第五、六课时:讲解人工智能的未来发展趋势和风险挑战,让学生了解人工智能的未来方向以及如何避免人工智能带来的风险。
广州大学学生实验报告开课学院及实验室:计算机科学与工程实验室 2020年12月30日(***报告只能为文字和图片,老师评语将添加到此处,学生请勿作答***)一、实验内容选择具体实际应用和公用数据(爬取或下载),应用人工智能算法,挖掘有趣知识模式或实现特定模型。
二、实验设备1. 实验设备:计算机;2. 平台:Windows操作系统,Visual C++ 6.0 / Python Anaconda三、实验步骤1. 爬取网络上白云区机场路小区的房价数据2. 使用梯度下降算法预测房价3. 画出房价预测模型四、分析说明(包括核心代码及解释)使用梯度下降算法预测房价自变量为房子面积和楼层高低,预设高楼层值为3,中楼层值为2,低楼层值为1. 因变量为房子价格将爬取的数据进行数据清洗后可得第一行数据为房子面积第二行数据为楼层高低,第三行为房子价格源代码:##多特征线性回归的房价预测import numpy as npfrom matplotlib import pyplot as pltnp.set_printoptions(suppress=True) # 禁止科学计数法plt.rcParams['font.sans-serif'] = ['SimHei'] # 允许画图中中文出现plt.rcParams['axes.unicode_minus'] = False # 解决画图中出现负数刻度显示异常的情况itersNum = 1000 # 迭代次数learnRate = 0.01 # 学习率# 1、首先读取文件中的数据def loadFile(path):return np.loadtxt(path, dtype=np.float64, delimiter=',')# 2、定义一个线性回归函数def linerRegression():data = loadFile('baiyun_jichanglu_clean.csv') # 读取文件数据x_data = np.array(data[:, 0:-1])y_data = np.array(data[:, -1]).reshape(-1, 1)x_data = meanNormalization(x_data)plotMeanNormalization(x_data)x_data = np.hstack((np.ones((len(y_data), 1)), x_data)) # 插入一列为1的数组colNmus = x_data.shape[1] # 计算出行数,以便确定所求参数个数theta = np.zeros((colNmus, 1)) # 构建一个参数向量theta, costAll = gradientDescent(x_data, y_data, theta)plotCostCurve(costAll)plotLinearRegression(x_data, theta, y_data)return theta# 3、均值归一化函数def meanNormalization(x_data):columnsMean = np.mean(x_data, 0) # 求出每一列的均值,0表示求列的均值,1表示求行的均值columnsStd = np.std(x_data, 0) # 求出每一类的标准差,0表示求列的标准差,1表示求行的标准差for i in range(x_data.shape[1]): # 归一化每一列的中的值减去均值,然后除去标准差shape[0]输出行数,shape[1]输出列数x_data[:, i] = (x_data[:, i] - columnsMean[i]) / columnsStd[i] return x_data# 4、显示均值归一化的效果,也就是散点图def plotMeanNormalization(x_data):plt.scatter(x_data[:, 0], x_data[:, 1])plt.title('数据均值归一化效果')plt.savefig('均值归一化效果.png') # 保存拟合图片plt.show()# 5、核心算法,开始进行迭代,进行梯度下降def gradientDescent(x_data, y_data, theta):theta_num = len(theta)theta_temp = np.matrix(np.zeros((theta_num, itersNum))) # 为了同步更新权重用,保存每一次迭代的结果costAll = np.zeros((itersNum, 1)) # 保存代价for i in range(itersNum):hypothesis = np.dot(x_data, theta)theta_temp[:, i] = theta - (learnRate / len(y_data)) *(np.dot(np.transpose(x_data), hypothesis - y_data))theta = theta_temp[:, i]costAll[i] = costFunction(x_data, y_data, theta)return theta, costAll# 6、计算代价函数def costFunction(x_data, y_data, theta):return np.sum(np.power(np.dot(x_data, theta) - y_data, 2)) / (2 *len(y_data))# 7、为了检验算法能否正确执行,现在将代价以图像的形式展现出来def plotCostCurve(costAll):x = np.arange(0, itersNum)plt.plot(x, costAll)plt.xlabel('迭代次数')plt.ylabel('代价值')plt.title('代价随迭代次数变化曲线')plt.savefig('CostCurve.png')plt.show()# 8、将拟合的过程以3D立体图像形式展现出来def plotLinearRegression(x_data, theta, y_data):plt.figure(figsize=(8, 10))x = x_data[:, 1]y = x_data[:, 2]theta = theta.flatten()z = theta[0, 0] + (theta[0, 1] * x) + (theta[0, 2] * y)ax = plt.subplot(211, projection='3d')ax.plot_trisurf(x, y, z)ax.scatter(x_data[:, 1], x_data[:, 2], y_data, label='实际数据') ax.set_xlabel('房屋大小')ax.set_ylabel('楼层')ax.set_zlabel('价格')plt.savefig('3d拟合theta值.png')plt.show()print(linerRegression()) # 执行算法.模型图:五、总结心得通过这次实验,我学会了如何使用梯度下降算法来预测房价,以及爬取数据和数据清洗。
《人工智能导论》课程整体设计
《人工智能应用基础》课程整体设计
一、课程设计思路
本课程依据课程标准,全景式介绍了人工智能知识体系与热门应用领域。
通过案例导读引入相应领域的学习,通过案例延伸理解学习领域的实际应用和未来发展。
让学生对人工智能有基本的意识、基本的概念、基本的素养、基本的兴趣。
二、课程目标设计
(一)知识目标
1.了解人工智能产业的发展现状与市场需求;
2.了解人工智能对现代生活的改变和影响;
3.了解人工智能定义、研究领域、发展、社会价值和应用领域、未
来与展望;
4.了解知识表示、知识图谱、机器学习、人工神经网络与深度学习、
智能识别、自然语言理解、专家系统及智能体与智能机器人的相关概念及应用。
(二)能力目标
1、培养人工智能的应用能力,开拓学生的科技视野;
2、能够熟练使用生活中常用的人工智能产品;
3、熟悉人工智能对工业、医疗、安防、社交、机器人、无人驾驶、家居、生活服务等方面的应用渗透。
(三)素质目标
1、养成善于思考、深入研究的良好自主学习的习惯和创新精神;。
一、课程定位1.课程性质本课程是全校的公共基础课程,旨在服务产业数字化升级,推动专业数字化改造,培养学生以人工智能为核心信息技术素养。
课程可开设在第一学期或第二学期。
2.课程作用数字社会,以人工智能为核心的新一代信息技术改变了社会、改变了产业,产业走向数字化,也改变了人才的知识结构和能力结构,高等职业学校纷纷进行专业数字化改造升级,以适应数字经济发展和人才知识与能力结构的升级。
本课程是中等职业学校人工智能通识课程,其目的是使学生了解人工智能技术发展,认识人工智能对人类社会生产、生活方式的影响,掌握Python基本语法并能进行简单编程,学习人工智能基本知识和基本技术,了解其在各行各业的基本应用,训练富于联想的计算思维、编程思维和创新思维,培养人工智能信息技术核心素养。
通过本课程学习,为下一步的专业学习打下基础。
3.课程衔接本门课程无前导课程,后续课程为各专业具备数字化内涵的课程。
二、教学设计思想本课程遵循思政引领、教学内容“真、准、新”、服务专业数字化转型升级理念,选用AI技术活化传承中华优秀传统文化等多种思政元素,润物无声、立德树人,涵养以科技创新为特色的工匠精神。
内容来自人工智能在各行各业应用的真实职业工作场景,并融入人工智能在物体识别、无人驾驶等领域的最新技术应用,体现教学内容的“真、准、新”。
基于各行各业数字化升级背景,教学内容与各专业需求紧密结合,AI赋能专业与课程数字化转型,培养学生人工智能信息技术核心素养。
以任务驱动+项目载体形式呈现教学内容,以三个梯度将人工智能知识层层递进,把学生带入人工智能应用领域。
第一梯度学习人工智能发展和基础知识;第二梯度是Python编程与计算思维训练;第三梯度学习人工智能应用项目,体验和探究人工智能应用。
同步运用人工智能通识课程实践平台展开教学,实践案例分为体验式、交互式和DIY 式三个层级,体验式案例目的是激发学生学习兴趣,体验人工智能技术应用,它操作简单,单人实践,在线完成,如机器人写诗、AI人脸融合等案例。
《人工智能应用基础》课程整体设计
一、课程设计思路
本课程依据课程标准,全景式介绍了人工智能知识体系与热门应用领域。
通过案例导读引入相应领域的学习,通过案例延伸理解学习领域的实际应用和未来发展。
让学生对人工智能有基本的意识、基本的概念、基本的素养、基本的兴趣。
二、课程目标设计
(一)知识目标
1.了解人工智能产业的发展现状与市场需求;
2.了解人工智能对现代生活的改变和影响;
3.了解人工智能定义、研究领域、发展、社会价值和应用领域、未
来与展望;
4.了解知识表示、知识图谱、机器学习、人工神经网络与深度学习、
智能识别、自然语言理解、专家系统及智能体与智能机器人的相关概念及应用。
(二)能力目标
1、培养人工智能的应用能力,开拓学生的科技视野;
2、能够熟练使用生活中常用的人工智能产品;
3、熟悉人工智能对工业、医疗、安防、社交、机器人、无人驾驶、家居、生活服务等方面的应用渗透。
(三)素质目标
1、养成善于思考、深入研究的良好自主学习的习惯和创新精神;。