第11章 全等三角形综合测试卷(含答案)
- 格式:doc
- 大小:291.00 KB
- 文档页数:13
八年级数学第十三章《全等三角形》单元试卷2考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5,AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6,已知∠1=∠2,欲证△ABD ≌△ACD ,还必须从下列选项中补选一个,则错误的选项是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、BD=CD D 、AB=AC图5 图67、下列说法正确的有( )①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A 、1个B 、2个C 、3个D 、4个8、如果△ABC ≌△DEF ,△DEF 的周长为13,DE=3,EF=4,则AC 的长( )A 、13B 、3C 、4D 、69、已知如图7,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A 、BD+ED=BCB 、DE 平分∠ADBC 、AD 平分∠EDC D 、ED+AC>AD10、如图8,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A 、带①去B 、带②去C 、带③去D 、带①②③去图7 图8二、填空(每题3分,共15分)11、如图9已知△OA`B`是△AOB 绕点O旋转60°得到的,那么△OA`B`与△OAB 的关系是,如果∠AOB=40°,∠B=50°,则∠A`OB`= ∠AOB`= 。
第11章《全等三角形》全章测试班级: 姓名:一.选择题(3×10=30分) 1.下列说法正确的是( )A .形状相同的两个三角形是全等三角形B .面积相等的两个三角形是全等三角形C .三个角对应相等的两个三角形是全等三角形D .三条边对应相等的两个三角形是全等三角形2.如图,点C 落在AOB ∠边上,用尺规作OA CN //,其中弧FG 的( ) A .圆心是C ,半径是OD B .圆心是C ,半径是DMC .圆心是E ,半径是ODD .圆心是E ,半径是DM3.如右图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不.恰当..的是( ) A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC长为( )A. cm 1B. cm 2C. cm 3D. cm 45.在第4题的图中,若测得o D A 90=∠=∠,3=AB ,1=DG ,2=AG ,则梯形CFDG 的面积是( )A. 5B. 6C. 7D. 86.如图,ABC ∆中,o C 90=∠,AD 平分BAC ∠,过点D 作AB DE ⊥于E ,测得9=BC ,3=BE ,则BDE ∆的周长是( ) A .15 B .12 C .9 D .67.根据下列各图中所作的“边相等、角相等”标记,其中不.能.使该图中两个三角形全等的是( )AAB C D E A D G α8. 如图,ABC ∆中,AC AB =,AD 平分CAB ∠,则下列结论中:①BC AD ⊥;②BC AD =; ③C B ∠=∠;④CD BD =。
正确的有( ) A .①②③ B .②③④ C .①②④ D .①③④9.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有( )A .四对B .三对C .二对D .一对10.如图,ABC ∆中,BM 、CM 分别平分ABC ∠和ACB ∠, 连接AM,已知o MBC 25=∠,o MCA 30=∠,则MAB ∠ 的度数为( )A. o 25B. o 30C. o 35D. o 40二.填空题(2×12=24分)11.如图,某同学将三角形玻璃打碎,现要到玻璃店 配一块完全相同的玻璃,应带 去。
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
人教版八年级上册《全等三角形》单元测试卷时间:90分钟总分: 100一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1. 下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A . ①②③④B . ①②③C . ②③④D . ①②④2.如图所示,△A B C ≌△A EF,A B =A E,∠B =∠E,有以下结论:①A C =A F;②∠FA B =∠EA B ;③EF=BC ;④∠EA B =∠FA C ,其中正确的个数是( )A . 1个B . 2个C . 3个D . 4个3.下列各图中A 、B 、C 为三角形的边长,则甲、乙、丙三个三角形和左侧△A B C 全等的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 只有丙4.如图,如果A D ∥B C ,A D =B C ,A C 与B D 相交于O点,则图中的全等三角形一共有()A . 3对B . 4对C . 5对D . 6对5.下列说法中,正确的是()A . 两边及其中一边的对角分别相等的两个三角形全等B . 两边及其中一边上的高分别相等的两个三角形全等C . 有一直角边和一锐角分别相等的两个直角三角形全等D . 面积相等的两个三角形全等6.在平面直角坐标系中,第一个正方形A B C D 的位置如图所示,点A 的坐标为(2,0),点D 的坐标为(0,4),延长C B 交x轴于点A 1,作第二个正方形A 1B 1C 1C ;延长C 1B 1交x轴于点A 2,作第三个正方形A 2B 2CC 1…按这样的规律进行下去,第2018个正方形的面积为()2A . 20×()2017B . 20×()2018C . 20×()4036D . 20×()40347.如图,大树A B 与大数C D 相距13m,小华从点B 沿B C 走向点C ,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90°,且EA =ED .已知大树A B 的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A . 13sB . 8sC . 6sD . 5s8.如图,把两根钢条A B ,C D 的中点O连在一起,可以做成一个测量工件内槽宽的工具(卡钳).只要量得A C 之间的距离,就可知工件的内径B D .其数学原理是利用△A OC ≌△B OD ,判断△A OC ≌△B OD 的依据是()A . SA SB . SSSC . A SAD . A A S9.观察图中尺规作图痕迹,下列说法错误的是()A . OE是∠A OB 的平分线 B . OC =ODC . 点C 、D 到OE的距离不相等 D . ∠A OE=∠B OE10.如图,OP平分∠B OA ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是()A . PC =PDB . OC =OD C . OC =OP D . ∠C PO=∠D PO二、填空题(每空3分,总计30分)11.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=_____.12.如图①,已知△A B C 的六个元素,则图②中甲、乙、丙三个三角形中与图①中△A B C 全等的图形是_____.13.如图是5×5的正方形网格,△A B C 的顶点都在小正方形的顶点上,像△A B C 这样的三角形叫格点三角形.画与△A B C 有一条公共边且全等的格点三角形,这样的格点三角形最多可以画出_____个.14.如图,点D 、E分别在A B 、A C 上,C D 、B E相交于点F,若△A B E≌△A C D ,∠A =50°,∠B =35°,则∠EFC 的度数为_____.15.如图,在△A B C 和△D EF中,点B 、F、C 、E在同一直线上,B F = C E,A C ∥D F,请添加一个条件,使△AB C ≌△D EF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.如图,A B =12m,C A ⊥A B 于A ,D B ⊥A B 于B ,且A C =4m,P点从B 向A 运动,每分钟走1m,Q点从B 向D 运动,每分钟走2m,P、Q两点同时出发,运动________分钟后△C A P与△PQB 全等.17.如图,若A B =A C ,B D =C D ,∠B =20°,∠B D C =120°,则∠A =________.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有①,②,③,④的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第_____块.19.如图,要测量池塘的宽度A B ,在池塘外选取一点P,连接A P、B P并各自延长,使PC =PA ,PD =PB ,连接C D ,测得C D 长为25m,则池塘宽A B 为________ m,依据是________20.如图,点O在△A B C 内,且到三边的距离相等,若∠A =60°,则∠B OC =_____.三.解答题(共6小题60分)21.如图,A B =A E,∠B =∠A ED ,∠1=∠2.求证:△A B C ≌△A ED .22.阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,A M,B N,C P是△A B C 的三条角平分线.求证:A M、B N、C P交于一点.证明:如图,设A M,B N交于点O,过点O分别作OD ⊥B C ,OF⊥A B ,垂足分别为点D ,E,F.∵O是∠B A C 角平分线A M上的一点(),∴OE=OF().同理,OD =OF.∴OD =OE().∵C P是∠A C B 的平分线(),∴O在C P上().因此,A M,B N,C P交于一点.23.如图,两根旗杆A C 与B D 相距12m,某人从B 点沿A B 走向A ,一定时间后他到达点M,此时他仰望旗杆的顶点C 和D ,两次视线夹角为90°,且C M=D M.已知旗杆A C 的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?24.如图,A 、B 两点分别位于一个池塘的两侧,池塘西边有一座假山D ,在D B 的中点C 处有一个雕塑,小川从点A 出发,沿直线A C 一直向前经过点C 走到点E,并使C E=C A ,然后他测量点E到假山D 的距离,则D E的长度就是A 、B 两点之间的距离.(1)你能说明小川这样做的根据吗?(2)如果小川恰好未带测量工具,但是知道A 和假山D 、雕塑C 分别相距200米、120米,你能帮助他确定A B 的长度范围吗?25.如图①, C m,,, C m.点在线段上以1 C m/s的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为s.(1)若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;(2)如图②,将图①中的“,”改为“”,其他条件不变.设点的运动速度为 C m/s,是否存在实数,使得与全等?若存在,求出相应的的值;若不存在,请说明理由.26. 如图,在△A B C 中,A B =A C ,D E是过点A 的直线,B D ⊥D E于D ,C E⊥D E于点E;(1)若B 、C 在D E的同侧(如图所示)且A D =C E.求证:A B ⊥A C ;(2)若B 、C 在D E的两侧(如图所示),其他条件不变,A B 与A C 仍垂直吗?若是请给出证明;若不是,请说明理由.参考答案一、选择题(每小题3分,总计30分。
八年级上册第11章全等三角形全章测试卷时间:120分钟 满分:150分 姓名: 得分:一、选择题(每小题5分,共25分):1、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点第1题 第2题2、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC3、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°, ∠ADB =30°,则∠BCF = ( ) A .150° B .40° C .80° D .90°第3题 第4题4、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A .25°B .27°C .30°D .45°5、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .AASD .ASA二、填空题(每题5分,共50分): 1、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.BACBAED第1题图第2题图A DA CE B D ACB O DC BA2、如图,△ABC ≌△ADE ,则,AB =,∠E =∠.若∠BAE =120°,∠BAD =40°,则∠BAC = .3、如图,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________.4、如图,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___.5、如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB .6、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 ..A D第3题图 第4题图 第5题图○1 ○2 ○3 A BA ′C ′9、如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .10、如图,DO 垂直AC ,且AO=OC 交AB 于点D ,若AB=7cm ,BC=5cm ,则△BDC 的周长是三、解答题(共75分):11、(8分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12、(9分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .13、(10分)如图,∠DCE =90o ,CD =CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B , 试说明AD +AB =BE .14、(10分)要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.CA15、(12分)如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.16、(14分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.17、(12分)如图,在 △ABC 中,点D 是BC 的中点, DE ⊥AB , DF ⊥AC ,E 、F 为垂足,DE =DF ,求证: AB=AC .(第3题)G DF A C BE G DFA CB E F EDC B A G。
第十一章三角形一、选择题(每小题3分,共30分)1.已知三角形的三边长分别是3, 8, %;若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个2.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D. A、B、。
都可以4.一个多边形有14条对角线,那么这个多边形的边数是()A. 5B. 6C. 7D. 85.如图,已知ZA=30° , ZB£F=105° , ZB=20° ,则ZD=()DA. 25°B. 35°C. 45°D. 30°6.如图所示,AD是AABC的高,延长BC至E,使CE=BC, AABC的面积为Si, AACE的面积为S2,那么()A. Si>S2B. Si=S2C. Si<S2D.不能确定7.下列图形中具有稳定性有()9. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个 锐角,③有两个内角为50°和20°的三角形一定是钝角三角形,④直角三角形中两锐角 的和为90° ,其中判断正确的有( )10. 如图所不,Z1+Z2+Z3+匕4=()二、填空题(每小题3分,共18分)11. 若一个两边相等的三角形的两边分别是4cm 和9cm,则其周长是 .12. 一个多边形的每一个内角都相等,且比它的一个外角大100° ,则边数〃= 13. 如图△ABC 中,AB=AC, AD=AE, ZBAD=40° ,则ZEDC=.14. 如图所不,/ 1+N2+匕3+匕4+匕5+匕6=(1) (2) A. 2个8.在△ABC 中,若ZA=ZC=AZB,3A. 30°B. 36°C. 72°D. 108°A. 1个B. 2个C. 3个D. 4个C. 480°D. 540°D. 5个则匕A 的度数为()⑶ (4)B. 3个15. AABC 中,ZA=40° ,高BE 、CF 所在直线交于点。
八年级数学上册《全等三角形》单元测试卷(含答案解析)一.选择题1.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规3.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去6.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°7.如图,AB=CD,∠ABC=∠DCB,AC与BD交于点E,在图中全等三角形有()A.2对B.3对C.4对D.5对8.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形9.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为()个.A.1 B.2 C.3 D.4二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.14.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A=°,B′C′=,AD=.15.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.17.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).18.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD =CE,∠DCE=55°,则∠APB的度数为.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.20.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.三.解答题21.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.22.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C =70°.(1)求线段AE的长.(2)求∠DBC的度数.23.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.24.已知:如图,AB∥DE,AC∥DF,AB=DE,AC=DF.求证:BC=EF.25.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.26.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与解析一.选择题1.解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.2.解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.3.解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.5.解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.6.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.7.解:①△ABC≌△DCB;∵AB=CD,∠ABC=∠DCB,∵BC=CB,∴△ABC≌△DCB;②△ABE≌△DCE,∵△ABC≌△DCB,∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△CDE;③△ABD≌△DCA,∵∠BAC=∠CDB,∠AEB=∠DEC,∴∠ABD=∠DCA,∵AB=CD,BD=AC,∴△ABD≌△DCA;故选:B.8.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.9.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,故②正确∴∠EAB=∠FAC=40°,故①正确,∴∠C=∠AFC=∠AFE=70°,∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,∵AE=AB,∠EAB=40°,∴∠AEB=∠ABE=70°,若∠EBC=110°,则∠ABC=40°=∠EAB,∴∠EAB=∠ABC,∴AE∥BC,显然与题目条件不符,故③错误,若AD=AC,则∠ADF=∠AFD=70°,∴∠DAF=40°,这个显然与条件不符,故④错误.故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.14.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.15.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.16.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.17.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).18.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.19.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.20.解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.三.解答题21.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).22.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.23.证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).24.证明:如图,∵AB∥DE,AC∥DF,∴四边形AMDN是平行四边形,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.25.解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=226.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
八年级上册数学单元测试题(全等三角形)一、选择题(每题3分,共30分)1、已知图中的两个三角形全等,则α∠的度数是( )A 、72B 、60C 、58D 、502、如图所示,在ABC ∆中,AB=AC ,EB=EC ,则直接由“SSS ”可以判定( )A 、ACE ABE ∆≅∆B 、CED BED ∆≅∆C 、ACD ABD ∆≅∆ D 、以上选项都正确3、如图所示,AE=AF ,AB=AC ,EC 与BF 交于点O , 60=∠A , 25=∠B ,则EOB ∠的度数为( )A 、60B 、70C 、75D 、854、如图,点D 、E 分别在线段AB 、AC 上,CD 与BE 相交于点O ,已知AB=AC ,再添加以下哪个条件仍不能判定ACD ABE ∆≅∆( )A 、CB ∠=∠ B 、AD=AEC 、BD=CED 、BE=CD5、如图,OP 平分AOB ∠,OA PA ⊥,OB PB ⊥,垂足分别为A 、B.下列结论中不一定成立的是( )A 、PA=PB B 、PO 平分APB ∠C 、OA=OBD 、AB 垂直平分OP6、如图,在四边形ABCD 中,CB=CD , 90=∠=∠ADC ABC , 35=∠BAC ,则BCD ∠的度数为( )A 、145B 、130C 、110D 、707、如图,OA 是BAC ∠的平分线,OM ⊥AC 于点M ,ON ⊥AB 于点N ,若ON=8cm ,则OM 长为( )A 、8cmB 、4cmC 、5cmD 、不确定8、如图,四边形ABCD 沿AC 所在的直线对折后,B 点与D 点重合,图中全等三角形的对数为( )A 、0B 、1C 、2D 、39、三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点10、如图,已知AE DB ⊥于点B ,延长BD 交AE 于点G ,DG AF ⊥于点C ,且DB=DC , 40=∠BAC , 110=∠ADG ,则DGF ∠等于( )A 、130B 、40C 、110D 、70二、填空题(每题4分,共24分)11、如图,已知BAD ABC ∆≅∆,AC 与BD 相交于点O ,请写出图中一组相等的线段 .12、如图,AD=BC ,若利用“SSS ”来证明CDB ABD ∆≅∆,则需要添加的一个条件是 .13、如图, 60=∠AOB ,OA CD ⊥于点D ,OB CE ⊥于点E ,且CD=CE ,则=∠DOC.14、如图,已知 90=∠DCF , 90=∠DAC ,AC BE ⊥于点B ,且DC=CE ,若BE=7,AB=3,则AD 的长为 .15、如图,点B 、E 、C 、F 在一条直线上,AB//DE ,AB=DE ,BE=CF ,AC=6,则DF = .16、如图,在ABC Rt ∆中, 90=∠ACB ,cm BC 2=,AB CD ⊥,在AC 上取一点E ,使EC=BC ,过点E 作EF AC ⊥交CD 的延长线于点F.若cm EF 5=,则AE= .cm三、解答题一(每题6分,共18分)17、如图,DEF ABC ∆≅∆,AB=DE ,AC=DF ,BC=EF ,写出所有对应角相等的式子.18、已知点B 、C 、E 、D 在同一条直线上,AB=DF ,AC=EF ,BE=CD.求证:DFE ABC ∆≅∆19、如图,已知点C 为线段AB 的中点,CD=BE ,CD//BE.求证:CBE ACD ≅∆四、解答题二(每题7分,共21分)20、如图,AC BD ⊥于点D ,AB CE ⊥于点E ,AD=AE.求证:BE=CD.21、如图, 90=∠DCE ,CD=CE ,AC AD ⊥,BE AC ⊥,垂足分别为A 、B. 试说明:AD+AB=BE.22、如图,CD AB ⊥于点D ,AC BE ⊥于点E ,BE 、CD 交于点O ,且AO 平分BAC ∠,求证:(1)OD=OE ;(2).C B ∠=∠五、解答题三(每题9分,共27分)23、如图,在ABC ∆中,AB=AC ,AD .,,CE AE AB CE BC =⊥⊥求证:(1);CEB AEF ∆≅∆(2)AF=2CD.24、如图,在四边形ABCD 中, 90=∠B ,AB//CD ,M 为BC 边上的一点,且AM 平分BAD ∠,DM 平分.ADC ∠求证:(1)DM AM ⊥;(2)M 为BC 的中点.25、如图,CA=CB ,CD=CE ,α∠=∠=∠DCE ACB ,AD ,BE 交于点H ,连接CH.(1)求证:BCE ACD ∆≅∆;(2)求证:HC 平分AHE ∠;(3)求CHE ∠的度数.(用含α的式子表示)全等三角形参考答案一、DABDD CADDA二、11、不唯一 12、AB=CD 13、BOC ∠ 14、4 15、6 16、3三、17、解:EDF BAC ∠=∠,DEF ABC ∠=∠,.EFD BCA ∠=∠18、证明:CD BE =CE CD CE BE -=-∴,即BC=DE.在ABC ∆和FDE ∆中,⎪⎩⎪⎨⎧===DE BC FE AC FD AB ,)(SSS DFE ABC ∆≅∆∴19、证明:C 是AB 的中点,∴AC=CB ,,,,//E DCE CBE ACD BE CD ∠=∠=∠∴在ACD ∆和CBE ∆中,⎪⎩⎪⎨⎧=∠=∠=BE CD CBE ACD CB AC ,)(SAS CBE ACD ∆≅∆∴.四、20、证明: BD ⊥AC 于点D ,CE ⊥AB 于点E ,90=∠=∠∴AEC ADB ,在ABD ∆和ACE ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠A A AE AD AEC ADB ,)(ASA ACE ABD ∆≅∆∴AC AB =∴又AE AD = ,AD AC AE AB -=-∴,即BE=CD.21、解:AC AD ⊥ ,AC BE ⊥,90,90=∠+∠=∠=∠∴D ACD EBC A ,90,90=+∠∴=∠ECB ACD DCE ,ECB D ∠=∠∴,又)(,AAS BCE ADC CE CD ∆≅∆∴= ,,,BC AD BE AC ==∴.,AD AB BE BC AB AC +=∴+=22、证明:(1) AO 平分AC OE AB OD BAC ⊥⊥∠,,,.OE OD =∴(2)AB OD ⊥ ,AC OE ⊥,90=∠=∠∴OEC ODB ,在OBD ∆和OCE ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠COE BOD OE OD OEC ODB)(ASA OCE OBD ∆≅∆∴.C B ∠=∠∴五、23、证明:(1)BC AD ⊥ ,AB CE ⊥,90,90,90=∠+∠=∠+∠=∠=∠∴B BCE CFD BCE CEB AEF ,B CFD ∠=∠∴B AFE AFE CFD ∠=∠∴∠=∠, ,在AEF ∆与CEB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE AE CEB AEF B AFE ,)(AAS CEB AEF ∆≅∆∴(2).90, =∠=∠∴⊥ADC ADB BC AD在ADB Rt ∆和ADC Rt ∆中,⎩⎨⎧==ACAB AD AD ,).(HL ADC Rt ADB Rt ∆≅∆∴CD BC CD BD 2,=∴=∴CB AF CEB AEF =∴∆≅∆,.2CD AF =∴24、证明:(1)CD AB // ,180=∠+∠∴DAC BAD AM 平分BAD ∠,DM 平分ADC ∠, 18022=∠+∠∴ADM AMD ,90=∠+∠∴ADM MAD , 90=∠∴AMD ,即.DM AM ⊥(2)如图,过点M 作AD MN ⊥交AD 于点N ,90=∠B ,AB//CD ,AB BM ⊥∴,CD CM ⊥,AM ∴平分BAD ∠,DM 平分ADC ∠CM MN MN BM ==∴,CM BM =∴,即点M 为BC 的中点.25、(1)证明:BCE ACD DCE ACB ∠=∠∴∠=∠,又)(,,SAS BCE ACD CE CD BC AC ∆≅∆∴==(2)证明:如图,过C 作CM AH ⊥于M ,CN BE ⊥于N.由(1)知BCE ACD ∆≅∆,.CBN CAM ∠=∠∴在CAM ∆和CBN ∆中,⎪⎩⎪⎨⎧=∠=∠=∠=∠BC AC CBN CAM CNB CMA90)(AAS CBN CAM ∆≅∆∴,CN CM =∴在CMH Rt ∆和CNH Rt ∆中,)(,HL CNH Rt CMH Rt CH CH CN CM ∆≅∆∴⎩⎨⎧== ∴∠=∠∴,CHN CHM HC 平分.AHE ∠(3)由(2)知CAH CBH ∠=∠,设BC 与AD 交于点F ,则AFC BFH ∠=∠, α=∠=∠∴ACB AHB ,α-=∠∴ 180AHE ,又由(2)可知EHC AHC ∠=∠,.2190)180(21αα-=-=∠∴ CHE。
人教版八年级数学上册第十一章三角形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D .62、如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°3、如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°4、下列多边形中,内角和与外角和相等的是( )A .三角形B .四边形C .五边形D .六边形5、如图,一束太阳光线平行照射在放置于地面的正六边形上,若119∠=︒,则2∠的度数为( )A .41︒B .51︒C .42︒D .49︒6、如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .2 B . C .3 D .7、如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°8、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为( )A .9B .10C .11D .129、下列说法中错误的是( )A .三角形的一个外角大于任何一个内角B .有一个内角是直角的三角形是直角三角形C .任意三角形的外角和都是360D .三角形的中线、角平分线,高线都是线段10、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多3cm ,已知AB =4cm ,则AC 的长为 _____.2、如图,在ABC 中,2AB AC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若ABC S =PE PF +=______.3、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)4、如图,将等边三角形、正方形和正五边形按如图所示的位置摆放.1230∠=∠=,则3∠=___.5、如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC、∠ACB,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC、∠BCN,BF 、CF 分别平分∠EBC、∠ECQ,则∠F=________.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.2、已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数.3、若一个多边形的内角和的14比一个四边形的内角和多90°,那么这个多边形的边数是多少? 4、一个多边形,除了一个内角之外,其余内角之和为2680°,求这个内角的大小.5、如图,点E 在DA 的延长线上,CE 平分∠BCD ,∠BCD =2∠E ,(1)求证:BC ∥DE ;(2)点F 在线段CD 上,若∠CBF =∠ABD =40°,∠BFC =∠ADB ,求∠BDC 的度数.-参考答案-一、单选题1、A【解析】【详解】试题解析:∵AE 是△ABC 的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE -DE=4-2=2.2、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.3、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.【考点】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.5、A【解析】【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.【详解】解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD =120°-∠1=101°,∠ADB =60°,∴∠ABD =101°-60°=41°∵光线是平行的,∴2∠=∠ABD =41︒,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.6、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知45B EAF ∠=∠=︒,所以可求出∠AFB=90°,再直角三角形的性质可知12EF AB =,所以AB AC =,的长可求,再利用勾股定理即可求出BC 的长. 【详解】解:E B A 沿过点的直线折叠,使点与点重合,B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒点为中点,且,1EF AB 2∴=, 3EF 2=, 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC ∴==故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.7、C【解析】【分析】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .【考点】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.8、D【解析】【分析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n-2)•180°=1800°,解得n=12.故选:D.【考点】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.9、A【解析】【分析】根据三角形的性质判断选项的正确性.【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确.故选:A.【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质.10、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,故选:A .【考点】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.二、填空题1、7cm##7厘米【解析】【分析】根据中线的定义知CD BD =,结合三角形周长可得3AC AB cm -=,根据题意,即可得出AC 的长度.【详解】解:如图所示:∵AD 是BC 边上的中线,∴D 为BC 的中点,CD BD =,∵3ADC ABDC C cm -=,4AB cm =, 即()()3AC CD AD AB DB AD cm ++-++=,∴3AC AB cm -=,∴37AC AB cm =+=.故答案为:7cm .【考点】本题考查了三角形的中线性质,理解题意,作出图形是解题关键.2【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接APPE AB ⊥于点E ,PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC ==,ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【考点】本题考查了三角形的高,掌握三角形的高的定义是解题的关键.3、①②【解析】【分析】由BD ⊥BC 及BD 平分∠GBE ,可判断①正确;由CB 平分∠ACF 、AE ∥CF 及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE ∥CF 及AC ∥BG 、三角形外角的性质可求得∠BDF ,从而可对④作出判断.【详解】∵BD 平分∠GBE∴∠EBD =∠GBD =12∠GBE∵BD ⊥BC∴∠GBD +∠GBC =∠CBD =90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC ∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【考点】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.4、42︒##42度【解析】【分析】利用多边形的外角和定理,即360︒减去等边三角形的一个内角的度数,减去正五边形的一个内角的度数,减去正方形的一个内角的度数,再减去1∠和2∠的度数,最后得出答案.【详解】等边三角形的内角的度数是60︒,正方形的内角的度数为90︒,正五边形的内角的度数是(52)1801085-⨯︒=︒, 则336060901081242∠=︒-︒-︒-︒-∠-∠=︒.故答案为:42︒【考点】此题考查了多边形外角和定理,正多边形内角和公式,熟练掌握相关知识及正确运算是解题关键. 5、15°【解析】【分析】先由BD 、CD 分别平分∠ABC、∠ACB 得到∠DBC=12∠ABC,∠DCB=12∠ACB,在△ABC 中根据三角形内角和定理得∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE 、CE 分别平分∠MBC、∠BCN 得∠5+∠6=12∠MBC,∠1=12∠NCB,两式相加得到∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=12∠E.【详解】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=12∠E=12×30°=15°.故答案为:15°.【考点】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.三、解答题1、(1)证明见解析;(2)78°【解析】【分析】(1)因为CAF BAE ∠=∠,所以有BAC EAF ∠=∠,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C ∠=∠=︒,从而算出∠FGC【详解】解:(1)证明:CAF BAE ∠=∠,BAC EAF ∴∠=∠,AE AB AC AF ==,,()BAC EAF SAS ∴△≌△,EF BC ∴=;(2)65AB AE ABC =∠=︒,,18065250BAE ∴∠=︒-︒⨯=︒,50FAG ∴∠=︒,BAC EAF △≌△,28F C ∴∠=∠=︒,502878FGC ∴∠=︒+︒=︒.【考点】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,解题的关键是掌握全等三角形证明.2、(1)80C ∠=︒;(2)120C ∠=︒.【解析】【分析】(1)如图1,过点C 作CH∥DF,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=12∠CDM,∠EBC=12∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【考点】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.3、见解析【解析】【分析】设这个多边形的边数是n ,再列方程()12180360904n -⨯︒=︒+︒,解方程即可得到答案. 【详解】解:设这个多边形的边数是n , 由题意得:()12180360904n -⨯︒=︒+︒, 解得:12.n =答:这个多边形的边数是12.【考点】本题考查的是多边形的内角和定理,掌握利用一元一次方程解决多边形的内角和问题是解题的关键.4、解得:n =【考点】此题主要考查了多边形的内角和和外角和,解题的关键是掌握多边形的内角和公式与外角和定理.8.20°.【解析】【分析】n 边形的内角和是(n-2)•180°,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要大,大的值小于1.则用内角的和除以180所得值,加上2,比这个数大的最小的整数就是多边形的边数.【详解】设多边形的边数为x ,由题意有(x﹣2)•180=2680,解得x=1689,因而多边形的边数是17,则这一内角为(17﹣2)×180°﹣2680°=20°.【考点】考查了多边形内角与外角,正确理解多边形的内角和是180度的整数倍,以及多边形的角的范围,是解题的关键.5、 (1)见解析(2)40°【解析】【分析】(1)只需要证明∠BCE=∠E,即可得到BC DE∥;(2)先证明∠BFC=∠CBF+∠DBF,再由BFC是△BFD的外角,得到∠BFC=∠DBF+∠BDC,即可推出∠BDC=∠CBF=40°.(1)解:∵CE平分∠BCD,∴∠BCD=2∠BCE,∵∠BCD=2∠E,∴∠BCE=∠E,∴BC DE∥;(2)解:∵BC DE∥,∴∠ADB=∠DBC,∵∠DBC=∠CBF+∠DBF,∴∠ADB=∠CBF+∠DBF,∵∠BFC=∠ADB,∴∠BFC=∠CBF+∠DBF,∵∠BFC是△BFD的外角,∴∠BFC=∠DBF+∠BDC,∴∠DBF+∠BDC=∠CBF+∠DBF,∴∠BDC=∠CBF=40°.【考点】本题主要考查了平行线的性质与判定,三角形外角的性质,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.。
一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF和△DEC中,FE CEDEF DECDE DE⎪∠⎪⎩∠⎧⎨===,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)(1)∵E为BC的中点,∴BE=CE=12BC,同(Ⅰ)(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,∵BE=CE,∴FE=GE,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG是等边三角形,(2)∵△EFG是等边三角形,∴GF=EF=BE=12BC,∵AD=AF+FG+GD,∴AD=AB+CD+12BC.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.如图1,在ABC∆中,ACB∠是直角,60B∠=︒,AD、CE分别是BAC∠、BCA∠的平分线,AD、CE相交于点F.(1)求出AFC∠的度数;(2)判断FE与FD之间的数量关系并说明理由.(提示:在AC上截取CG CD=,连接FG.)(3)如图2,在△ABC∆中,如果ACB∠不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.【答案】(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.【详解】(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°﹣60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°﹣(∠FAC+∠ACF)=120°(2)解:FE与FD之间的数量关系为:DF=EF.理由:如图2,在AC上截取CG=CD,∵CE是∠BCA的平分线,∴∠DCF=∠GCF,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.4.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.5.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析【解析】【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题;【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点, ∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中, ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM ≌△DEN (AAS )∴ME=NE∴点E 在∠ACB 的平分线上,即CE 是ACB ∠的平分线(3)由(2)可知,点E 在∠ACB 的平分线上,∴当点D 向点B 运动时,点E 的路径为一条直线,∵△AEM ≌△DEN∴AM=DN ,即AC-CM=CN-CD在Rt △CME 与Rt △CNE 中,CE=CE ,ME=NE ,∴Rt △CME ≌Rt △CNE (HL )∴CM=CN∴CN=1()2AC CD +, 又∵∠MCE=∠NCE=45°,∠CME=90°, ∴CE=22()CN AC CD =+, 当AC=3,CD=CO=1时,CE=2(31)222+= 当AC=3,CD=CB=7时, CE=2(37)522+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.7.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠ 在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.8.如图(1),AB=4cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=3cm ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
人教版初中八年级数学上册全册单元综合测试卷汇总一、第十一章《三角形》单元综合测试卷(附详细参考答案)二、第十二章《全等三角形》单元综合测试卷(附详细参考答案)三、第十三章《轴对称》单元综合测卷(附详细参考答案)四、八年级上学期期中数学综合测试卷(附详细参考答案)五、第十四章《整式的乘法与因式分解》单元综合测试卷(附详细参考答案)六、第十五章《分式》单元综合测卷(附详细参考答案)七、八年级上学期期末数学综合测试卷(附详细参考答案)八年级数学上册第十一章《三角形》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟100分)一、选择题(每小题4分,共28分)1.下列每组中的两个图形,是全等图形的是( )2.若△ABC≌△A′B′C′,且∠A∶∠B∶∠C=2∶3∶4,则∠A′∶∠B′为( )(A)2∶4 (B)2∶3(C)3∶4 (D)3∶23.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF 的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED 的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( )(A)SSS (B)SAS(C)ASA (D)AAS4.△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )(A)3 (B)4 (C)5 (D) 3或4或55.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于( )(A)DC (B)BC (C)AB (D)AE+AC6.如图,AD是△ABC的角平分线,且AC∶AB=2∶3,则△ACD与△ABD的面积之比为( )(A)2∶3 (B)3∶2(C)4∶9 (D)9∶47.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠ACB=∠A′CB′,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是( )(A)1个 (B)2个 (C)3个 (D)4个二、填空题(每小题5分,共25分)8.如图,点B,C,F,E在同一直线上,∠1=∠2, BC=FE,∠1_____(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是_________(只需写出一个).9.如图,△ABC≌△DEB,∠C=35°,∠E=30°,则∠BDE的度数为_______.10.如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有_______对.11.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有_______.(填写序号)12.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是________;中线AD的取值范围是________.三、解答题(共47分)13.(10分)如图,AB=AC,点E,F分别是AB,AC的中点.求证:△AFB≌△AEC.14.(12分)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.15.(12分)如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.16.(13分)如图,点E在AC上,∠1=∠2,∠3=∠4.(1)BE与DE相等吗,为什么?(2)若点E在AC的延长线上,其他条件不变,则第(1)题中的结论还成立吗?说明理由.八年级数学上册第十一章《三角形》单元综合测试卷详细参考答案1.【解析】选C.把握全等形的定义,形状和大小完全相同的两个图形全等,与图形的位置无关.2.【解析】选B.∵△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,已知∠A∶∠B∶∠C=2∶3∶4,∴∠A′∶∠B′=2∶3.3.【解析】选C.∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE=90°.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).4.【解析】选B.由题意知,2<EF<6,又因为周长为偶数,所以EF的长为4.5.【解析】选C.∵∠DAC=∠E+∠3=∠1+∠BAC,∠1=∠3,∴∠BAC=∠E.又∵∠2=∠3,∴∠2+∠DCA=∠3+∠DCA,即∠BCA=∠DCE.又∵AC=CE,∴△ABC≌△EDC,∴DE=AB.6.【解析】选A.过点D分别作AB,AC的垂线,垂足为E,F.∵AD是△ABC的角平分线,∴DE=DF,∴△ACD与△ABD的面积之比为AC∶AB=2∶3.7.【解析】选B.①②③为条件,根据SAS,可判定△BCA≌△B′CA′,可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′,可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.8.【解析】若用SAS,可填AC=DF;若用ASA,可填∠B=∠E;若用AAS,可填∠A=∠D.答案:不是 AC=DF(答案不唯一)9.【解析】由题意知,∠C=∠EBD=35°,所以∠BDE=180°-30°-35°=115°.答案:115°10.【解析】图中的全等三角形有△ABE≌△DCF, △ABF≌△DCE,△BEF≌△CFE,共3对.答案:311.【解析】在△AEB和△AFC中,∠E=∠F=90°, ∠B=∠C, AE=AF,可得△AEB≌△AFC,所以∠EAB=∠FAC,AC=AB,所以∠FAN=∠EAM,故③正确,所以△AEM≌△AFN,所以EM=FN,故①正确,在△ACN与△ABM中,∠C=∠B,∠CAB=∠BAC,AC=AB,所以△ACN≌△ABM,故④正确,但无法证明CD=DN,故②不正确.答案:①③④12.【解析】如图所示.在△ABC中,AB-AC<BC<AB+AC,即12-8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE.∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,∴△ACD≌△EBD,∴BE=AC.在△ABE中,AB-BE<AE<AB+BE,即AB-AC<AE<AB+AC,12-8<AE<12+8,即4<AE<20,∴2<AD <10.答案:4<BC <20 2<AD <1013.【证明】∵点E ,F 分别是AB ,AC 的中点, ∴AE=12AB ,AF=12AC.又∵AB=AC,∴AE=AF.在△AFB 和△AEC 中,A E A F A A A C A B =⎧⎪∠=∠⎨⎪=⎩,,,∴△AFB ≌△AEC(SAS).14.【证明】∵点C 是线段AB 的中点,∴AC=BC. ∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE, 即∠ACE=∠BCD.在△ACE 和△BCD 中,A CBC ,A C E B CD ,CE C D ,=⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD(SAS),∴AE=BD.15.【解析】△ADC ≌△ADF 、△ADC ≌△CEB 、△ADF ≌△CEB(写出其中两对即可). 方法一:若选择△ADC ≌△ADF ,证明如下: ∵AD 平分∠FAC ,∴∠CAD=∠FAD. ∵AD ⊥CF ,∴∠ADC=∠ADF=90°. 又∵AD=AD ,∴△ADC ≌△ADF(ASA). 方法二:若选择△ADC ≌△CEB ,证明如下: ∵AD ⊥CF ,BE ⊥CE , ∴∠ADC=∠CEB=90°.又∵∠ACB=90°,∴∠ACD+∠ECB=90°. 又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB. 又∵AC=CB ,∴△ADC ≌△CEB(AAS).16.【解析】(1)∵∠1=∠2,∠3=∠4,AC=AC ,∴△ABC≌△ADC(ASA),∴AB=AD.∵∠1=∠2,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE.(2)成立.如图,∵∠1=∠2,∠3=∠4,AC=AC,∴△ABC≌△ADC(ASA),∴AB=AD.∵∠1=∠2,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE.八年级数学上册第十二章《全等三角形》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分)1.下列几何图形中,一定是轴对称图形的有( )(A)1个 (B)2个 (C)3个 (D)4个 2.已知点P 1(a-1,3)和P 2(2,b-1)关于x 轴对称,则(a+b)2 012的值为( )(A)0 (B)-1 (C)1 (D)(-3)20123.如图,AD=BC=BA ,那么∠1与∠2之间的关系是( )(A)∠1=2∠2 (B)2∠1+∠2=180° (C)∠1+3∠2=180° (D)3∠1-∠2=180° 4.已知:一等腰三角形的两边长x ,y 满足方程组2x y 33x 2y 8-=⎧⎨+=⎩,,则此等腰三角形的周长为( )(A)5 (B)4 (C)3 (D)5或45.如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是( )6.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是( )(A)AB=BE (B)AD=DC(C)AD=DE (D)AD=EC7.如图,△ABP和△DCP是两个全等的等边三角形,且PA⊥PD,有以下4个结论:①∠PBC=15°;②AD∥BC;③直线PC⊥AB;④四边形ABCD是轴对称图形.其中正确的结论有( )(A)1个 (B)2个 (C)3个 (D)4个二、填空题(每小题5分,共25分)8.自身为轴对称图形的汉字可以组成一些词语,如“苹果”,请你也写出两个这样的词语________.9.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB,BC于D,E,若∠CAE=∠B+30°,则∠AEB的度数为_________.10.已知点A(-2,4),B(2,4),C(-1,2),D(1,2),E(-3,1),F(3,1)是平面直角坐标系内的6个点,选择其中三个点连成一个三角形,剩下的三个点连成另一个三角形,若这两个三角形关于y轴对称,就称为一组对称三角形,那么,坐标系中可以找出_________组对称三角形.11.如图,在△ABC中,∠ACB=90°,CD是AB上的高,∠BAC的平分线为AF,AF与CD交于点E,则△CEF是_________三角形.12.如图,等边三角形ABC中,D,E分别为AB,BC边上的两个动点,F G=________.且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则A F三、解答题(共47分)13.(10分)现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.14.(12分)如图,将矩形纸片ABCD按如下顺序折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③),沿GH折叠,使点C落在DH上的C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.15.(12分)已知:如图, AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于点P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.16.(13分)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?八年级数学上册第十二章《全等三角形》单元综合测试卷详细参考答案1.【解析】选C.轴对称图形有:扇形、等腰梯形、菱形.2.【解析】选C.因为P1、P2关于x轴对称,所以a-1=2,b-1=-3,即a=3,b=-2,所以a+b=1,所以12 012=1.3.【解析】选B.∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.4.【解析】选A.解方程组得,x=2,y=1,所以这个等腰三角形的三边长为2,2,1(其中1,1,2不满足三角形的三边关系).5.【解析】选D.根据轴对称的性质进行判断或实际操作得到.6.【解析】选B.由折叠知AB=BE,AD=DE,∠DEB=∠A=90°,∴∠DEC=∠DEB=90°,由等腰直角△ABC得∠C=45°,∴∠CDE=45°,∴DE=EC,∴AD=EC.7.【解析】选D.由题意知PB=PC,∠APB=∠ABP=∠BAP=∠DPC=∠DCP=∠CDP=60°,∠PAD=∠PDA=45°,AB=AP=BP=DP=CP=CD,∴∠BPC=360°-60°-60°-90°=150°,∴∠PCB=∠PBC=15°,∠ADC+∠BCD=105°+75°=180°,∴AD∥BC,∠ABC+∠PCB=75°+15°=90°,∴直线PC⊥AB.四边形是轴对称图形,其对称轴为过点P且与AD垂直的直线.所以四个结论都正确.8.【解析】从轴对称的特点出发,具有轴对称性质的字有“大、日、田、木、目、中、众、晶、森、林”等.组成词语可以为“森林、日本、黄山”等.答案:不唯一,如“森林、日本、黄山”等9.【解析】∵DE垂直平分斜边AB,∴AE=BE,∴∠B=∠EAB,∴∠CEA=2∠B,又∵∠CEA=90°-∠CAE=90°-(∠B+30°),∴2∠B=90°-(∠B+30°),解得∠B=20°,∴∠AEB=180°-20°-20°=140°.答案:140°10.【解析】如图,共有4组对称三角形.答案:411.【解析】∵∠CEF=∠AED=90°-∠BAF,∠CFE=90°-∠CAF. 又AF平分∠BAC,∴∠BAF=∠CAF,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.答案:等腰12.【解析】∵AD=BE,∴CE=BD,∵△ABC为等边三角形,∴△CAE≌△BCD,∴∠DCB=∠CAE,∴∠AFG=∠CAF+∠ACF=∠ACF+∠DCB=60°,∵AG⊥CD,∴∠FAG=30°,∴F G1.A F2答案:12 13.【解析】14.【解析】(1)连接BB′,由折叠知,EF是线段BC的对称轴,∴BB′=B′C. 又∵BC=B′C,∴△B′BC是等边三角形,∴∠BCB′=60°.(2)是正三角形.理由如下:由折叠知,GH是线段CC′的对称轴,∴GC′=GC,根据题意,GC平分∠BCB′,1∠BCB′=30°,∴∠GCB=∠GCB′=2∴∠GCC′=∠BCD-∠BCG=60°,∴△GCC′是正三角形.15.【解析】(1)∵AF平分∠BAC,1∠BAC.∴∠CAD=∠DAB=2∵D与A关于E对称,∴E为AD中点.∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB.∴∠ACE=∠ABE,∴AC=AB.∴AB=CD.(2)∠F=∠MCD.理由如下:∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA.∴∠MPF=∠CDM.∵AC=AB,AE⊥BC,∴CE=BE.∴AM为BC的中垂线,∴CM=BM.∵EM⊥BC,∴EM平分∠CMB(等腰三角形三线合一)∴∠CME=∠BME.∵∠BME=∠PMF,∴∠PMF=∠CME,∴∠MCD=∠F(三角形内角和定理).16.【解析】(1)①△BPD≌△CQP.理由如下:∵t=1秒,∴BP=CQ=3×1=3(厘米),∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP.②∵v P≠v Q,∴BP≠CQ,又∵△BPD与△CQP全等,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q运动的时间B P4t33==秒,∴Q C Q515v4t43=== (厘米/秒).(2)设经过x秒后点P与点Q第一次相遇,由题意,得154x=3x+2×10,解得x=803秒.∴点P共运动了803×3=80厘米.∵80=2×28+24,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.八年级数学上册第十三章《轴对称》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.(-0.7)2的平方根是( )(A)-0.7 (B)±0.7 (C)0.7 (D)0.49 2.下列判断中,你认为正确的是( ) (A)0的倒数是0 (B)2是分数2 3.下列说法正确的是( ) (A)a 一定是正数 (B)2 0113是有理数(D)平方等于自身的数只有14.如图,在数轴上点A ,B 对应的实数分别为a ,b ,则有( )(A)a+b>0 (B)a-b>0 (C)ab>0 (D)a b>05.下列说法正确的有:①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③ 表示非负数a 表示a 的立方根;④一定是负数( )(A)①③ (B)①③④ (C)②④ (D)①④6.如图,下列各数中,数轴上点A 表示的可能是( )(A)4的算术平方根 (B)4的立方根 (C)8的算术平方根 (D)8的立方根7.如果m 是2 012的算术平方根,那么2 012100的平方根为( )(A)±m 100(B)m 10(C)-m 10(D)±m 10二、填空题(每小题5分,共25分)8..9.则m 的取值范围为_______.10.比较大小:用“<”或“>”号填空).11.若x 、y ,则x+y=_______. 12.对于两个不相等的实数a 、b ,定义一种新的运算如下,a*b=a b-(a+b>0),如:3*2=32=-6*(5*4)=________.三、解答题(共47分)13.(10分)如图所示,数轴上表示1A ,B ,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x , (1)请你写出数x 的值;(2)求2的立方根.14.(12分)计算.(1)|-2|()2112+--1;15.(12分)“欲穷千里目,更上一层楼”说的是登得高看得远,若观测点的高度为h ,观测者能看到的最远距离为d,则d r 为地球半径(通常取6 400 km),小明站在海边一块岩石上,眼睛离地面的高度为20m ,他观测到远处一艘轮船刚露出海平线,此时该船离小明约有多远?16.(13分)如图,A ,B 两点的坐标分别是(2,(1)将△OAB 个单位求所得的三角形的 三个顶点的坐标; (2)求△OAB 的面积.八年级数学上册第十三章《轴对称》单元综合测试卷详细参考答案1.【解析】选B.∵(-0.7)2=0.49, 又∵(±0.7)2=0.49, ∴0.49的平方根是±0.7.2.【解析】选C.0没有倒数,故A 错误;2π是一个无理数,故B 错误是指4的算术平方根,结果为2,故D 错误.3.【解析】选B.a 有可能是小于等于0的数,即不一定是正数;2 0113是分数,即也是有理数;显然是无理数;平方等于自身的有0和1,不单单只有1,所以只有2 0113是有理数正确.4.【解析】选A.∵由数轴上a 、b 两点的位置可知,a <0,b >0,|a|<b , ∴ a+b >0,a-b <0,ab <0,a b<0,故选项A 正确;选项B 、C 、D 错误.5.【解析】选A.①因为一对相反数的立方根仍是一对相反数,故说法①正确; ②因为64的立方根是4,故说法②错误;③本题符合非负数平方根的表示方法,实数立方根的表示方法,故说法③正确;④因为,故说法④错误.故选A .6.【解析】选C.由数轴知,点A 表示的数是2与3之间的数,而4的算术平方根和8的立方根都是2,4的立方根小于2,8的算术平方根大于2小于3.7.【解析】选D.把2 012缩小100倍,根据被开方数小数点的移动规律,其算术平方根为原来的十分之一,易得2 012100的平方根.故选D.8.【解析】==8.答案:89.【解析】∴3-m ≥0,∴m ≤3. 答案:m ≤310.【解析】将2.答案:>11.【解析】由题意得,x=-3,y=2,所以x+y=-1. 答案:-112.【解析】5*4=54-=3,所以6*3=63-=1.答案:113.【解析】(1)因为OA=1,所以,所以所以点C 所表示的数x(2)由(1)得22=1,即2=1,1的立方根为1. 14.【解析】(1)原式=2-14+14-1=1;(2)原式=-4-3+35=-625.15.【解析】根据题意得,h=20 m=0.02 km ,r=6 400 km ,所以小明离船的距离d ≈=16.【解析】(1)因为△OAB OAB 个单位,所以点A 的坐标为(2,0),点B 的坐标为(3,,点O 的坐标为).(2)因为OB=3,又因为点A 的坐标为(2),所以△OAB 的面积为132⨯⨯=八年级上学期期中数学综合测试卷班级:___________ 姓名:_____________ 成绩:___________(90分钟100分)一、选择题(每小题3分,共24分)1.下列几何图形:①角;②平行四边形;③扇形;④正方形,其中轴对称图形是( )(A)①②③ (B)②③④(C)①③④ (D)①②③④12.四个数-5,-0.1,( )21(A)-5 (B)-0.1 (C)23.已知图中的两个三角形全等,则∠α的度数是( )(A)72° (B)60° (C)58° (D)50°4.点P关于x轴的对称点P1的坐标是(4,-8),则P点关于y轴的对称点P2的坐标是( )(A)(-4,-8) (B)(-4,8)(C)(4,8) (D)(4,-8)5.在Rt△ABC中,∠C=90°,AB=8,∠BAC的角平分线AD交BC于点D,CD=2,则△ABD的面积是( )(A)4 (B)6 (C)8 (D)106.在△ABC中,AB=AC, ∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD 平分∠ABC;②AD=BD=BC;③D是AC中点.其中正确的结论的序号是( )(A)①②③ (B)①② (C)②③ (D)①③7.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )(A)(1)(2)(3) (B)(1)(2)(4)(C)(2)(3)(4) (D)(1)(3)(4)8.在△ABC中,∠ABC=90°,AB=BC,BM是AC的中线,D、E分别是边AB、BC上的点且DM⊥ME,下列结论:①AD=BE;②DM=ME;③CM=CE;④S△ABC=2S四边形BEMD,其中正确的是( )(A)①②③ (B)②③④(C)①②④ (D)①②③④二、填空题(每小题4分,共24分)229.在3.14,710.在-2,2______.11.已知在△ABC中,①∠A=36°,∠B=72°;②∠A∶∠B∶∠C=1∶2∶3;③AB=AC,∠A∶∠B=2∶1;④BC=AC ,∠A=60°.其中为等腰三角形的是_______,为直角三角形的是_______,为等边三角形的是_______.(只填序号)12.如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为_______.13.已知点A,B 的坐标分别为(2,0),(2,4),以A,B,P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标_______.14.在△ABC 中,AB=AC=12 cm ,BC=6 cm ,D 为BC 的中点,动点P 从B 点出发,以每秒1 cm 的速度沿B →A →C 的方向运动,设运动时间为t 秒,过D,P 两点的直线将△ABC 的周长分成两部分,使其中一部分是另一部分的2倍,那么t 的值为_______. 三、解答题(共52分) 15.(10分)计算:(1)(-2)321()2+--16.(10分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P 点的位置.17.(10分)如图,A,B两点的坐标分别是(1),(4,C点的坐标为(3,3).(1)求△ABC的面积;(2)将△ABC个单位,得到△A′B′C′,则A′,B′,C′的坐标分别是多少?(3)△A′B′C′的面积是多少?18.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并说明.19.(12分)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.八年级上学期期中数学综合测试卷详细参考答案1.【解析】选C.根据轴对称图形的概念及所给出的图形的特点可知角,扇形,正方形是轴对称图形.而平行四边形是中心对称图形.12.【解析】选D.整数和分数统称为有理数,其中-5是整数,-0.1和2小数.3.【解析】选D.∵图中的两个三角形全等,a与a,c与c分别是对应边,那么它们的夹角就是对应角,∴∠α=50°.4.【解析】选B.根据轴对称的性质,得点P的坐标是(4,8),则P点关于y轴的对称点P2的坐标是(-4,8).故选B.5.【解析】选C.由角平分线的性质可知,△ABD中AB边上的高等于2,所以其面积为8.6.【解析】选B.∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.∵AB的垂直平分线DE交AC于点D,交AB于点E,∴DA=DB,∴∠DBA=∠A=36°,∴∠DBC=∠ABC-∠DBA=36°,∴∠BDC=180°-∠DBC-∠C=72°,∴BD=BC,∴AD=BD=BC,∴①②正确.7.【解析】选D.根据三角形的内角和定理以及等腰三角形的判定定理:等角对等边,(1)中,作底角的角平分线即可;(2)中,不能;(3)中,作底边上的高即可;(4)中,在BC边上截取BD=AB即可.8.【解析】选C.∵∠ABC=90°,AB=BC,∴∠A=∠C=45°,又∵BM是AC的中线,∴BM⊥AC,∠MBC=∠MBA=45°,∴BM=CM,又∵DM⊥ME,∴∠DMB+∠BME=∠CME+∠BME,∴∠DMB=∠EMC,∴△DMB≌△EMC,∴DM=ME,BD=CE,1∴AB-BD=BC-CE,即AD=BE,S△BMC=S四边形BEMD=S△ABC,故选C.29.【解析】0.121 121 112…,-π,共3个.答案:310.【解析】根据正数大于0 1.414,所以可知2最大. 答案:211.【解析】①∵∠A=36°,∠B=72°,∴∠C=180°-∠A-∠B=72°,故此三角形为等腰三角形;②∵∠A∶∠B∶∠C=1∶2∶3,∴∠A=30°,∠B=60°,∠C=90°,故此三角形为直角三角形;③∵AB=AC,∠A∶∠B=2:1,∴∠A=90°,∠B=∠C=45°,故此三角形为等腰直角三角形;④∵BC=AC,∠A=60°,∴∠B=∠A=∠C=60°,故此三角形为等边三角形.答案:①③④②③④12.【解析】△ABC为等腰三角形,所以AB=AC,因为BC=5,所以2AB=2AC=21-5=16,即AB=AC=8,而DE是线段AB的垂直平分线,∴BE=AE,故BE+EC=AE+EC=AC=8,∴△BEC的周长=BC+BE+EC=5+8=13.答案:1313.【解析】如图所示,符合条件的点P的位置有3个.答案:(4,0)(或(4,4)或(0,4),答案不唯一)14.【解析】分情况讨论:①当P在AB上时,BP=t,CD=BD=3,AP=12-t此时,2(3+t)=12-t+12+3,解得t=7(秒)②当P在AC上时,BD+AB+AP=3+t,CD+PC=3+24-t此时2(27-t)=3+t,解得t=17(秒)答案:7秒或17秒115.【解析】(1)原式=-8×4-4×-34=-32-1-3=-36;(2)原式=-1+2=1.16.【解析】如图,(1)画出∠BAC的角平分线;(2)作出线段MN的垂直平分线.交点P即满足条件的点.17.【解析】(1)AB=4-1=3,点C 到AB 的距离为∴S △ABC =12×3×2(2)A ′(1),B ′(4,C ′(3,; (3)∵平移不改变图形的大小,∴S △A ′B ′C ′=S △ABC =92-.18.【解析】(1)∵点D 是AB 中点,AC=BC ,∠ACB=90°, ∴CD ⊥AB ,∠ACD=∠BCD=45°, ∠CAD=∠CBD=45°, ∴∠CAE=∠BCG. 又BF ⊥CE ,∴∠CBG+∠BCF=90°. 又∠ACE+∠BCF=90°, ∴∠ACE=∠CBG , ∴△AEC ≌△CGB , ∴AE=CG. (2)BE=CM.证明如下:∵CH ⊥HM ,CD ⊥ED , ∴∠CMA+∠MCH=90°, ∠BEC+∠MCH=90°, ∴∠CMA=∠BEC ,又∵AC=BC,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.19.【解析】(1)猜想:AB=AC+CD.(2)猜想:AB+AC=CD.证明如下:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD.∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∵∠ACB=2 ∠B,∠FED=∠B+∠EDB,∴∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.八年级数学上册第十四章《整式的乘法与因式分解》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.下列函数(1)y=πx;(2)y=3x+1;(3)5y ;x=(4)y=2-3x;(5)y=x 3+4中,一次函数有( )(A)1个(B)2个(C)3个(D)4个2.一次函数y=kx+b 的图象如图,则k ,b 的值是( ) (A)3,2?2- (B)2,23- (C)3,22-(D)2,23-3.无论m 为任何实数,直线y=x+2m 和y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限(D)第四象限4.一次函数3y x 32=-+的图象如图所示,当-3<y <3时,x 的取值范围是( ) (A)x >4(B)0<x <2 (C)0<x <4(D)2<x <45.如图中表示一次函数y =mx+n 与正比例函数y =mnx(m,n 是常数,且mn ≠0)的图象的是( )6.如图,在平面直角坐标系中,线段AB 的端点坐标为A(-2,4),B(4,2),直线y=kx-2与直线AB 有交点, 则k 的值不可能是( ) (A)-5 (B)13-(C)3(D)57.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示, 相交于点P 的两条线段l 1,l 2分别表示小敏、 小聪离B 地的距离y(km)与已用时间x(h)之间 的关系,则小敏、小聪的速度分别是( ) (A)3 km/h 和4 km/h (B)3 km/h 和3 km/h (C)4 km/h 和4 km/h(D)4 km/h 和3 km/h二、填空题(每小题5分,共25分)8.一次函数y =2x -1的图象经过点(a ,3),则a =_______.9.写出一个具体的y 随x 的增大而减小的一次函数解析式___________. 10.如图所示,利用函数图象回答下列问题:(1)方程组x y 3,y 2x+=⎧⎨=⎩的解为________;(2)不等式2x>-x+3的解集为___________.11.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.12.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A,B 两地向正北方向匀速直行,他们与A 地的距离S(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 给出,当他们行走3小时后,他们之间的距离为___________千米.三、解答题(共47分)13.(11分)点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标.14.(12分)已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数的图象与y轴相交于Q(0,3).(1)求这两个函数的解析式;(2)在给出的坐标系中画出这两个函数图象;(3)求△POQ的面积.15.(12分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球后,量桶中水面升高________cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?16.(12分) 2011年4月28日,以“天人长安,创意自然——城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.(1)写出y与x 之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.八年级数学上册第十四章《整式的乘法与因式分解》单元综合测试卷详细参考答案1.【解析】选C.由一次函数的定义知(1)(2)(4)是一次函数. 2【解析】选B.由图象知b=-2,把x=3,y=0代入y=kx-2,得2k .3=3.【解析】选C.直线y=-x+4经过第一、二、四象限,不经过第三象限,所以直线y=x+2m 和y=-x+4的交点一定不在第三象限.4.【解析】选C .由函数的图象可知,当y=3时,x=0;当y=-3时,x=4,故当-3<y <3时,x 的取值范围是0<x <4.故选C.5.【解析】选C.选项C 中的y =mx+n ,m <0,n >0.∴mn <0, ∴直线y =mnx 过二、四象限.其他三个选项中两条直线的m ,n 符号不一致. 6.【解析】选B.设直线AB 的解析式为y=k 1x+b,则112k b 44k b 2,-+=⎧⎨+=⎩解得11k ,3=-若11k k ,3==-则直线y=kx-2与直线AB 平行,无交点.因此k 不可能为1.3-7.【解析】选D.根据图象知:小敏经过2.8-1.6=1.2小时,走了4.8 km ,则其速度为4 km/h ;小聪经过1.6 h ,走了4.8 km ,则其速度为3 km/h.8.【解析】将点(a ,3)代入函数y =2x -1得3=2a -1, 解得a =2. 答案:29.【解析】所写的一次函数只需满足k<0即可. 答案:y=-x+1(答案不唯一) 10.【解析】由图象知方程组的解为x 1y 2=⎧⎨=⎩,,当x >1时y=2x 的图象在x+y=3的图象的上方,∴不等式2x>-x+3的解集为x >1. 答案:(1)x 1y 2=⎧⎨=⎩ (2)x >111.【解析】把x=m,y=8代入两函数解析式得方程组m a 8,m b 8,-+=⎧⎨+=⎩两方程相加得a+b=16.答案:1612.【解析】由图象求得AC 的解析式为S 1=2t, BD 的解析式为21S t 3,2=+当t=3时,S 1=6,29S .2=∴两人相距1.5千米. 答案:1.513.【解析】用待定系数法求得直线AB 和CD 的解析式分别为:y=2x+6和1y x 1,2=-+解方程组y 2x 6,x 2,1y 2,y x 12=+⎧=-⎧⎪⎨⎨==-+⎩⎪⎩得则直线AB 与直线CD 的交点坐标为(-2,2). 14.【解析】(1)设正比例函数和一次函数解析式分别为y=k 1x 和y=k 2x+3,则-2k 1=1,-2k 2+3=1, ∴11k ,2=-k 2=1,∴正比例函数解析式为1y x 2=-,一次函数解析式为y=x+3. (2)1y x 2=-过(0,0)和(2,-1)两点,y=x+3过(-3,0)和(0,3)两点,图象如图:(3)P O QP 11SO Q x 32 3.22==⨯⨯=15.【解析】(1)2(2)设y=kx+b(k,b 为常数,k ≠0),把(0,30),(3,36)代入得:b 30k 2,.3k b 36b 30==⎧⎧⎨⎨+==⎩⎩解得即y=2x+30. (3)由2x+30>49,得x>9.5, 即至少放入10个小球时有水溢出. 16.【解析】(1)y=100-x-(3x+8)=-4x+92. (2) w=60x+100(3x+8)+150(-4x+92) . w=-240x+14 600. (3) 由题意,得x 20,924x 0,≥⎧⎨->⎩解得20≤x <23.∵x是正整数,∴x可取20、21、22.∴共有3种购票方案.∵k=-240<0,∴w随着x的增大而减小,当x=22时,w的取值最小.即当A票购买22张时,购票的总费用最少.∴购票的总费用最少时,购买A、B、C三种票的张数分别为22,74,4.八年级数学上册第十五章《分式》单元综合测试卷班级:___________ 姓名:_____________ 成绩:___________(45分钟 100分)一、选择题(每小题4分,共28分) 1.下列计算正确的是( ) (A)(2x 2)3=8x 6(B)a 6÷a 2=a 3(C)3a 2×2a 2=6a 2(D)01()303⨯=2.马大哈同学做如下运算题:①x 3+x 3=x 6;②x 5-x 4=x;③x 5·x 5=x 10;④x 10÷x 5=x 2; ⑤(x 5)2=x 25.其中结果正确的是( ) (A)①②④ (B)②④ (C)③(D)④⑤3.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( ) (A)-2(B)2(C)-4 (D)44.化简(-x)3·(-x)2的结果正确的是( ) (A)-x6(B)x6(C)-x5(D)x 55.(x-a)(x 2+ax+a 2)的计算结果是( ) (A)x 3+2ax 2-a 3(B)x 3-a 3(C)x 3+2a 2x-a 3 (D)x 2+2ax 2+2a 2-a 36.计算()2 0142 0132 0122()1.513⨯⨯-的结果是( ) (A)23(B)32(C)23-(D)32-7.下列等式不成立的是( ) (A)m 2-16=(m -4)(m +4) (B)m 2+4m =m(m +4) (C)m 2-8m +16=(m -4)2(D)m2+3m+9=(m+3)2二、填空题(每小题5分,共25分)8.分解因式:-x3y+2x2y-xy=___________.9.小亮与小明在做游戏,两人各报一个整式,两整式相除的商式必须是2xy,若小明报的被除式是x3y-2xy2,则小亮报的一个整式是___________.10.已知a+b=2,则a2-b2+4b的值为___________.11.如图1,边长为a的大正方形中有一个边长为b的小正方形,若将图1中的阴影部分拼成一个长方形如图2,比较图1和图2中的阴影部分的面积,你能得到的公式是___________.12.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是___________.三、解答题(共47分)13.(12分)计算:(1)3x2y·(-2xy)3;(2)2a2(3a2-5b);(3)(5x+2y)(3x-2y).14.(11分)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y15.(12分)先化简,再求值:(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.16.(12分)已知:m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.八年级数学上册第十五章《分式》 单元综合测试卷详细参考答案1.【解析】选A.a 6÷a 2=a 6-2=a 4,所以选项B 错误;3a 2×2a 2=(3×2)a 2+2=6a 4,所以选项C 错误;而01()31333⨯=⨯=,所以选项D 错误;(2x 2)3=23x 2×3=8x 6,所以选项A 正确. 2.【解析】选C.x 3+x 3=2x 3,故①错误;x 5与x 4不是同类项,不能合并,故②错误;x 5·x 5=x 5+5=x 10,故③正确;x 10÷x 5=x10-5=x 5,故④错误;(x 5)2=x5×2=x 10,故⑤错误,可知选C.3.【解析】选D.由完全平方公式知,(x +2)2=x 2+2·x ·2+22=x 2+4x+4,所以“□”中的数是4. 4.【解析】选C.(-x)3·(-x)2=(-x)5=-x 5.5.【解析】选B.原式=x 3+ax 2+xa 2-ax 2-a 2x-a 3=x 3-a 3. 6.【解析】选A.()2 0142 0122 01222()1.5133=⨯⨯⨯-原式()2 0142 0122222( 1.5)111.3333=⨯⨯⨯-=⨯⨯=7.【解析】选D.选项D 中的3m 不是m 与3乘积的2倍,不能用完全平方公式进行因式分解. 8.【解析】-x 3y +2x 2y-xy =-xy(x 2-2x +1) =-xy(x-1)2. 答案:-xy(x-1)29.【解析】()3221x y 2x y2x y x y.2-÷=-答案:21x y 2-10.【解析】a 2-b 2+4b=a 2-(b 2-4b+4)+4=a 2-(b-2)2+4=(a-b+2)(a+b-2)+4, 又a+b=2,所以原式=(a-b+2)(2-2)+4=4. 答案:411.【解析】由图1可得阴影面积为a 2-b 2,由图2可得阴影面积为(a +b)(a -b), 由两图面积相等可得,a 2-b 2=(a +b)(a -b). 答案:a 2-b 2=(a +b)(a -b)12.【解析】4x 3-xy 2=x(4x 2-y 2)=x(2x+y)(2x-y), 取x=10,y=10时,2x+y=30, 2x-y=10. ∴产生的密码是103010. 答案:10301013.【解析】(1)原式=3x 2y ·(-8x 3y 3)=-24x 5y 4.。
第十一章三角形单元测试一、单选题(共10题;共30分)1、如图,小正方形边长为1,连结小正方形的三个顶点,可得△ABC,则AC边上的高是()A、 B、C、D、2、等腰三角形的两边分别为5cm、4cm,则它的周长是()A、14cmB、13cmC、16cm或9cmD、13cm或14cm3、若一个多边形有14条对角线,则这个多边形的边数是()A、10B、7C、14D、64、在四边形的内角中,直角最多可以有()A、1个B、2个C、3个D、4个5、一个多边形的内角和是720°,则这个多边形的边数为()A、4B、5C、6D、76、下列图形中有稳定性的是()A、正方形B、直角三角形C、长方形D、平行四边形7、八边形的对角线共有()A、8条B、16条C、18条D、20条8、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A、8条B、9条C、10条D、11条9、若一个多边形的外角和与它的内角和相等,则这个多边形是()A、三角形B、五边形C、四边形D、六边形10、如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A、数形结合B、特殊到一般C、一般到特殊D、转化二、填空题(共8题;共27分)11、一个等腰三角形的两边长分别为5厘米、9厘米,则这个三角形的周长为________.12、超重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做的数学道理是利用了________ .13、若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是________ ,这个多边形所有对角线的条数是________ .14、现要用两种不同的正多边形地砖铺地板,若已选用正三角形,则还可以选用正________ 边形与它搭配铺成无空隙且不重叠的地面(只需要写出一种即可)15、如果等腰三角形一个角是45°,那么另外两个角的度数为________16、已知一个多边形的内角和是1620°,则这个多边形是________边形.17、在格点图中,横排或竖排相邻两格点问的距离都为1,若格点多边形边界上有200个格点,面积为199,则这个格点多边形内有________个格点.18、一个多边形的每一个内角都是108°,你们这个多边形的边数是________.三、解答题(共5题;共32分)19、如图,已知,l1∥l2, C1在l1上,并且C1A⊥l2, A为垂足,C2, C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.20、如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.21、如图,在△ABC中,∠B=40°,∠C=62°,AD是△ABC的高,AE是△ABC的角平分线.求∠EAD的度数.22、如图,△ABC的中线AD、BE相交于点F.△ABF与四边形CEFD的面积有怎样的数量关系?为什么?23、如图,在7×8的方格纸中,已知图中每个小正方形的边长都为1,求图中阴影部分的面积.四、综合题(共1题;共11分)24、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.答案解析一、单选题1、【答案】 C【考点】三角形的面积,勾股定理【解析】【分析】以AC、AB、BC为斜边的三个直角三角形的面积分别为1、1、,因此△ABC的面积为;用勾股定理计算AC的长为,因此AC边上的高为.【解答】∵三角形的面积等于小正方形的面积减去三个直角三角形的面积,即S△ABC=4-×1×2-×1×1-×1×2=∵=,∴AC边上的高==,故选C.【点评】此题首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算.2、【答案】 D【考点】三角形三边关系,等腰三角形的性质【解析】【分析】因为等腰三角形的两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【解答】当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.故选D.3、【答案】 B【考点】多边形的对角线【解析】【分析】根据多边形的对角线与边的关系,n边形的对角线条数为:(n≥3,且n为整数)。
2024-2025学年八年级数学上学期期中模拟卷(海南卷)(考试时间:100分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形+全等三角形+轴对称)。
5.难度系数:0.65。
一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的几何原理是( )A .两点之间线段最短B .垂线段最短C .两点确定一条直线D .三角形具有稳定性【答案】D 【解析】由题意,所用的几何原理是三角形具有稳定性;故选D .2.如图,AB AC =,B C Ð=Ð,则ABE ACF V V ≌的判定依据为( )A .ASAB .AASC .SASD .SSS【答案】A 【解析】∵在ABE V 与ACF △中,A A AB AC B C Ð=Ðìï=íïÐ=Ðî,∴()ASA ABE ACF ≌△△.故选:A .3.点()5,2A -关于y 轴对称的点坐标是( )A .()5,2--B .()5,2C .()5,2-D .()2,5-【答案】A【解析】点()5,2A -关于y 轴对称的点坐标是()5,2--,故选:A .4.为方便劳动技术小组实践教学,需用篱笆围一块三角形空地,现已连接好三段篱笆AB BC ,,CD ,这三段篱笆的长度如图所示,其中篱笆AB CD ,可分别绕轴BE 和CF 转动.若要围成一个三角形的空地,则在篱笆AB 上接上新的篱笆的长度可以为( )A .1mB .2mC .3mD .4m【答案】D 【解析】设在篱笆AB 上接上新的篱笆长度为x ,根据题意得:2m,8m,3m AB BC CD ===,Q BC CD AB x BC CD -<+<+,即5m 13m AB x <+<,\3m 11mx <<\在篱笆AB 上接上新的篱笆的长度可以为4m ,故选:D .5.已知图中的两个三角形全等,则a Ð 等于( )A .72°B .60°C .58°D .50°【答案】D【解析】∵ABC DEF ≌△△,∴50A a Ð=Ð=°,故选:D .6.如图,AB CD ∥,点E 在BC CD CE =,若34ABC Ð=°,则BED Ð的度数是()A .104°B .107°C .116°D .124°【答案】B【解析】AB CD Q P ,34C ABC \Ð=Ð=°,又CD CE =Q ,D CED \Ð=Ð,180C D CED Ð+Ð+Ð=°Q ,即342180CED °+Ð=°,73CED \Ð=°,18073107BED \Ð=°-°=°,故选:B .7.如图,在ABC V 中,72B Ð=°,36C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为( )A .40°B .38°C .36°D .32°【答案】C 【解析】72B Ð=°Q ,36C Ð=°,18072BAC B C \Ð=°-Ð-Ð=°,由作图可知MN 垂直平分线段AC ,DA DC \=,36\Ð=Ð=°DAC C ,723636BAD BAC DAC \Ð=Ð-Ð=°-°=°,故选:C8.已知两个等腰三角形可按如图所示方式拼接在一起,则边AC 的长可能为( )A .2B .3C .4D .5【答案】B 【解析】Q ABC V 为等腰三角形,\AC 为3或4,Q 224AC AD CD <+=+=,\3AC =,故选:B .9.如图,在ABC V 中,5AC =,7AB =,AD 平分BAC Ð,DE AC ^,2DE =,则ABD △的面积为( )A .14B .12C .10D .7【答案】D 【解析】过D 点作DF AB ^于F ,如图,AD Q 平分BAC Ð,DE AC ^,DF AB ^,2DF DE \==,1172722ABD S AB DF \==´´=V g .故选:D10.如图,在ABC V 与AEF △中,A C E 、、三点在一条直线上,180AEF BAF °Ð+Ð=,BCE BAF Ð=Ð,AB AF =,若24BC =,14EF =,则AC CE AE-的值为( )A .16B .27C .15D .310【答案】A【解析】解: ∵BCE BAF Ð=Ð,BCE B BAE Ð=Ð+Ð,BAF BAE FAE Ð=Ð+Ð,∴B FAE Ð=Ð,∵180AEF BAF Ð+Ð=°,180BCE BCA Ð+Ð=°,BCE BAFÐ=Ð∴BCA AEF Ð=Ð,在ABC V 和FAE V 中,BCA AEF B FAE AB AF Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC FAE V V ≌,∴24BC AE ==,14CA EF ==,∴10CE AE CA =-=,∴14101246AC CE AE --==,故选:A .11.如图,AD 是ABC V 的角平分线,DE AB ^于点E ,7ABC S =△,24DE AB ==,,则AC 长是( )A .3B .4C .6D .5【答案】A 【解析】如图所示,过点D 作DF AC ^于F ,∵AD 是ABC V 的角平分线,DE AB ^,DF AC ^,∴2DF DE ==,∵7ABC ABD ACD S S S =+=△△△,∴11722AB DE AC DF ×+×=,∴11422722AC ´´+´=,∴3AC =,故选:A .12.如图,AB AD =,140BAD Ð=°,AB CB ^于点B ,AD CD ^于点D ,E 、F 分别是CB 、CD 上的点,且70EAF Ð=°,下列结论中①DF BE =, ②ADF ABE △≌△, ③FA 平分DFE Ð,④EF平分AEC Ð,⑤BE DF EF +=.其中正确的结论是( )A .④⑤B .①②C .③⑤D .①②③【答案】C 【解析】∵E 、F 分别是CB CD 、上的任意点,∴DF 与BE 不一定相等,故①错误;∵AB CB ^于点B AD CD ^,于点D ,∴90D ABE Ð=Ð=°,∵AB AD =,∴ADF ABE V V ≌的另一个条件是DF BE =,∵DF 与BE 不一定相等,∴ADF △与ABE V 不一定全等,故②错误;延长CB 到点G ,使BG DF =,连接AG ,则18090ABG ABE Ð=°-Ð=°,∴ABG D Ð=Ð,在ABG V 和ADF △中,AB AD ABG D BG DF =ìïÐ=Ðíï=î,∴()SAS ABG ADF V V ≌,∴AG AF BAG DAF G AFD =Ð=ÐÐ=Ð,,,∵14070BAD EAF Ð=°Ð=°,,∴70EAG BAE BAG BAE DAF BAD EAF Ð=Ð+Ð=Ð+Ð=Ð-Ð=°,∴Ð=ÐEAG EAF ,在EAG △和EAF △中,AG AF EAG EAF AE AE =ìïÐ=Ðíï=î,∴()SAS EAG EAF V V ≌,∴G AFE AEB AEF EG EFÐ=ÐÐ=Ð=,,∴AFD AFE BE DF BE BG EG EF Ð=Ð+=+==,,∴FA 平分DFE Ð,故③⑤正确;若EF 平分AEC Ð,而AEF AEG Ð=Ð,∴60CEF AEF AEG Ð=Ð=Ð=°,与题干信息矛盾,故④错误;故选C.二、填空题(本大题共4小题,每小题3分,满分12分)13.如果一个多边形的每个内角都是144°,那么这个多边形的边数是 .【答案】10【解析】Q 一个多边形的每个内角都是144°,\这个多边形的每个外角都是18014436°-°=°,\这个多边形的边数为:3603610¸°=.故答案为:10.14.如图,ABC V 中,CD 为AB 边上的中线,点E 是CD 的中点,连接BE ,若ABC V 的面积为10,则BECV 的面积是 . 【答案】52【解析】∵CD 为AB 边上的中线,ABC V 的面积为10,∴152BCD ABC S S ==△△.∵点E 是CD的中点,∴1522BEC BCD S S ==V V ,故答案为:52.15.如图,已知在ABC V ,BD 、CD 分别平分EBA Ð、ECA Ð,BD 交AC 于F ,连接AD ,且20BDC Ð=°,则CAD Ð的度数为 °.【答案】70【解析】过点D 分别作DH BE ^交BE 于点H ,DM BG ^交BG 于点M ,DN AC ^交AC 于点N ,如图所示:因为BD 、CD 分别平分EBA Ð、ECA Ð,则DH DM =,DH DN=则DM DN =,因为DM BG ^,DN AC ^,所以AD 是GAC Ð的角平分线,因为BD 、CD 分别平分EBA Ð、ECA Ð,所以2ABC CBD Ð=Ð,2ACE DCE Ð=Ð,因为20BDC Ð=°,所以20DCE CBD Ð=Ð+°,则22220DCE CBD Ð=Ð+´°,即40ACE ABC Ð=Ð+°,所以40BAC а=因为180MAC BAC Ð+Ð=°,且AD 是GAC Ð的角平分线所以18040702CAD GAD °-°Ð=Ð==°.故答案为:70.16.如图,CN 平分ABC V 的外角ACM Ð,过点A 作CN 的垂线,垂足为点D ,B BAD Ð=Ð.若9AC =,6BC =,则AD 的长为 .【答案】152【解析】如图,AD 的延长线交BM 于点E ,B BAD Ð=ÐQ ,AE BE \=,CN Q 平分ACM Ð,ACN ECN \Ð=Ð,AD CN ^Q ,90ADC EDC \Ð=Ð=°,在ACD V 和ECD V 中,ACN ECN CD CD ADC EDC Ð=Ðìï=íïÐ=Ðî,(ASA)ACD ECD \V V ≌,AC EC \=,AD ED =,9=Q AC ,9EC \=,6BC =Q ,15BE BC EC \=+=,15AE \=,152AD \=,故答案为:152.三、解答题(本大题共6小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知AB 、CD 是两条公路,E 、F 是两个村庄,通讯公司要在两公路之间建一座信号基站,要求到两条公路距离相等,并且到两村庄距离之和最小,请你用尺规作图帮通讯公司确定符合要求的位置点P (保留作图痕迹,不写做法)【解析】如图所示,则点P 即为所求:.18.(12分)正多边形的每个内角比它相邻的外角的3倍还多36°,求这个多边形的对角线是多少条?【解析】设这个多边形的每个外角为x °,则180336x x -=+,·····(3分)解得36x =·····(6分)∴这个多边形的边数是3601036°=°·····(9分)∴这个多边形的对角线是()10103352´-=(条).·····(12分)19.(12分)如图,A ,E ,B ,D 在同一直线上,FE AD ^,CB AD ^,AE DB =,AC DF =,若30D Ð=°,求C Ð的度数.【解析】∵FE AD ^,CB AD ^,∴90FED CBA Ð=Ð=°,·····(2分)∵AE DB =,∴AE EB EB BD +=+,·····(4分)即AB DE =,·····(5分)在Rt ABC △与Rt DEF △中AB DE AC DF =ìí=î,∴()Rt Rt HL ABC DEF ≌△△,·····(8分)∴30D A Ð=Ð=°,·····(11分)∴9060C A Ð=°-Ð=°.·····(12分)20.(12分)如图,ABC V 的高AD 与高BE 交于点F ,过点F 作FG BC P ,交直线AB 于点G ,45ABC Ð=°.求证:(1)BDF ADC V V ≌;(2)FG DC AD +=.【解析】(1)证明:∵AD 是BC 边上的高,45ABC Ð=°,∴90ADB ADC Ð=Ð=°,∴45DAB DBA Ð=Ð=°,∴BD AD =,·····(2分)在Rt BDF V 中,90DBF DFB Ð+Ð=°,∵BE 是AC 边上的高,∴90FEA FEC Ð=Ð=°,·····(4分)在Rt AEF V 中,90EAF EFA Ð+Ð=°,∵DFB EFA Ð=Ð,∴DBF EAF Ð=Ð,·····(6分)在Rt BDF V 和Rt ADC V 中,DBF DAC BD AD BDF ADC Ð=Ðìï=íïÐ=Ðî,∴()BDF ADC ASA V V ≌;·····(8分)(2)证明:∵FG BC P ,45ABC Ð=°,∴45AGF ABC Ð=Ð=°,由(1)可得,45DAB Ð=°,∴AGF GAF Ð=Ð,·····(10分)∴FG FA =,由(1)可得,BDF ADC V V ≌,∴DF DC =,·····(11分)∵AD AF DF =+,∴AD FG DC =+,即FG DC AD +=.·····(12分)21.(12分)如图,在平面直角坐标系中,ABC V 的三个顶点分别为A 、B 、C .(1)在图中作出ABC V 关于y 轴的对称图形111A B C △.(2)求ABC V 的面积.(3)在x 轴上画出点P ,使PA PC +最小.【解析】(1)解:∵ABC V 的三个顶点的坐标分别为()3,4A -,()4,1B -,()1,2C -,∴它们关于y 轴的对称点111,,A B C 的坐标为:()13,4A ,()14,1B ,()11,2C ,·····(3分)∴111A B C △的图形如下图所示,·····(6分)(2)解:111331313224222ABC S =´-´´-´´-´´=△;·····(9分)(3)解:如下图所示,作点C 关于x 轴的对称点2C ,连接2AC 交x 轴于点P ,即为所求作的点.·····(12分)22.(14分)如图,等边ABC V 中,CD AB ∥,P 为边BC 上一点,Q 为直线CD 上一点,连接AP PQ 、,使得APQ BAC Ð=Ð.(1)①如图1,探索PAC Ð与PQC Ð的数量关系并证明;②如图1,求证:AP PQ =.(2)如图2,若将“等边ABC V ”改为“等腰直角ABC AB AC =V ()”,其他条件不变,求证:AP PQ =.(3)如图3,若继续将“等腰直角ABC V ”改为“等腰ABC AB AC =V ()”,其他条件不变,(2)中的结论是否正确?若正确,请你给出证明;若不正确,请你说明理由.【解析】(1)证明:PAC PQC Ð=Ð,过程如下:·····(1分)①如图1所示,过P 点作PF AB ∥,·····(2分)则PQC FPQ Ð=Ð,CD AB Q ∥,FPA BAP \Ð=Ð,又APQ BAC Ð=ÐQ ,APQ FPA BAC BAP \Ð-Ð=Ð-Ð,即FPQ PAC PQC Ð=Ð=з····(3分)②如图1所示,过P 点作PE AC ∥,·····(4分)则BE BP =,AE PC =,APE PAC PQC Ð=Ð=Ð,180120AEP BEP Ð=°-Ð=°Q ,180120PCQ B Ð=°-Ð=°,AEP PCQ \Ð=Ð,·····(5分)在AEP △和PCQ △中,APE PQC AE PC AEP PCQ Ð=Ðìï=íïÐ=Ðî,()ASA AEP PCQ \V V ≌,·····(6分)AP PQ \=.·····(7分)(2)解:延长CA 至F 点使PF PC =,·····(8分)45PFC PCF \Ð=Ð=°,180454590FPC \Ð=°-°-°=°,CD AB Q ∥,AC AB ^,AC CD \^,90ACQ \Ð=°,904545PCQ ACQ ACP \Ð=Ð-Ð=°-°=°,PCQ PFA \Ð=Ð,90APQ BAC Ð=Ð=°Q ,90FPC Ð=°,APF APC QPC APC \Ð+Ð=Ð+Ð,APF QPC \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PCPCQ PFA Ð=Ðìï=íïÐ=Ðî∴()ASA APF QPC V V ≌AP PQ \=.·····(9分)(3)解:正确,过程如下:·····(10分)在AC 上取一点F 使PF PC =,·····(11分)ABC \V 和PFC △均为等腰三角形,ACB PCF Ð=ÐQ ,FPC BAC \Ð=Ð,·····(12分)又APQ BAC Ð=ÐQ ,APQ FPC \Ð=Ð,APF QPC \Ð=Ð,CD AB \∥,ACQ BAC APQ FPC \Ð=Ð=Ð=,FPC FCP ACQ FCP \Ð+Ð=Ð+Ð,PFA PCQ \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PC PCQ PFA Ð=Ðìï=íïÐ=Ðî,∴()ASA APF QPC V V ≌,·····(13分)AP PQ \=.·····(14分)。
第十一章 全等三角形测试卷(测试时间:90分钟 总分:100分)班级 姓名 得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC 与△DEF ,已知∠A =∠D ,∠B =∠E ,则下列条件①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 2. 下列说法正确的是( )A .面积相等的两个三角形全等B .周长相等的两个三角形全等C .三个角对应相等的两个三角形全等D .能够完全重合的两个三角形全等 3. 下列数据能确定形状和大小的是( )A .AB =4,BC =5,∠C =60° B .AB =6,∠C =60°,∠B =70° C .AB =4,BC =5,CA =10D .∠C =60°,∠B =70°,∠A =50°4. 在△ABC 和△DEF 中,∠A=∠D ,AB = DE ,添加下列哪一个条件,依然不能证明△ABC ≌△DEF ( )A .AC = DFB .BC = EF C .∠B=∠ED .∠C=∠F 5. OP 是∠AOB 的平分线,则下列说法正确的是( )A .射线OP 上的点与OA ,OB 上任意一点的距离相等 B .射线OP 上的点与边OA ,OB 的距离相等C .射线OP 上的点与OA 上各点的距离相等D .射线OP 上的点与OB 上各点的距离相等 6. 如图,∠1=∠2,∠E=∠A ,EC=DA ,则△ABD ≌△EBC 时,运用的判定定理是( )A .SSSB .ASAC .AASD .SAS7. 如图,若线段AB ,CD 交于点O ,且AB 、CD 互相平分,则下列结论错误的是( )A .AD=BCB .∠C=∠DC .AD ∥BC D .OB=OC8. 如图,AE ⊥BD 于E ,CF ⊥BD 于F ,AB = CD ,AE = CF ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 9. 如图,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.以上结论正确的( )A .只有①B .只有②C .只有③D .有①和②和③10.如图,DE ⊥BC ,BE=EC ,且AB =5,AC =8,(第8题)A D CB E F A B FC ED (第9题)O A D C B (第7题) B A C E D (第6题) 2 1ON M PC BA 则△ABD 的周长为( ) A .21B .18C .13D .9二、填空题(本大题共6小题;每小题2分,共12分) 11.如图,除公共边AB 外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC 与△ABD 全等:(1) , (ASA);(2) ,∠3=∠4 (AAS). 12.如图,AD 是△ABC 的中线,延长AD 到E ,使DE =AD ,连结BE ,则有△ACD ≌△ 。
初二数学第十一章全等三角形综合复习第十一章全等三角形复习(一)全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
(三)学习全等三角形应注意以下几个问题:(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”(5)截长补短法证三角形全等。
【切记】:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
数学八年级上册全等三角形综合测试卷(word含答案)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD =BD =CD , ∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.【答案】9364+【解析】【分析】 把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =34×32+12×3×4=364+. 【详解】将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD∴AD =AP ,∠DAP =60︒,又∵△ABC 为等边三角形,∴∠BAC =60︒,AB =AC ,∴∠DAB +∠BAP =∠PAC +∠BAP ,∴∠DAB =∠PAC ,又AB=AC,AD=AP∴△ADB ≌△APC∵DA =PA ,∠DAP =60︒,∴△ADP 为等边三角形,在△PBD 中,PB =4,PD =3,BD =PC =5,∵32+42=52,即PD 2+PB 2=BD 2,∴△PBD 为直角三角形,∠BPD =90︒,∵△ADB ≌△APC ,∴S △ADB =S △APC ,∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =3×32+12×3×4=936+. 故答案为:9364+.【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).4.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.【答案】4【解析】【分析】以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.【详解】解:如图,使△AOP 是等腰三角形的点P 有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.5.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.6.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB ;④12ABC AEPF S S ∆=四边形,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,∴∠PAE=∠PCF ,在△APE 与△CPF 中,{?PAE PCFAP CPEPA FPC ∠=∠=∠=∠,∴△APE ≌△CPF (ASA ),同理可证△APF ≌△BPE ,∴AE=CF ,△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,①②④正确; 而AP=12BC ,当EF 不是△ABC 的中位线时,则EF 不等于BC 的一半,EF=AP , ∴故③不成立.故始终正确的是①②④.故选D .考点:1.全等三角形的判定与性质;2.等腰直角三角形.7.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC 为格点三角形,在图中最多能画出_____个格点三角形与△ABC 成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC 成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.8.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC 和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.【答案】20°或40°【解析】【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°-12θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°-12θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°-12θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°-12θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点睛】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.9.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为12×3×3=92. 故填:92. 【点睛】 本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.10.如图,正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则AFE ∠=_______度.【答案】72.【解析】【分析】根据五边形的内角和公式求出EAB ∠,根据等腰三角形的性质,三角形外角的性质计算即可.【详解】解:∵五边形ABCDE 是正五边形,(52)1801085EAB ABC ︒︒-⨯∴∠=∠==,BA BC =,36BAC BCA ︒∴∠=∠=,同理36ABE ∠︒=,363672AFE ABF BAF ∴∠∠+∠︒+︒︒===.故答案为:72【点睛】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4B E=4CF=AB.正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS可证明△ABD≌△ACD,从而可判断①正确;利用ASA可证明△ADE≌△ADF,从而可判断③正确;在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC中,AD是BC边上的高,∴BD=DC,AB=AC,∠B=∠C=60°,在△ABD与△ACD中90AD ADADB ADCDB DC=⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD≌△ACD,故①正确;在△ADE与△ADF中60EAD FADAD ADEDA FDA∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ADE≌△ADF,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.12.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP、BP为腰或以BP、AB为腰.则满足条件的点P可求.【详解】由题意可知:以AP、AB为腰的三角形有3个;以AP、BP为腰的三角形有2个;以BP、AB为腰的三角形有2个.所以,这样的点P共有7个.故选D.【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.13.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【答案】C【解析】【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.14.点A 的坐标是(2,2),若点P 在x 轴或y 轴上且△APO 是等腰三角形,这样的点P 共有( )个A .6B .7C .8D .9【答案】C【解析】【分析】根据等腰三角形的性质,要使△AOP 是等腰三角形,可以分两种情况考虑:当OA 是底边时,作OA 的垂直平分线,和坐标轴出现2个交点;当OA 是腰时,则分别以点O 、点A 为圆心,OA 为半径画弧,和坐标轴出现6个交点,这样的点P 共8个.【详解】如图,分两种情况进行讨论:当OA 是底边时,作OA 的垂直平分线,和坐标轴的交点有2个;当OA 是腰时,以点O 为圆心,OA 为半径画弧,和坐标轴有4个交点;以点A 为圆心,OA 为半径画弧,和坐标轴出现2个交点;∴满足条件的点P 共有8个,故选:C .【点睛】本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA 为腰或底两种情况分类讨论,运用数形结合的思想进行解决.15.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥ ∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.16.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.17.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE 、BD 相交于点 O ,AE 、BD 分别交 CD 、CE 于 M 、N ,连接 MN 、OC ,则下列所给的结论中:①AE =BD ;②CM =CN ;③MN ∥AB ;④∠AOB =120º;⑤OC 平分∠AOB .其中结论正确的个数是( )A .2B .3C .4D .5【答案】D【解析】【分析】 由题意易证:△ACE ≅△DCB ,进而可得AE =BD ;由△ACE ≅△DCB ,可得∠CAE=∠CDB ,从而△ACM ≅△DCN ,可得:CM =CN ;易证△MCN 是等边三角形,可得∠MNC=∠BCE , 即MN ∥AB ;由∠CAE=∠CDB ,∠AMC=∠DMO ,得∠ACM=∠DOM=60°,即∠AOB =120º;作CG ⊥AE ,CH ⊥BD ,易证CG =CH ,即:OC 平分∠AOB .【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,∴△ACE ≅△DCB(SAS)∴AE =BD ,∴①正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,在△ACM 和△DCN 中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO,即:∠ACM=∠DOM=60°,∴∠AOB=120º,∴④正确;作CG⊥AE,CH⊥BD,垂足分别为点G,点H,如图,在△ACG和△DCH中,∵90?AMC DHCCAE CDBAC DC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG≅△DCH(AAS),∴CG=CH,∴OC 平分∠AOB,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.18.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第43秒或第83秒时,△PBQ为直角三角形,正确的有几个 ( )A.1 B.2 C.3 D.4【答案】C【解析】【分析】①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.【详解】①在等边△ABC中,AB=BC.∵点P、Q的速度都为1cm/s,∴AP=BQ,∴BP=CQ.只有当CM=CQ时,BP=CM.故①错误;②∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵AB CAABQ CAP AP BQ⎧⎪∠∠⎨⎪⎩===,∴△ABQ≌△CAP(SAS).故②正确;③点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.故③正确;④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4-t=2t,t=43,当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=83,∴当第43秒或第83秒时,△PBQ为直角三角形.故④正确.正确的是②③④,故选C.【点睛】此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.19.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.有下列结论:①∠C=2∠A;②BD平分∠ABC;③S△BCD=S△BOD.其中正确的选项是()A.①③B.②③C.①②③D.①②【答案】D【解析】①、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确;②、∵DO是AB垂直平分线,∴AD=BD.∴∠A=∠ABD=36°.∴∠DBC=72°﹣36°=36°=∠ABD.∴BD是∠ABC的角平分线,正确;③,根据已知不能推出△BCD的面积和△BOD面积相等,错误;故选:D.20.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+3×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+34×32=6+34,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.。
第11章全等三角形综合测试卷题号一1 二2 三3 四4 五5 六6 七7 八8得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(本大题共8小题,每小题3分,共24分)1.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A、5B、4C、3D、22、如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A、20°B、30°C、35°D、40°3、如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A. 4个B、3个C、2个D、1个4、如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是()A、只有乙B、只有丙C、甲和乙D、乙和丙5、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A、60°B、50°C、45°D、30°6、用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A. SSSB. SASC. ASAD. AAS7、如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A、①B、②C、①②D、①②③8、如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,所作三角形与△ABC全等,这样的三角形最多可以画出()个A、2B、4C、6D、8二、填空题(本大题共8小题,每小题3分,共24分)9、如图,若△ABC≌△DEF,则∠E= ___________度.10、如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= cm.11、如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件.第6题12、如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=6 cm,则点D到AB的距离是__________cm.13、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.14、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于15、如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充条件.(只需填写一个你认为适当的条件)16、如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CE;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三、(本大题共3小题,第17 题6分,第18、19题均为7 分,共20 分)17、如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.18、如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是(2)添加了条件后,证明△ABC≌△EFD.19、如图,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中两对全等三角形,并选择其中一对加以证明.四、(本大题共2小题,每小题8 分,共16 分)20、如图,在Rt△ABC中,AD为∠BAC的平分线,DE⊥AB,若AB=10cm,AC=6cm,求BE的长.21.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.五、(本大题共2小题,每小题8分,共16 分)22、如图所示,有一块三角形的空地,其三边长分别为20m、30m、40m,现在要把它分成面积比为2:3:4的三部分,分别种植不同的花。
请你设计出一个方案,并说明你的理由。
23、如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DFC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是(A)A、5B、4C、3D、22、如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为(B)A、20°B、30°C、35°D、40°3、如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有(B)A. 4个B、3个C、2个D、1个4、如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是(D)A、只有乙B、只有丙C、甲和乙D、乙和丙5、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于(A)A、60°B、50°C、45°D、30°6、用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是(A)A. SSSB. SASC. ASAD. AAS7、如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是(D)A、①B、②C、①②D、①②③8、如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,所作三角形与△ABC全等,这样的三角形最多可以画出(B)个A、2B、4C、6D、8二、填空题(本大题共8小题,每小题3分,共24分)9、如图,若△ABC≌△DEF,则∠E= 100度.10、如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= 10cm.11、如图,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件AF=CD或∠B=∠DEC.第6题12、如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=6 cm,则点D到AB的距离是6 cm.13、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=90 度.14、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于2:3:415、如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充条件CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′).(只需填写一个你认为适当的条件)16、如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CE;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)三、(本大题共3小题,第17 题6分,第18、19题均为7 分,共20 分)17、如图,OP平分∠AOB,且OA=OB.(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);(2)从(1)中任选一个结论进行证明.解:(1)△APO≌△BPO,△ADO≌△BCO,△OCP≌△ODP,△ACP≌△BDP.(2)证明△APO ≌△BPO , ∵OP 平分∠AOB , ∴∠AOP=∠BOP ,又∵OP=OP ,OA=OB ,(SAS ) ∴△APO ≌△BPO .18、如图,点B 、D 、C 、F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ∠B=∠F 或AB ∥EF 或AC=ED ;(2)添加了条件后,证明△ABC ≌△EFD . 解:(1)∠B=∠F 或AB ∥EF 或AC=ED ; (2)证明:当∠B = ∠F 时 在△ABC 和△EFD 中AB EFB F BC FD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD (SAS)19、如图,在△ABC 中,∠ACB=90°,AC=BC ,CE ⊥BE ,CE 与AB 相交于点F ,AD ⊥CF 于点D ,且AD 平分∠FAC ,请写出图中两对全等三角形,并选择其中一对加以证明. 解:△ADC ≌△ADF 、△ADC ≌△CEB . 若选择△ADC ≌△ADF ,证明如下: ∵AD 平分∠FAC , ∴∠CAD=∠FAD , ∵AD ⊥CF ,∴∠ADC=∠ADF=90°, 又∵AD=AD , ∴△ADC ≌△ADF.四、(本大题共 2小题,每小题8 分,共16 分)20、如图,在Rt △ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,若AB=10cm ,AC=6cm ,求BE 的长.解:∵AD 平分∠BAC ,∠ACB=90°,DE ⊥AB ,∴DE=DC .又∵AD=AD ,∴△ADE ≌△ADC (HL ),∴AE=AC=6cm ,∴BE=AB-AE=10-6=4cm .21.如图:已知BD=CD ,BF ⊥AC ,CE ⊥AB ,求证:点D 在∠BAC 的平分线上证明:∵BF ⊥AC ,CE ⊥AB ,∴∠BED=∠CFD=90°,在△BED 和△CFD 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=⎨⎪=⎩∴△BED ≌△CFD (AAS ),∴DE=DF ,又∵DE ⊥AB ,DF ⊥AC ,∴点D 在∠BAC 的平分线上.五、(本大题共 2小题,每小题 8分,共 16 分)22、如图所示,有一块三角形的空地,其三边长分别为20m 、30m 、40m ,现在要把它分成面积比为2:3:4的三部分,分别种植不同的花。