2017年中考数学模拟试卷(三)手写版详细答案示范
- 格式:pdf
- 大小:4.11 MB
- 文档页数:14
中考数学三模试卷一、选择题(本大题共16小题,1-10题,每小题3发,11-16小题,每小题3分,共42分)1.(3分)下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.D.2.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)3.(3分)下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件4.(3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A.0.69×10﹣6B.6.9×10﹣7C.69×10﹣8D.6.9×1075.(3分)一个正多边形的内角和是外角和的2倍,则这个正多边形的每个外角为()A.50°B.60°C.45°D.120°6.(3分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.7.(3分)下列说法正确的是()A.若a<0,则<0 B.x实数,且x2=a,则a>0C.有意义时,x≤0 D.0.1的平方根是±0.018.(3分)化简÷的结果是()A. B.C. D.2(x+1)9.(3分)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<10.(3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°11.(2分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)12.(2分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是()A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形13.(2分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C.D.14.(2分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1015.(2分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=216.(2分)如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是()A.4 B.4 C.8 D.8二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题共4分)17.(3分)计算:(+1)(3﹣)=.18.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.19.(4分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM 交x轴于点N(n,0),设点M转过的路程为m(0<m<1).(1)当m=时,n=;(2)随着点M的转动,当m从变化到时,点N相应移动的路径长为.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a、b,都有a⊕b=a﹣2b,等式右边是通常的减法及乘法运算.例如:3⊕2=3﹣2×2=﹣1.(1)计算:3⊕(﹣2);(2)若3⊕x的值小于1,求x的取值范围,并在如图所示的数轴上表示出来.21.(9分)如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC ⊥ON.(1)求∠ACD度数;(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)22.(9分)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.23.(9分)教室内的饮水机接通电源进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(分钟)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.如图为在水温为30℃时,接通电源后,水温y(℃)和时间x(分钟)的关系如图.(1)a=;(2)直接写出图中y关于x的函数关系式;(3)饮水机有多少时间能使水温保持在70℃及以上?(4)若饮水机早上已加满水,开机温度是20℃,为了使8:40下课时水温达到70℃及以上,并节约能源,直接写出当它上午什么时间接通电源比较合适?24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.(10分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?26.(12分)平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE,则∠CDE=°,CD=;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当α=∠ACB时,求线段BD的长;(4)若m=6,n=4,当半圆O旋转至与△ABC的边相切时,直接写出线段BD 的长.2017年河北省唐山市路北区中考数学三模试卷参考答案一、选择题(本大题共16小题,1-10题,每小题3发,11-16小题,每小题3分,共42分)1.A;2.D;3.C;4.B;5.B;6.D;7.C;8.A;9.A;10.B;11.A;12.AD;13.D;14.C;15.A;16.B;二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题共4分)17.2;18.6;19.﹣1;;三、解答题(本大题共7小题,共68分)20.;21.;22.抽样;50;23.7;24.;25.;26.90;;。
2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。
2017年天津市和平区建华中学中考数学模拟试卷一、选择题:1.(3分)计算﹣5﹣(﹣2)×3的结果等于()A.﹣11 B.﹣1 C.1 D.112.(3分)在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A.B.C.D.3.(3分)点p(5.﹣3)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣5,﹣3)C.(﹣5,3)D.(﹣3,5)4.(3分)用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是()A.它精确到万位B.它精确到0.001C.它精确到万分位 D.它精确到十位5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A.B.C.D.6.(3分)25的算术平方根是()A.5 B.±5 C.±D.7.(3分)化简的结果是()A.x+1 B. C.x﹣1 D.8.(3分)一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大9.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣310.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对11.(3分)下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系12.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.二、填空题:13.(3分)若10m=5,10n=3,则102m+3n=.14.(3分)若最简二次根式与是同类二次根式,则a=.15.(3分)口袋中装有二黄三蓝共5个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是.16.(3分)已知正比例函数y=(1﹣2a)x,如果y的值随着x的值增大而减小,则a的取值范围是.17.(3分)如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为.18.(3分)如图,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当3CQ=CE 时,EP+BP=.三、计算综合题:19.解不等式组:,并把解集在如图数轴上表示出来.20.“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.21.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,延长BC到点F,连接AF,使∠ABC=2∠CAF.(1)求证:AF是⊙O的切线;(2)若AC=4,CE:EB=1:3,求CE的长.22.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C 地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)23.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(元),在乙店购(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲买的付款数为y(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间乙的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)25.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B 在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.2017年天津市和平区建华中学中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)计算﹣5﹣(﹣2)×3的结果等于()A.﹣11 B.﹣1 C.1 D.11【解答】解:原式=﹣5+6=1,故选C2.(3分)在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A.B.C.D.【解答】解:cosA==.故选B.3.(3分)点p(5.﹣3)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣5,﹣3)C.(﹣5,3)D.(﹣3,5)【解答】解:点P(5.﹣3)关于原点对称的点的坐标是(﹣5,3).故选C.4.(3分)用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是()A.它精确到万位B.它精确到0.001C.它精确到万分位 D.它精确到十位【解答】解:近似数4.005万精确到十位.故选D.5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:A.6.(3分)25的算术平方根是()A.5 B.±5 C.±D.【解答】解:∵52=25,∴25的算术平方根是5,故选A.7.(3分)化简的结果是()A.x+1 B. C.x﹣1 D.【解答】解:原式=﹣===x+1.故选A8.(3分)一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A.有两个正根B.有两个负根C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大【解答】解:∵a>0,b<0,c<0,∴△=b2﹣4ac>0,<0,﹣>0,∴一元二次方程ax2+bx+c=0有两个不相等的实数根,且两根异号,正根的绝对值较大.故选:C.9.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣3【解答】解:根据题意得,x+3≥0,解得x≥﹣3.故选:D.10.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.11.(3分)下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系【解答】解:A、根据题意,得S=a2,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得l=4a,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得S=20a,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得b=,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.故选D.12.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【解答】解:∵一次函数y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴二次函数y=ax2+bx的图象可能是:开口方向向下,对称轴在y轴左侧,故选B.二、填空题:13.(3分)若10m=5,10n=3,则102m+3n=675.【解答】解:102m+3n=102m•103n=(10m)2•(10n)3=52•33=675.故答案是675.14.(3分)若最简二次根式与是同类二次根式,则a=2.【解答】解:由题意,得7a﹣1=6a+1,解得a=2,故答案为:2.15.(3分)口袋中装有二黄三蓝共5个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是.【解答】解:∵从5个球中随机一次摸出2个共5×4÷2=10种情况,其中有6种情况可使摸出两个球恰好一红一黑;∴P(一黄一蓝)==.故答案为:.16.(3分)已知正比例函数y=(1﹣2a)x,如果y的值随着x的值增大而减小,则a的取值范围是a.【解答】解:根据y的值随着x的值增大而减小,知k<0,即1﹣2a<0,a>.故答案为:a>.17.(3分)如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为4.【解答】解:设AN=x,∵四边形ABCD是菱形,∴∠MAE=∠NAF,∵∠AEM=∠AFN=90°,∴△MAE∽△NAF,∴=,∴=,∴x=4,∴AN=4,故答案为4.18.(3分)如图,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当3CQ=CE 时,EP+BP=8.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵3CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为:8.三、计算综合题:19.解不等式组:,并把解集在如图数轴上表示出来.【解答】解:∵解不等式①得:x>2,解不等式②得:x<3,∴不等式组的解集为2<x<3,在数轴上表示为:.20.“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.21.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,延长BC到点F,连接AF,使∠ABC=2∠CAF.(1)求证:AF是⊙O的切线;(2)若AC=4,CE:EB=1:3,求CE的长.【解答】(1)证明:连接BD,如图1所示:∵AB是⊙O的直径∴∠ADB=90°,∵BA=BC,∴BD平分∠ABC,即∠ABC=2∠ABD∵∠ABC=2∠CAF,∴∠ABD=∠CAF,∵∠ABD+∠CAB=90°,∴∠CAF+∠CAB=90°,即BA⊥FA,∴AF是⊙O的切线;(2)解:连接AE,如图2所示:∵AB是⊙O的直径∴∠AEB=90°,即△AEB为直角三角形,∵CE:EB=1:3,设CE长为x,则EB长为3x,BC长为4x.则AB长为4x,在Rt△AEB中由勾股定理可得AE=,在Rt△AEC中,AC=4,AE=,CE=x,由勾股定理得:,解得:,∵x>0∴,即CE长为.22.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C 地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)【解答】解:由题意可知∠DCA=180°﹣75°﹣45°=60°,∵BC=CD,∴△BCD是等边三角形.过点B作BE⊥AD,垂足为E,如图所示:由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60° BD=BC=CD=20km,∴∠ADB=∠DBC﹣∠DAC=15°,∴BE=sin15°BD≈0.25×20≈5m,∴AB==≈7m,∴AB+BC+CD≈7+20+20≈47m.答:从A地跑到D地的路程约为47m.23.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?【解答】解:(1)由题意得y甲=30×4+5×(x﹣4)=100+5x(x≥4),y乙=30×4×0.9+5x×0.9=4.5x+108(x≥4);(2)当y甲=y乙时,即100+5x=4.5x+108,解得x=16,到两店价格一样;当y甲>y乙时,即100+5x>4.5x+108,解得x>16,到乙店合算;当y甲<y乙时,即100+5x<4.5x+10,解得4≤x<16,到甲店合算.24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC 为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=2;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【解答】解:(1)如图①:①∵△ABC是等腰直直角三角形,AC=1+∴AB===+,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACP=∠BCQ,∴△APC≌△BQC.∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=2.故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DC•PD+PD2∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵,∴.∴.在Rt△CP1D中,由勾股定理得:==DC,在Rt△ACD中,由勾股定理得:AC===DC,∴.②当点P位于点P2处时.∵=,∴.在Rt△CP2D中,由勾股定理得:==,在Rt△ACD中,由勾股定理得:AC===DC,∴.综上所述,的比值为或.25.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B 在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.【解答】解:(1)解方程x2﹣10x+16=0得x1=2,x2=8 (1分)∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC∴点B的坐标为(2,0),点C的坐标为(0,8)又∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2∴由抛物线的对称性可得点A的坐标为(﹣6,0)(2分)(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上∴c=8,将A(﹣6,0)、B(2,0)代入表达式,得:解得∴所求抛物线的表达式为y=﹣x2﹣x+8(5分)(3)依题意,AE=m,则BE=8﹣m,∵OA=6,OC=8,∴AC=10∵EF∥AC∴△BEF∽△BAC∴=,即=∴EF=(6分)过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=∴=∴FG=•=8﹣m∴S=S△BCE ﹣S△BFE=(8﹣m)×8﹣(8﹣m)(8﹣m)=(8﹣m)(8﹣8+m)=(8﹣m)m=﹣m2+4m(8分)自变量m的取值范围是0<m<8 (9分)(4)存在.理由:∵S=﹣m2+4m=﹣(m﹣4)2+8且﹣<0,∴当m=4时,S有最大值,S最大值=8 (10分)∵m=4,∴点E的坐标为(﹣2,0)∴△BCE为等腰三角形.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2017年中考数学模拟试卷及参考答案与评分标准(三)考生须知:1. 本科目试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2. 答题前,必须在答题卷的密封区内填写姓名与准考证号.3. 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4. 考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)F 面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在 答题卷中相应的格子内•注意可以用多种不同的方法来选取正确答案.1. LA 知x=-2是方程2x-3a=2的根,那么a 的值是()3. 如图,侮个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中厶ABC4.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为( )A. 3.2X107LB. 3.2X106LC. 3.2xl05LD. 3.2xl04Z5.己知\2x ^3y~4kf,且一iv 兀一尹vo,则£的取值范围为()3兀+ 2卩=2比+ 1 A.—B. 0 < k <—C. 0 < Zr < 1D. — < k <\2 2 26. 已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()B. a =~2 、2C. — 3 2D. a 二——2•己知点M (l-a, a+3)在第二象限, 则a 的取值范I 韦|是()A. a>-2B. -2<a<lC. a<-2D. a>l9相似的是 )D.A. 36兀endB. 48兀cm'C. 60兀D. S07Tcm27•如图所示实数a, b在数轴上的位置,以下四个命题中是假命题的是()A. ci ,一ab 2< 0 B. J(a + bf =d + b1 12 ,2 C. ------ v — D ・ a V b a — h a&如图,OP 内含于G)O, 0 0的弦/〃切0卩于点(?,且AB HOP .若阴影部分的面积为9龙,则弦AB 的长为()A. 3B. 4C. 6D. 9sin 225° = sin (l 80° + 45°) = - sin 45°,由此猜想、推理知:一般地当。
2017中考数学模拟试题三一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣52的值是A . ﹣10B . 10C . ﹣25D . 252.在下列图形中,既是中心对称图形又是轴对称图形的是 A . 等腰三角形 B . 梯形 C . 圆 D . 平行四边形° 3.在函数y x =-11中,自变量x 的取值范围是 A .x>1 B .x ≥1 C .x <1 D .x ≤1 4.下列运算正确的是A . (a 3)2=a 5B . a 3+a 2=a 5C . (a 3—a )÷a =a 2D . a 3÷a 3=15.用科学记数法表示0.00032,正确的是 A . 32105⨯- B . 32104.⨯- C . 32103.⨯- D . 032102.⨯-6.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是7.下列命题中真命题是 A . 一组数据的方差越大,说明该组数据的越具有稳定性 B . 某抽奖活动中奖的概率是1%,参与100次抽奖一定会中奖 C . 在一个随机事件过程中某种结果的出现概率是由实验的次数决定的 D . 将2、3、4、5、6依次重复写6遍,得到这30个数的平均数是48.已知M 点关于x 轴的对称点N (3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则M 点的坐标是 A . (-1,-1) B . (-1,1) C . (1,-1) D . (1,1)9.在同一平面直角坐标系中,函数()1y k x =-与()0ky k x=<的大致图象是10.如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系是 A . -n>m>-m>n B . m >n>-m>-n C . -n>m>n>-m D . n >m>-n>-m11.如图,在平行四边形ABCD 中(AB ≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO =BO ;②OE =OF ;③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是A . ①②B . ②③C . ③④D .②④ 12.如图,某同学P 从半圆跑道的A 点出发沿弧A B 匀速前进到达终点B ,若以时间t 为自变量,扇形OAP 的面积S 为函数的图象大致是A .B .C .D .13、已知等腰三角形ABC 中,AB =AC =3底角为30°, 动点P 从点B 向点C 运动,当运动到PA与一腰垂直时BP 长为( )A 1B 1或3C 1 或2 D314、如图,在 △ABC 中,AB =10 ,AC =8 ,BC =6 ,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ) A .4.75 B .4.8C .5D .415、如图,四边形ABCD 是正方形,E 、F 、G 、H 分别在AD 、AB 、BC 、CD 上,若EHFH ,则顺次连接EF 、FG 、GH 、HE 的中点所得到的四边形是 A .等腰梯形 B .矩形 C .菱形 D .正方形16、观察下列等式:①112-21=10;②1012-201=102;③10012-2001=103,...,则式子100... 0122015个0-200 (01)2015个0)的结果是 .二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.为了参加市中学生篮球比赛,某校篮球队准备购买10双运动鞋,尺码(单位:厘米)如下:25 2527 25.5 25.5 26 26.5 25.5 25.5 26则这10双运动鞋尺码的众数是 .A EOtPHO C B Ay S18.方程2111x x x =++ 的解是 . 19.用同样大小的小圆按下图所示的方式摆图形,第1个图形1个小圆,第2个图形由3个小圆组成,第3个图形由6个小圆组成,第4个图形由10个小圆组成,按照这样的规律摆下去,则第99个图由 个小圆组成.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤) 20.(本题满分6分)计算: 101()3tan 301(3)2π-+︒---21.(本题满分8分)某同学参加社会实践活动时,对某书店A 、B 、C 、D 四种书刊在七月份的销售量进行了统计,绘制了两幅不完整的统计表,请根据所给信息解答一下问题:(1)填充频率分布表中的空格及补全频数分布直方图;(2)若该书店计划订购此四种书刊1000册,请你计算B 种书刊应采购多少册较合适? (3)针对调查结果,请你帮助该同学给该书店提一条合理的建议.22.(本题满分9分)如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点. 求证:(1)EF 和GH 互相平分;(2)当EF 和GH 垂直时,AD 与BC 有什么数量关系?说明你的理由.23.(本题满分9分)如图,某公路局施工队要修建一条公路MN ,已知C 点周围300米范围内为古建筑保护群,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走900米到达B 处,测得C 在点B 的北偏西60°方向上.1.4141.732)(1)MN 是否穿过古建筑保护群?为什么?(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划每天完成修建多少米公路?CBNMA24.(本题满分10分)已知:△ABC 内接于⊙O ,过点A 作直线EF .(1)如图甲,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(只需写出两种情况即可):① ; ② .(2)如图乙,AB 是非直径的弦,∠CAE =∠B ,求证:EF 是⊙O 的切线.25.(本小题满分10分)(1)如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)如图2,点M ,N 在反比例函数xky (k >0)在第一象限的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .①证明:MN ∥EF .②当点M 、N 的坐标符合什么条件时,四边形EFNM 是等腰梯形?A BD C图1图甲 图乙26.(本题满分12分)二次函数y=ax 2+bx+c (a≠0)的顶点为H (21,425),且经过点P (2,4),交y 轴于点A ,交x 轴于点B 、点C (点B 在点C 的左侧).(1)求此二次函数的表达式; (2)求∠BAC 度数;(3)点M 在线段AC 上(不与点A 、点C 重合)由A 开始向C 运动,速度为每秒5个单位长度,连接PM 并延长交二次函数图象另一点垂足为点R ,是否存在点Q 使△QRO ≌△AOC 的点Q 不存在,请说明理由.2017中考数学模拟试题三参考答案一、选择题:(每小题3分;共36分) CCADB ADBBA BA二、填空题:(每小题4分,共20分)13. 25.5 14. x=1 15.垂直平分 16.180 17.4950三、解答题:(本大题共7小题, 共64分) 18.解:原式=23113+⨯-- …………………………3分=211- ……………………………………… 5分………………………………………………… 6分 19.(1)1250;0.40;图略; ……………………………………………3分 (2)1000×0.2=200; ……………………………………………… 6分 (3)答案不唯一,合理即可……………………………………………… 8分20.(1)证明:连结EG 、GF 、FH 、HE ,点E 、F 、G 、H 分别是AB 、CD 、AC 、BD的中点,在ABC ∆中,12EG BC =;在DBC ∆中,12HF BC =,…………… …………2分EG HF ∴=。
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
2017年吉林省长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A.B.C.﹣4D.42.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6D.a6÷a2=a34.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6B.8C.10D.126.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7B.8C.12D.137.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣=.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是.(填一个即可)13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC 的延长线上,则∠BB1C1的大小是度.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C (点B在点A左侧,点C在点A右侧),则的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在组(填时间范围).(2)该校九年级共有800名学生,估计大约有名学生每天完成课外作业时间在120分钟以上(包括120分钟)18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B 出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ 绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B (A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.2017年吉林省长春市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)的相反数是()A.B.C.﹣4D.4【解答】解:的相反数是,故选:B.2.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.3.(3分)下列运算正确的是()A.a•a2=a2B.(a2)3=a6C.a2+a3=a6D.a6÷a2=a3【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选:B.4.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:故选:A.5.(3分)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD 的面积是()A.6B.8C.10D.12【解答】解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∠C=90°,∴DE=CD=2,∴△ABD的面积=AB•DE=×8×2=8.故选:B.6.(3分)如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是()A.7B.8C.12D.13【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.7.(3分)如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选:D.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)化简:﹣=.【解答】解:原式=2﹣=.故答案为:.10.(3分)某种商品n千克的售价是m元,则这种商品8千克的售价是元.【解答】解:根据题意,得:,故答案为:.11.(3分)不解方程,判断方程2x2+3x﹣2=0的根的情况是有两个不相等的实数根.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.12.(3分)如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P (1,m)在△AOB的形内(不包含边界),则m的值可能是1.(填一个即可)【解答】解:∵直线y=﹣x+2分别交x轴、y轴于A、B两点,∴A(4,0),B(0,2),∴当点P在直线y=﹣x+2上时,﹣+2=m,解得m=,∵点P(1,m)在△AOB的形内,∴0<m<,∴m的值可以是1.故答案为:1.13.(3分)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC 的延长线上,则∠BB1C1的大小是80度.【解答】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故答案为:80.14.(3分)如图,在平面直角坐标系中,抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的一个交点为A.已知点A的横坐标为1,过点A作x轴的平行线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则的值为.【解答】解:抛物线y=﹣(x﹣3)2+m与y=(x+2)2+n的对称轴分别为直线x=3与直线x=﹣2,∵点A的横坐标为1,∴点C的横坐标为5,点B横坐标为﹣5,∴AC=4,AB=6,则==,故答案为:三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:2b2+(a+b)(a﹣b)﹣(a﹣b)2,其中a=﹣3,b=.【解答】解:原式=2b2+a2﹣b2﹣(a2+b2﹣2ab)=2b2+a2﹣b2﹣a2﹣b2+2ab=2ab,当a=﹣3,b=时,原式=2×(﹣3)×=﹣3.16.(6分)如图是一副扑克牌的四张牌,将它们正面向下洗均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.【解答】解:画树状图得:∵共有12种等可能的结果,牌面上的数字都是偶数的有2种情况,∴P(牌面上数字都是偶数)==.17.(6分)为了解九年级课业负担情况,某校随机抽取80名九年级学生进行问卷调查,在整理并汇总这80张有效问卷的数据时发现,每天完成课外作业时间,最长不超过180分钟,最短不少于60分钟,并将调查结果绘制成如图所示的频数分布直方图.(1)被调查的80名学生每天完成课外作业时间的中位数在120~150组(填时间范围).(2)该校九年级共有800名学生,估计大约有600名学生每天完成课外作业时间在120分钟以上(包括120分钟)【解答】解:(1)被调查的80名学生每天完成课外作业时间的中位数在120~150.故答案为120~150.(2)校九年级共有800名学生,每天完成课外作业时间在120分钟以上的学生有800×=600,故答案为600.18.(7分)如图,在▱ABCD中,O为AC的中点,过点O作EF⊥AC与边AD、BC分别相交于点E、F,求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴AE∥CF,∴∠OAE=∠OCF,∵点O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵EF与AC垂直,∴四边形AECF是菱形.19.(7分)某环卫清洁队承担着9600米长的街道清雪任务,在清雪1600米后,为了减少对交通的影响,决定租用清雪机清雪,结果共用了4小时就完成了清雪任务.已知使用清雪机后的工作效率是原来的5倍,求原来每小时清雪多少米?【解答】解:设原来每小时清雪x米,根据题意得:+=4,解得:x=800,经检验:x=800是分式方程的解.答:原来每小时清雪800米.20.(7分)如图,小区内斜向马路的大树与地面的夹角∠ABC为55°,高为3.2米的大型客车靠近此树的一侧至少要离此树的根部B点多少米才能安全通过?(结果精确到0.1米)【参考数据:sin55°=0.82,cos55°=0.57,tan55°=1.42】【解答】解:如图:在AB上取点D,过点D作DE⊥BC于点E,则DE=3.5,∵tan55°==1.42,∴BE==≈2.3(米),答:至少要离此树的根部B点2.3米才能安全通过.21.(8分)【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点,求证:△DFM≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为a,直接写出△MGE的面积.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即=,∴=,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴=()2,在Rt△ADF中,DF===4,∴=()2=,∵△DFM的面积为a,=a.∴S△MGE22.(9分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.(1)直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.(2)求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.(3)求机场大巴与货车相遇地到机场C的路程.【解答】解:(1)60+20=80(km),80÷20×=(h).∴连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、(,0)代入y=kx+b,得:,解得:,∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为y=﹣80x+60(0≤x≤).(3)设线段ED对应的函数表达式为y=mx+n(m≠0),将点(,0)、(,60)代入y=mx+n,得:,解得:,∴线段ED对应的函数表达式为y=60x﹣20(≤x≤).解方程组,得,∴机场大巴与货车相遇地到机场C的路程为km.23.(10分)如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B 出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ 绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).(1)用含x的代数式表示线段AP的长.(2)当点P在线段BA上运动时,求y与x之间的函数关系式.(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.【解答】解:(1)当0<x≤1时,PA=5x,当1<x<5时,PA=5(x﹣1)=5x﹣5.(2)如图1中,当0<x≤时,重叠部分是四边形PBQB′.∵PQ⊥BC,AD⊥BC,∴PQ∥AD,∴==,∴==,∴PQ=4x,BQ=3x,由题意四边形PBQB′是平行四边形,∴y=BQ•PQ=12x2,如图2中,当<x≤1,重叠部分是五边形PBQMN.∵PN∥BD,∴=,∴PN=3(1﹣x),B′N=3x﹣3(1﹣x)=6x﹣3,易知MN=4(2x﹣1),∴y=12x2﹣•(6x﹣3)•4(2x﹣1)=﹣12x2+24x﹣6.综上所述,y=.(3)如图3中,当PA=B时,PB′是△ABD是中位线.∴AB′=DB′,此时CB′平分△ADC的面积,此时x=.如图4中,设AB′的延长线交BC于G.当DG=GC=4时,AB′平分△ADC的面积,∵PB′∥BG,∴=,∴=,∴x=.如图5中,连接DB′交AC于N,延长B′P交AD于T,作NM⊥PB′于M,NH⊥AD于H.由题意PA=(x﹣1),AT=x﹣1,TP=2(x﹣1),PB′=BQ=3+2(x﹣1)=2x+1,当AN=CN时,DB′平分△ADC的面积,∴可得AH=HD=2,HN=TM=2,∴B′M=TB′﹣MT=2(x﹣1)+2x+1﹣4=4x﹣5,MN=2﹣(x﹣1)=3﹣x,TD=4﹣(x﹣1)=5﹣x,∵MN∥TD,∴=,∴=,∴x=,综上所述,x=s或s或s时,经过点B′和△ADC一个顶点的直线平分△ADC的面积.24.(12分)如图①,在平面直角坐标系中,抛物线C1:y=(x+k)(x﹣3)交x轴于点A、B (A在B的右侧),交y轴于点C,横坐标为2k的点P在抛物线C1上,连结PA、PC、AC,设△ACP的面积为S.(1)求直线AC对应的函数表达式(用含k的式子表示).(2)当点P在直线AC的下方时,求S取得最大值时抛物线C1所对应的函数表达式.(3)当k取不同的值时,直线AC、抛物线C1和点P、点B都随k的变化而变化,但点P始终在不变的抛物线(虚线)C2:y=ax2+bx上,求抛物线C2所对应的函数表达式.(4)如图②,当点P在直线AC的下方时,过点P作x轴的平行线交C2于点F,过点F作y轴的平行线交C1于点E,当△PEF与△ACO的相似比为时,直接写出k的值.【解答】解:(1)在y=(x+k)(x﹣3)中,令y=0,可得A(3,0),B(﹣k,0),令x=0,可得C(0,﹣3k),设直线AC对应的函数表达式为:y=mx+n,将A(3,0),C(0,﹣3k)代入得:,解得:,∴直线AC对应的函数表达式为:y=kx﹣3k;(2)如图①,过点P作y轴的平行线交AC于点Q,交x轴于点M,过C作CN⊥PM于N,当x=2k时,y=(2k+k)(2k﹣3)=6k2﹣9k,∵点P、Q分别在抛物线C1、直线AC上,∴P(2k,6k2﹣9k)、Q(2k,2k2﹣3k),∴PQ=9k﹣6k2﹣(3k﹣2k2)=﹣4k2+6k,=S△PQC+S△PQA=PQ•CN+PQ•AM=PQ•(CN+AM),∴S△PAC=PQ,=(﹣4k2+6k),=﹣6(k﹣)2+,∴当k=时,△PAC面积的最大值是,此时,C1:y=(x+)(x﹣3)=x2﹣﹣;(3)∵点P在抛物线C1上,∴P(2k,6k2﹣9k),当k=1时,此时P(2,﹣3),当k=2时,P(4,6),把(2,﹣3)和(4,6)代入抛物线(虚线)C2:y=ax2+bx上得:,解得:,∴抛物线C2所对应的函数表达式为:y=x2﹣x;(4)如图②,由题意得:△ACO和△PEF都是直角三角形,且∠A OC=∠PFE=90°,∵点P在直线AC的下方,横坐标为2k的点P在抛物线C1上,∴P(2k,6k2﹣9k),且0<k<,∵A(3,0),C(0,﹣3k),∴OA=3,OC=3K,∴当△PEF与△ACO的相似比为时,存在两种情况:①当△PEF∽△CAO时,,∴=,∴PF=k,EF=1,∴E(3k,12k2﹣12k),∵EF=1,∴9k﹣6k2=12k﹣12k2+1,6k2﹣3k﹣1=0,k1=,k2=<0(舍),②当△PEF∽△ACO时,,∴,∴PF=1,EF=k,∴E(2k+1,6k2﹣4k﹣2),∴4k+2﹣6k2+k=9k﹣6k2,k=,综上所述,k的值为或.。
2017年山东省潍坊市昌乐县中考数学模拟试卷一.选择题(本题共有12小题,每小题3分,共36分)1.计算﹣12的相反数是()A.2 B.﹣2 C.1 D.﹣12.国家文物局2012年6月5日在北京居庸关长城宣布:中国历代长城总长度为21196.18千米.这是中国首次科学、系统地测量历代长城的总长度.数21196.18保留3个有效数字,用科学记数法表示正确的是()A.2.11×104B.2.12×104C.0.212×105D.0.21×1053.下列水平放置的几何体中,俯视图是三角形的是()A.圆柱B.长方体C.圆锥D.直三棱柱4.若二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x≤5.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.6.如图,平行线a、b被直线c所截,若∠1=50°,则∠2的度数是()A.150°B.130°C.110°D.100°7.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm8.在平面直角坐标系内,把抛物线y=(x﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是()A.y=(x﹣3)2B.y=(x+1)2C.y=(x﹣1)2+5 D.y=(x﹣1)2+19.α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A.30° B.45° C.30°或150°D.60°10.如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A.2 B.3 C.4 D.511.在正方形网格中,网格线的交点称为格点.如图是3×3的正方形网格,已知A,B是两格点,在网格中找一点C,使得△ABC为等腰直角三角形,则这样的点C有()A.6个B.7个C.8个D.9个12.如图,矩形纸片ABCD中,AB=3cm,现将纸片折叠压平,使点A与点C重合,折痕为EF,如果sin∠BAE=,那么重叠部分△AEF的面积为()A.B.C.D.二.填空题(本题共有6小题,每小题4分,共24分)13.分解因式:9﹣a2= .14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:(写出一个即可).15.如图,在⊙O中,若∠BAC=43°,则∠BOC= °.16.如图,△ABC中,AB=AC=5,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是.17.如图,在▱ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE 的度数等于.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是.三.解答题(本大题共有7小题,第19小题6分,第20-23小题每小题8分,第24题10分,第25题12分,共60分.解答需要写出必要的文字说明、演算步骤或证明过程)19.化简求值:,其中x=.20.某市公租房倍受社会关注,2012年竣工的公租房有A,B,C,D 四种型号共500套,B 型号公租房的入住率为40%.A,B,C,D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)请你将图1和图2的统计图补充完整;(2)在安置中,由于D型号公租房很受欢迎,入住率很高,2012年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层.老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率.21.如图,四边形ABCD的对角线AC、BD相交于点O,分别作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?请说明理由.22.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.23.甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?24.如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.2017年山东省潍坊市昌乐县中考数学模拟试卷参考答案与试题解析一.选择题(本题共有12小题,每小题3分,共36分)1.计算﹣12的相反数是()A.2 B.﹣2 C.1 D.﹣1【考点】1E:有理数的乘方;14:相反数.【分析】利用乘方的意义计算即可得到结果.【解答】解:﹣12=﹣1,﹣1的相反数是1,故选C2.国家文物局2012年6月5日在北京居庸关长城宣布:中国历代长城总长度为21196.18千米.这是中国首次科学、系统地测量历代长城的总长度.数21196.18保留3个有效数字,用科学记数法表示正确的是()A.2.11×104B.2.12×104C.0.212×105D.0.21×105【考点】1L:科学记数法与有效数字.【分析】根据科学记数法的形式a×10n,再选择即可.【解答】解:21196.18≈2.12×104,保留3个有效数字,故选B.3.下列水平放置的几何体中,俯视图是三角形的是()A.圆柱B.长方体C.圆锥D.直三棱柱【考点】U1:简单几何体的三视图.【分析】分别列出每个几何体的俯视图可得答案.【解答】解:A、此几何体的俯视图是圆,不符合题意;B、此几何体的俯视图是长方形,不符合题意;C、此几何体的俯视图是圆,不符合题意;D、此几何体的俯视图是三角形,符合题意,故选:D.4.若二次根式有意义,则x的取值范围是()A.x≥B.x≤C.x≥D.x≤【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,3x﹣2≥0,解得x≥.故选:A.5.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的()A.B.C.D.【考点】GA:反比例函数的应用;G2:反比例函数的图象.【分析】先根据题意列出函数关系式,再根据s的取值范围确定其函数图象所在的象限即可.【解答】解:已知力F所作的功是15焦,则力F与物体在力的方向上通过的距离S的关系为:F=;且根据实际意义有,s>0;故其图象只在第一象限.故选B.6.如图,平行线a、b被直线c所截,若∠1=50°,则∠2的度数是()A.150°B.130°C.110°D.100°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再根据平角的定义即可求出∠2的度数.【解答】解:∵直线a∥b,∠1=50°,∴∠3=∠1=50°,∴∠2=180°﹣∠3=180°﹣50°=130°.故选B.7.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm【考点】MN:弧长的计算.【分析】本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:=4π,圆锥底面圆的半径:r==2(cm ).【解答】解:弧长:=4π,圆锥底面圆的半径:r==2(cm ). 故选:C .8.在平面直角坐标系内,把抛物线y=(x ﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是( )A .y=(x ﹣3)2B .y=(x+1)2C .y=(x ﹣1)2+5D .y=(x ﹣1)2+1 【考点】H6:二次函数图象与几何变换.【分析】根据图象的平移规律,可得答案.【解答】解:抛物线y=(x ﹣1)2+3向下平移2个单位,那么所得抛物线的解析式是y=(x ﹣1)2+1,故选:D .9.α为锐角,且关于x 的一元二次方程有两个相等的实数根,则α=( )A .30°B .45°C .30°或150°D .60°【考点】AA :根的判别式;T5:特殊角的三角函数值.【分析】因为方程有两个相等的实数根,则△=22﹣4(﹣m )=0,解关于sin α的方程,求出sin α的值,再据此求出α的值即可.【解答】解:方程化为一般形式为:x 2﹣2sin α•x +1=0,∵关于x 的一元二次方程x 2﹣2sin α•x +1=0有两个相等的实数根,∴△=(2sin α)2﹣4=0,即sin 2α=,解得,sin α=,sin α=﹣(舍去). ∴α=45°.故选B .10.如图,AB是⊙O的直径,弦CD⊥AB于H,若BH=2,CD=8,则⊙O的半径长为()A.2 B.3 C.4 D.5【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理求出CH的长,设⊙O的半径为r,再连接OC,在Rt△OCH中利用勾股定理求出r的值即可.【解答】解:连接OC,∵⊙O的弦CD=8,半径CD⊥AB,∴CH=CD=×8=4,设⊙O的半径为r,则OH=r﹣BH=r﹣2,在Rt△OCH中,OC2=OH2+CH2,即r2=(r﹣2)2+42,解得r=5.故选D.11.在正方形网格中,网格线的交点称为格点.如图是3×3的正方形网格,已知A,B是两格点,在网格中找一点C,使得△ABC为等腰直角三角形,则这样的点C有()A.6个B.7个C.8个D.9个【考点】KW:等腰直角三角形.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故选C.12.如图,矩形纸片ABCD中,AB=3cm,现将纸片折叠压平,使点A与点C重合,折痕为EF,如果sin∠BAE=,那么重叠部分△AEF的面积为()A.B.C.D.【考点】PB:翻折变换(折叠问题);T7:解直角三角形.【分析】要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE,即可得出答案.【解答】解:设AE=13x,则BE=5x,由折叠可知,EC=13x,在Rt△ABE中,AB2+BE2=AE2,即32+(5x)2=(13x)2,解得:x=,由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF=,∴S△AEF=×AF×AB=××3=;故选:B.二.填空题(本题共有6小题,每小题4分,共24分)13.分解因式:9﹣a2= (3+a)(3﹣a).【考点】54:因式分解﹣运用公式法.【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:9﹣a2,=32﹣a2,=(3+a)(3﹣a).14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:∠ACP=∠B(或=)(写出一个即可).【考点】S8:相似三角形的判定.【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当=时,△ACP∽△ABC.故答案为∠ACP=∠B(或=).15.如图,在⊙O中,若∠BAC=43°,则∠BOC= 86 °.【考点】M5:圆周角定理.【分析】根据圆周角定理得出∠BOC=2∠BAC,代入求出即可.【解答】解:∵对的圆心角是∠BOC,对的圆周角是∠BAC,∴∠BOC=2∠BAC,∵∠BAC=43°,∴∠BOC=86°,故答案为:86.16.如图,△ABC中,AB=AC=5,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是8 .【考点】KQ:勾股定理;KH:等腰三角形的性质;KP:直角三角形斜边上的中线.【分析】由于AB=AC,AE平分∠BAC交BC于点E,根据等腰三角形三线合一定理可知BE=CE=3,而D是AB中点,那么可知DE是△BAC的中位线,于是DE=AB=2.5,进而易求△BDE的周长.【解答】解:∵AB=AC,AE平分∠BAC交BC于点E,∴BE=CE=BC=3,又∵D为AB的中点,∴DE是△BAC的中线,∴DE=AB=2.5,∴△BDE的周长=BD+DE+BE=2.5+2.5+3=8.故答案是8.17.如图,在▱ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE 的度数等于12°.【考点】L5:平行四边形的性质.【分析】设∠C=x,则∠ABD=x﹣54°,求出∠C=∠DBC=x°,根据AB∥CD推出x+x+x﹣54°=180°,求出x,求出∠ADB,在△ADE中,根据三角形的内角和定理求出即可.【解答】解:设∠C=x,则∠ABD=x﹣54°,∵DB=CD,∴∠C=∠DBC=x°,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABC+∠C=180°,∴x+x+x﹣54°=180°,∴x=78,即∠C=∠DBC=78°,∵AD∥BC,∴∠ADB=∠DBC=78°,∵AE⊥BD,∴∠AED=90°,∴∠DAE=180°﹣90°﹣78°=12°,故答案为:12°.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是32n﹣3.【考点】S9:相似三角形的判定与性质.【分析】根据面积比等于相似比的平方,从而可推出相邻两个三角形的相似比为1:3,面积比为1:9,先利用等底三角形的面积之比等于高之比可求出第一个及第二个三角形的面积,再根据规律即可解决问题.【解答】解:∵△A2B1B2和△A3B2B3的面积分别为1、9,A3B3∥A2B2,A3B2∥A2B1,∴∠B1B2A2=∠B2B3A3,∠A2B1B2=∠A3B2B3,∴△A2B1B2∽△A3B2B3,∴====,∵A3B2∥A2B1,∴△OA2B1∽△OA3B2,∴===,∴△OB1A2的面积为,△A1B1A2的面积为,△A2B2A3的面积为3,△A3B3A4的面积为27,…∴△A1007B1007A1008的面积为×32(n﹣1)=32n﹣3,故答案为32n﹣3.三.解答题(本大题共有7小题,第19小题6分,第20-23小题每小题8分,第24题10分,第25题12分,共60分.解答需要写出必要的文字说明、演算步骤或证明过程)19.化简求值:,其中x=.【考点】6D:分式的化简求值.【分析】将原式括号中第二项提取﹣1,利用同分母分式的减法法则计算,分子再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:原式=(﹣)÷=÷=•=x+1,当x=﹣1时,原式=﹣1+1=.20.某市公租房倍受社会关注,2012年竣工的公租房有A,B,C,D 四种型号共500套,B 型号公租房的入住率为40%.A,B,C,D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)请你将图1和图2的统计图补充完整;(2)在安置中,由于D型号公租房很受欢迎,入住率很高,2012年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层.老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率.【考点】VC:条形统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用1减去其余型号公租房所占的百分比,即可得到2012年竣工的公租房中D 种型号所占的百分比;首先根据扇形图计算出B型公租房的套数,再乘以入住率即可知道已入住的B型公租房的套数;再将图1和图2的统计图补充完整;(2)根据已知列出所有可能的图表即可得出答案.【解答】解:(1)1﹣40%﹣20%﹣35%=5%;500×20%=100套,100×40%=40,如图所示:(2)设5套房子分别编号为:1,2,3,4,5,只有1,2在同一楼层,则列表为:∴老王和老张住在同一单元同一层楼只有(1,2),(2,1),∴老王和老张住在同一单元同一层楼的概率是:2÷20=.21.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,分别作BE ⊥AC 于E ,DF ⊥AC 于F ,已知OE=OF ,CE=AF .(1)求证:△BOE ≌△DOF ;(2)若OA=BD ,则四边形ABCD 是什么特殊四边形?请说明理由.【考点】KD :全等三角形的判定与性质;LC :矩形的判定.【分析】(1)根据AAS或ASA即可证明;(2)结论:矩形.只要证明对角线AC=BD即可;【解答】(1)证明:∵BE⊥AC,DF⊥AC∴∠BEO=90°=∠DFO,在△BOE和△DOF中,∴△BOE≌△DOF(ASA).(2)解:四边形ABCD是矩形证明:∵△BOE≌△DOF,∴OB=OD,∵OE=OF,CE=AF,∴OC=OA,∴四边形ABCD是平行四边形,∴OA=AC,又∵OA=BD,∴AC=BD∴□ABCD是矩形.22.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)若tan∠ABE=,求sin∠E.【考点】MC:切线的性质;S9:相似三角形的判定与性质;T1:锐角三角函数的定义.【分析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)连接AD,证明△ADE∽△POE,得到=,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.【解答】(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,∴△PAO≌△PBO,∴∠PBO=∠PAO=90°,∴PB为⊙O的切线;(2)解:连接AD,∵BD为直径,∠BAD=90°由(1)知∠BC O=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC∵tan∠ABE=,∴=设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,得PC=2BC=4t,OP=5t,∴==.可设EA=2,EP=5,则PA=3,∵PA=PB,∴PB=3,∴sin∠E==.23.甜甜水果批发商销售每箱进价为30元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱40元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)如果批发商平均每天获得的销售利润为1008元,那么每箱苹果的销售价是多少元?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式;(2)根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x (元/箱)之间的函数关系式即可;(3)把W=1008代入函数关系式,求出x的值即可.【解答】解:(1)根据题意得y=90﹣3(x﹣40)=﹣3x+210,∴y=﹣3x+210;(2)根据题意得,w=(x﹣30)(﹣3x+210)=﹣3x2+300x﹣6300,∴w=﹣3x2+300x﹣6300;(3)由(2)得:w=﹣3x2+300x﹣6300=﹣3(x﹣50)2+1200,∴令w=1008得:=﹣3(x﹣50)2+1200=1008,解得:x1=42,x2=58(不合题意,舍去),∴每箱苹果的销售价是42元.24.如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据题意将点A,B,N的坐标代入函数解析式,组成方程组即可求得;(2)求得点C,M的坐标,可得直线CM的解析式,可求得点D的坐标,即可得到CD=,AN=,AD=2,CN=2,根据平行四边形的判定定理可得四边形CDAN是平行四边形;(3)假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,因为这个二次函数的对称轴是直线x=1,故可设P(1,y0),则PA是圆的半径且PA2=y02+22,过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,继而求得满足题意的点P存在,其坐标为(1,)或(1,).【解答】解:(1)因为二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、B(3,0)、N(2,3)所以,可建立方程组:,解得:所以,所求二次函数的解析式为y=﹣x2+2x+3,所以,顶点M(1,4),点C(0,3).(2)直线y=kx+d经过C、M两点,所以,即k=1,d=3,直线解析式为y=x+3.令y=0,得x=﹣3,故D(﹣3,0)∴CD=,AN=,AD=2,CN=2∴CD=AN,AD=CN∴四边形CDAN是平行四边形.(3)假设存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,因为这个二次函数的对称轴是直线x=1,故可设P(1,y0),则PA是圆的半径且PA2=y02+22,过P做直线CD的垂线,垂足为Q,则PQ=PA时以P为圆心的圆与直线CD相切.由第(2)小题易得:△MDE为等腰直角三角形,故△PQM也是等腰直角三角形,由P(1,y0)得PE=y0,PM=|4﹣y0|,,由PQ2=PA2得方程:,解得,符合题意,所以,满足题意的点P存在,其坐标为(1,)或(1,).。
2016 年中考数学模拟试题数 学 试 卷 (三 )本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为 120 分,考试时间为 120 分钟.卷Ⅰ (选择题,共 42 分)注意事项: 1 .答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共 16 个小题 .1 - 6 小题,每小题2 分, 7- 16 小题,每小题 3分,共 42 分 .在每小题给出的四个选项中,只有一项是符合题目要求的) 1、计算﹣3+(﹣ 1)的结果是(数法表示为()9 A.4.0570 × 10 10 B.0.40570 × 10C.40.570 11 10D.4.0570 12 10 4、古建筑的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对 称图形但不是轴对称图形的是( )A . 2B .﹣ 2C . 4D .﹣ 4 2、下列运算错误的是( A . B . x 2+x 2=2x 4=1 C . |a|=| ﹣ a|D . 3.据统计, 2014 年我国高新技术产品出口总额达 40570 亿元,将数据 40570 亿用科学记5.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A C方.平均数.差B D.众数.中位数6、如图,在△ABC 中,点D、 E 分别是边AB ,BC 的中点.若△DBE 的周长是6,则△ABC 的周长是()A.8 B.10 C.C12 D.14110 120 C A . B .D CA .B .D CA .B D . 老x 1. 1.1. 1.yx yx A B D 20y36 10y36 20y36 20x 11 CD B D 2 5 4l A B D1 C A=40 B 60 D 8 A 测得 C 在10 支A . 4k mC . 2A . 4C 78、10 .45°3 3 从 B 测得船 C 在北偏东 22.5的解b ,一块含 60 ° 角的直角三角 2 km 20 本练习簿和l 上有 A 、 B两个观测站,了 36 元.已知每支水笔的价格比每本练2 的度数为7、如图,直线 a 板 ABC (∠A=602 x1 C10y36A . 1 C . 3C 时停止.设运动时间为 x (秒), y = PC2,则 y 关于 x 的函数的 A . B . C . D . 14 .如图,在△ ABC 中,∠ C=900 ,∠ B=300 ,以 A 为圆心,任意长为半径画弧分别交 1MNAB 、 AC 于点 M 和 N ,再分别以 M 、 N 为圆心,大于 AP 并延长交 B C 点 D ,则下列说法中正确的个数是 ( ) ① AD 是∠ BAC 的平分线;②∠ ADC=600 ; 2 的长为半 径画弧,两弧交于点③点 D 在 AB 的中垂线上; ④ S △ DAC ∶ S △ ABC=1∶ 3 P ,连结 15 .已知二次函数 2 yax bxc ( a ≠ 0)的图象如图所示,下列结论:① b < 0; ② 4a+2b+c < 0;③ a ﹣ b+c > 0;④ (ac) 2b 2.其中正确的结论是) A .①②B .①③16 .如图,正三角形 ABC 的边长为 3cm ,动点 P 从点 A 出发,以每秒1cm 的速度,沿 A → → C 的方向运动,到达点()A二、填空题(本大题共 4 个小题;每小题 3 分,共 12 分.把答案写在题中横线上)xy 2 4x17 、因式分解: 2 = _______ .18 . 关于 x 的一元二次方程 2x 23x m 0 有两个不相等的实数根,则m 的取值范围 .19 .如图,△ ABC 是正三角形,曲线 CDEF 叫做正三角形的渐开线,其中弧弧 DE 、弧 EF 的圆心依次是 A 、 B 、 C ,如果 AB=1 ,那么曲线 CDEF 的长是20.如图1, P 是△ ABC 内一点,连接 P A , PB , PC 并沿PA,PB,PC剪开,拼成图2所示的样子。
2017年上海市杨浦区中考数学三模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()A.|a+b|=a+b B.|a+b|=a﹣b C.|a+1|=a+1 D.|b+1|=b+12.下列各式中,当m为有理数时总有意义的是()A.(﹣2)m B.()m C.m﹣2D.m3.如果a<b,那么下列不等式中一定成立的是()A.a2<ab B.ab<b2C.a2<b2D.a﹣2b<﹣b4.将某班女生的身高分成三组,情况如表所示,则表中a的值是()第一组第二组第三组频数 6 10 a频率 b c 20%A.2 B.4 C.6 D.85.下列图形中,既是中心对称图形又是轴对称图形的是()A.正六边形 B.正五边形 C.平行四边形D.正三角形6.在△ABC中, =, =,那么等于()A. +B.﹣C.﹣+D.﹣﹣二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.用代数式表示“a的相反数与b的倒数的和的平方”:.8.化简: = .9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是.10.方程5x4=80的解是.11.小李家离某书店6千米,他从家中出发步行到该书店,返回时由于步行速度比去时每小时慢了1千米,结果返回时多用了半小时.如果设小李去书店时的速度为每小时x千米,那么列出的方程是.12.若一次函数y=(1﹣2k)x+k的图象经过第一、二、三象限,则k的取值范围是.13.从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率是.14.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.15.若圆的半径是10cm,则圆心角为40°的扇形的面积是cm2.16.在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F在边BC上,AF与DE 相交于点G,如果∠AFB=110°,那么∠CGF的度数是.17.如图,将梯形ABCD沿直线AC翻折,点B落在点E处,联结ED,如果∠B=60°,∠ACB=40°,ED∥AB,那么∠AED的度数为.18.如果正方形ABCD的边长为1,圆A与以CD为半径的圆C相交,那么圆A的半径R的取值范围是.三、解答题(本大题共7题,满分78分)19.先化简,再求值:,其中x=6tan30°﹣2.20.解方程组:.21.已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.(1)求抛物线的表达式;(2)若点P在x轴上,且PA=PB,求点P的坐标.22.如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)23.已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;(2)如图2,当AF∥ED,求证:AM2=AB•BM.24.已知:在平面直角坐标系中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P(,m).(1)求k的值;(2)将直线y=﹣x向上平移c(c>0)个单位后,与x轴、y轴分别交于点A,点B,与双曲线y=(k≠0)在x轴上方的一支交于点Q,且BQ=2AB,求c的值;(3)在(2)的条件下,将线段QO绕着点Q逆时针旋转90°,设点O落在点C处,且直线QC与y轴交于点D,求BD:AC的值.25.已知:线段AB⊥BM,垂足为B,点O和点A在直线BM的同侧,且tan∠OBM=2,AB=5,设以O为圆心,BO为半径的圆O与直线BM的另一个交点为C,直线AO与直线BM的交点为D,圆O为直线AD的交点为E.(1)如图1,当点D在BC的延长线上时,设BC=x,CD=y,求y关于x的函数解析式,并写出定义域.(2)在(1)的条件下,当BC=CE时,求BC的长;(3)当△ABO是以AO为腰的等腰三角形时,求∠ADB的正切值.2017年上海市杨浦区中考数学三模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.已知实数a、b在数轴上的位置如图所示,则下列等式成立的是()A.|a+b|=a+b B.|a+b|=a﹣b C.|a+1|=a+1 D.|b+1|=b+1【考点】29:实数与数轴.【分析】根据绝对值的性质,可得答案.【解答】解:A、|a+b|=|b|﹣|a|,故A不符合题意;B、|a+b|=|b|﹣|a|,故B不符合题意;C、|a+1|=a+1,故C符合题意;D、|b+1|=|b|﹣1,故D不符合题意;故选:C.2.下列各式中,当m为有理数时总有意义的是()A.(﹣2)m B.()m C.m﹣2D.m【考点】2F:分数指数幂;1E:有理数的乘方;6F:负整数指数幂.【分析】根据分数指数幂、有理数乘方,负整数指数幂即可求出答案.【解答】解:(A)当m=时,此时=,此时无意义,故A不选;(C)当m=0时,此时0﹣2无意义,故C不选;(D)当m为负数时,此时=无意义,故D不选;故选(B)3.如果a<b,那么下列不等式中一定成立的是()A.a2<ab B.ab<b2C.a2<b2D.a﹣2b<﹣b【考点】C2:不等式的性质.【分析】根据不等式的性质进行选择即可.【解答】解:∵a<b,∴a﹣2b<b﹣2b,即a﹣2b<﹣b,故选D.4.将某班女生的身高分成三组,情况如表所示,则表中a的值是()第一组第二组第三组频数 6 10 a频率 b c 20%A.2 B.4 C.6 D.8【考点】V6:频数与频率.【分析】首先根据各小组的频率之和等于1得出第一组与第二组的频率和,然后求出数据总数,从而求出a的值.【解答】解:∵1﹣20%=80%,∴(6+10)÷80%=20,∴20×20%=4.即a=4;故选B.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.正六边形 B.正五边形 C.平行四边形D.正三角形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.6.在△ABC中, =, =,那么等于()A. +B.﹣C.﹣+D.﹣﹣【考点】LM:*平面向量.【分析】由三角形法则与相反向量的知识,可得=﹣=﹣(+),又由在△ABC中, =, =,即可求得答案.【解答】解:∵在△ABC中, =, =,∴=﹣=﹣(+)=﹣(+)=﹣﹣,故选:D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.用代数式表示“a的相反数与b的倒数的和的平方”:.【考点】32:列代数式.【分析】先表示出a的相反数与b的倒数的和,再平方即可.【解答】解:∵a的相反数与b的倒数的和为﹣a+,∴a的相反数与b的倒数的和的平方为(﹣a+)2.故答案为:(﹣a+)2.8.化简: = x.【考点】73:二次根式的性质与化简.【分析】根据二次根式的性质(当x≥0时, =x)求出即可.【解答】解: =x,故答案为:x.9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是m >9 .【考点】58:实数范围内分解因式.【分析】由题意知,二次三项式在实数范围内不能分解因式,所以方程x2﹣6x+m=0无解,即△<0,代入解答出即可.【解答】解:根据题意得,二次三项式在实数范围内不能分解因式,∴方程x2﹣6x+m=0无解,即△<0.∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m<0,解得,m>9.故答案为m>9.10.方程5x4=80的解是±2 .【考点】AF:高次方程.【分析】先方程两边都除以5,再开方即可.【解答】解:5x4=80,x4=16,x==±2,故答案为:x=±211.小李家离某书店6千米,他从家中出发步行到该书店,返回时由于步行速度比去时每小时慢了1千米,结果返回时多用了半小时.如果设小李去书店时的速度为每小时x千米,那么列出的方程是﹣=.【考点】B6:由实际问题抽象出分式方程.【分析】根据小李家离某书店6千米,他从家中出发步行到该书店,由于返回时步行速度比去时步行速度每小时慢了1千米,结果返回时多用了半小时,可列方程.【解答】解:设小李去书店时的速度为每小时x千米,根据题意得:﹣=,故答案为:﹣=.12.若一次函数y=(1﹣2k)x+k的图象经过第一、二、三象限,则k的取值范围是0<k <.【考点】F7:一次函数图象与系数的关系;F1:一次函数的定义.【分析】由于函数图象经过一、二、三象限,所以可知,解即可.【解答】解:∵一次函数y=(1﹣2k)x+k的图象经过第一、二、三象限,∴,∴0<k<.13.从一副扑克牌中取出的两组牌,一组为黑桃1、2、3,另一组为方块1、2、3,分别随机地从这两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和是合数的概率是.【考点】X6:列表法与树状图法.【分析】此题可以采用列表法求解.一共有9种情况,摸出的两张牌的牌面数字之和是合数的有4种:4、4、4、6;所以摸出的两张牌的牌面数字之和是合数的概率是.【解答】解:列表得:∴一共有9种情况,摸出的两张牌的牌面数字之和是合数的有4种情况;∴摸出的两张牌的牌面数字之和是合数的概率是.14.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房150 套.【考点】V8:频数(率)分布直方图.【分析】根据频数直方图的意义,其他组的商品房的频数之和,又有总数为1000,计算可得110m2到130 m2的商品房的频数.【解答】解:由频数直方图可以看出:110m2到130 m2的商品房的频数为1000﹣50﹣300﹣450﹣50=150套.15.若圆的半径是10cm,则圆心角为40°的扇形的面积是cm2.【考点】MO:扇形面积的计算.【分析】本题已知了扇形圆心角的度数和半径的长,可根据扇形的面积公式直接求出其面积.【解答】解:S==(cm2).16.在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F在边BC上,AF与DE 相交于点G,如果∠AFB=110°,那么∠CGF的度数是40°.【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】作出图形,根据邻补角的定义求出∠AFC,再判断出点G是AF的中点,再根据直角三角形斜边上的中线等于斜边的一半可得CG=GF,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵∠AFB=110°,∴∠AFC=180°﹣∠AFB=180°﹣110°=70°,∵点D、E分别是边AC、AB的中点,∴DE是△ABC的中位线,∴点G是AF的中点,∴CG=GF,∴∠CGF=180°﹣2∠AFC=180°﹣2×70°=40°.故答案为:40°.17.如图,将梯形ABCD沿直线AC翻折,点B落在点E处,联结ED,如果∠B=60°,∠ACB=40°,ED∥AB,那么∠AED的度数为30°.【考点】PB:翻折变换(折叠问题);LH:梯形.【分析】根据平行线的性质得到∠BAD=180°﹣∠B=120°,∠ADE=∠BAD=120°,根据等腰三角形的性质得到∠AED=∠DAE=30°【解答】解:∵AD∥BC,∴∠BAD=180°﹣∠B=120°,∵ED∥AB,∴∠ADE=∠BAD=120°,由折叠的性质得,AD=DE,∴∠AED=∠DAE=30°,故答案为:30°.18.如果正方形ABCD的边长为1,圆A与以CD为半径的圆C相交,那么圆A的半径R的取值范围是﹣1<R<+1 .【考点】MJ:圆与圆的位置关系;LE:正方形的性质.【分析】根据题意画出图形,利用当圆A与以CD为半径的圆C相外切以及当圆A与以CD为半径的圆C相内切,分别求出半径,即可确定半径R的取值范围.【解答】解:∵正方形ABCD的边长为1,∴如图1,当圆A与以CD为半径的圆C相外切,∵AC==,BC=CD=FC=1,AF+FC=AC,∴AF=AC﹣FC=﹣1,如图2,当圆A与以CD为半径的圆C相内切,∵AC═=,BC=CD=EC=1,AC+EC=AE,∴AE=AC+EC=+1,综上所述:圆A的半径R的取值范围为:﹣1<R<+1,故答案为:﹣1<R<+1.三、解答题(本大题共7题,满分78分)19.先化简,再求值:,其中x=6tan30°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.20.解方程组:.【考点】AF:高次方程.【分析】把②通过因式分解化为两个二元一次方程,把这两个二元一次方程分别与①组成方程组,求解即可.【解答】解:由②得,x+y=0,x=0,把这两个方程与①组成方程组得,解得:所以方程组的解为:21.已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.(1)求抛物线的表达式;(2)若点P在x轴上,且PA=PB,求点P的坐标.【考点】H8:待定系数法求二次函数解析式;F8:一次函数图象上点的坐标特征.【分析】(1)根据对称轴求得a,然后根据三角形面积求得c,即可求得解析式;(2)设P点的坐标为(x,0),根据PA=PB得出关于x的方程,解方程求得x的值,进而求得点P的坐标.【解答】解:(1)∵对称轴为直线x=﹣1,∴﹣=﹣1,∴a=﹣1,∵△ABO的面积为1,∴c×1=1,∴c=2,∴抛物线的表达式为y=﹣x2﹣2x+2;(2)∵y=﹣x2﹣2x+2=﹣(x+1)2+3,∴A(﹣1,3),设P点的坐标为(x,0).∵PA=PB,B(0,2),∴(x+1)2+32=x2+22,解得x=﹣3.故P点的坐标为(﹣3,0).22.如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,则PC=2x 海里,过P作PD⊥BC于D,求出BP,在Rt△BPD中求出PD,然后在Rt△PDC中表示出PD,继而建立方程可解出x的值.【解答】解:设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,则PC=2x海里,过P作PD⊥BC于D,则BP=86﹣2×15=56(海里),在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴PD=PB•cos60°=28(海里),在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC•cos45°=2x•=x,∴x=28,即x=14≈20,答:乙船的航行速度约为每小时20海里.23.已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;(2)如图2,当AF∥ED,求证:AM2=AB•BM.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【分析】(1)连接AC,根据正方形的性质得到∠DAM=∠BEM=∠BCD=90°,根据全等三角形的判定和性质即可得到结论;(2)根据正方形的性质得到∠DAM=∠EBM=90°,AD=AB,根据相似三角形的性质得到=,根据已知条件得到四边形AMDF是平行四边形,根据平行四边形的性质得到AM=DF,等量代换得到AM=BE,于是得到结论.【解答】(1)连接AC,∵四边形ABCD是正方形,∴∠DAM=∠BEM=∠BCD=90°,∠BCA=∠DCA=45°,AB=BC=CD=DA,∵BE=DF,∴CE=CF,∴∠AEB=∠F=45°,∴BE=BA=AD,在△ADM和△BEM中,,∴△ADM和△BEM,∴DM=EM,即点M为ED中点;(2)解:∵四边形ABCD是正方形,∴∠DAM=∠EBM=90°,AD=AB,∴△ADM∽△BEM,∴=,∵AM∥DF,AF∥DE,∴四边形AMDF是平行四边形,∴AM=DF,∵BE=DF,∴AM=BE,∴,∴AM2=AB•BM.24.已知:在平面直角坐标系中,直线y=﹣x与双曲线y=(k≠0)的一个交点为P(,m).(1)求k的值;(2)将直线y=﹣x向上平移c(c>0)个单位后,与x轴、y轴分别交于点A,点B,与双曲线y=(k≠0)在x轴上方的一支交于点Q,且BQ=2AB,求c的值;(3)在(2)的条件下,将线段QO绕着点Q逆时针旋转90°,设点O落在点C处,且直线QC与y轴交于点D,求BD:AC的值.【考点】GB:反比例函数综合题.【分析】(1)用待定系数法即可得出结论;(2)先由QB=2AB,得出AQ=3AB,进而判断出△AOB∽△AEQ,即可得出点Q(﹣2c,3c),再用待定系数法求出c即可;(3)先确定出直线OQ的解析式,进而得出CQ的解析式,用OQ=CQ建立方程即可确定出点C的坐标,即可得出结论.【解答】解:(1)∵P(,m)在直线y=﹣x上,∴m=﹣,∴P(,﹣),∵P在双曲线y=上,∴k=×(﹣)=﹣6,(2)如图1,设直线AB的解析式为y=﹣x+c,∴A(c,0),B(0,c),∴OA=OB=c,过点Q作QE⊥x轴,∴OB∥QE,∴△AOB∽△AEQ,∴=,∵BQ=2AB,∴AQ=3AB,∴,∴AE=3OA=3c,QE=3OB=3c,∴OE=AE﹣OA=2c,∵点Q在第二象限,∴Q(﹣2c,3c),∵点Q在双曲线y=﹣上,∴﹣2c×3c=﹣6,∴c=﹣1(舍)或c=1;(3)如图2,由(2)知,c=1,∴A(1,0),B(0,1),Q(﹣2,3),∴直线OQ的解析式为y=﹣x,由旋转知,CQ=OQ,OQ⊥CQ,∴直线CQ的解析式为y=x+,∴D(0,),设C(n, n+),∵Q(﹣2,3),∴OQ2=13,CQ2=(n+2)2+(n+﹣3)2=(n+2)2,∴13=(n+2)2,∴n=﹣5(舍)或n=1,∴C(1,5),∵A(1,0),∴AC=5,∵B(0,1),D(0,),∴BD=﹣1=,∴BD:AC=:5=2:3.25.已知:线段AB⊥BM,垂足为B,点O和点A在直线BM的同侧,且tan∠OBM=2,AB=5,设以O为圆心,BO为半径的圆O与直线BM的另一个交点为C,直线AO与直线BM的交点为D,圆O为直线AD的交点为E.(1)如图1,当点D在BC的延长线上时,设BC=x,CD=y,求y关于x的函数解析式,并写出定义域.(2)在(1)的条件下,当BC=CE时,求BC的长;(3)当△ABO是以AO为腰的等腰三角形时,求∠ADB的正切值.【考点】MR:圆的综合题.【分析】(1)过O作OF⊥BD于F,如图1,利用垂径定理得到BF=CF==,再利用正切的定义得到OF=x,然后证明△OFD∽△ABD,于是利用相似比可得到y与x的关系式;(2)先利用勾股定理计算出OB=x,再证明△DEC∽△DCO,利用相似比可得到OD=y,则根据勾股定理得到x2+(y+x)2=(y)2,所以y=5x或y=﹣x(舍去),则=5x,然后解方程求出x即可;(3)讨论:当OA=OB时,点A在⊙O上,如图2,根据圆周角定理得到AC为直径,即点D 与点C重合,易得x=,于是得到此时tan∠ADB=2;当AO=AB=5,如图3,作OH⊥AB于H,易得四边形OFBH为矩形,则OH=BF=x,BH=OF=x,利用勾股定理得到(x﹣5)2+(x)2=52,然后解方程求出x,则可得到tan∠AOH=,再证明∠ADB=∠AOH,从而得到tan∠ADB的值.【解答】解:(1)过O作OF⊥BD于F,如图1,则BF=CF==,∴DF=y+,在Rt△BFO中,∵tan∠OBM==2,∴OF=x,∵AB⊥BM,∴OF∥AB,∴△OFD∽△ABD,∴=,即=,∴y=(<x<5);(2)在Rt△OBF中,OB==x,∵BC=CE,而OB=OC=OE,∴△OBC和△OCD为全等的等腰三角形,∴∠OCB=∠OEC,∴∠OCD=∠CED,而∠CDE=∠ODC,∴△DEC∽△DCO,∴=,即=,∴OD=y,在Rt△OFD中,∵OF2+FD2=OD2,∴x2+(y+x)2=(y)2,整理得y2﹣4xy﹣5x2=0,∴y=5x或y=﹣x(舍去),∴=5x,解得x1=0(舍去),x2=,即BC的长为;(3)当OA=OB时,点A在⊙O上,如图2,则AC为直径,点D与点C重合,OF=AB,即x=,∴tan∠ADB==2;当AO=AB=5,如图3,作OH⊥AB于H,易得四边形OFBH为矩形,∴OH=BF=x,BH=OF=x,在Rt△OHA中,∵AH2+OH2=OA2,∴(x﹣5)2+(x)2=52,解得x1=0(舍去),x2=8,∴tan∠AOH===,∵OH∥BD,∴∠ADB=∠AOH,∴tan∠ADB=.。
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是( )A .2B .0C .﹣1D .﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A .74.4×1012B .7.44×1013C .74.4×1013D .7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是( )A.B.C.D.4.(3分)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.(3分)一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.(3分)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD 是菱形的只有( )sA .AC ⊥BDB .AB=BC C .AC=BD D .∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .181614129.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)33310.(3分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )an l l n beA .B .2﹣C .2﹣D .4﹣2π33π332π332π3二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .412.(3分)不等式组的解集是 .{x ‒2≤0x ‒12<x 13.(3分)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m2x 与n 的大小关系为 .14.(3分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 .15.(3分)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别2是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 .三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.2217.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x <304B 30≤x <6016C 60≤x <90a D 90≤x <120b Ex ≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a +b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60≤x <120范围的人数.18.(9分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.g o19.(9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°45≈,tan53°≈,≈1.41)3543220.(9分)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于点kx A (m ,3)和B (3,1).(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S 的取值范围.g21.(10分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,E 分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想 图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛23物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是( )A.2B.0C.﹣1D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( rA.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D .【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大. 4.(3分)(2017•河南)解分式方程﹣2=,去分母得( )1x ‒131‒x A .1﹣2(x ﹣1)=﹣3B .1﹣2(x ﹣1)=3C .1﹣2x ﹣2=﹣3D .1﹣2x +2=3【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x ﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,1x ‒13x ‒1去分母得:1﹣2(x ﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B.95分,90分C.90分,95分D.95分,85分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定▱ABCD是菱形的只有( )A .AC ⊥BDB .AB=BCC .AC=BD D .∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线相等是平行四边形的菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .B .C .D .18161412【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.41614故选:C .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比. 9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(,1)B .(2,1)C .(1,)D .(2,)333【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=12=,于是得到结论.AD '2‒OA 23【解答】解:∵AD′=AD=2,AO=AB=1,12∴OD′==,AD '2‒OA 23∵C′D′=2,C′D′∥AB ,∴C (2,),3故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣2π33π332π332π3【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.12360⋅π×2236012332π3故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键. 二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .4【考点】22:算术平方根;1E :有理数的乘方.【分析】表示4的算术平方根,值为2.4【解答】解:23﹣=8﹣2=6,4故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单. 12.(3分)(2017•河南)不等式组的解集是 ﹣1<x ≤2 .{x ‒2≤0x ‒12<x 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:{x ‒2≤0①x ‒12<x②解不等式①0得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,故答案为﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图2x 象上,则m 与n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在2x 每个象限内,y 随x 的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,2x ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .故答案为m <n .【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键. 14.(3分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC ,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:×4×6=1212故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,2点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 +或112212.【考点】PB :翻折变换(折叠问题);KW :等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.2【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;1212212②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,2∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,2∵BC=+1,2d ∴CM +BM=BM +BM=+1,22∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,12212故答案为:+或1.12212【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),其中x=+1,y=﹣1.22【考点】4J :整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y ),然后把x=+1,y=﹣122代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x +y )2+(x ﹣y )(x +y )﹣5x (x ﹣y )=4x 2+4xy +y 2+x 2﹣y 2﹣5x 2+5xy=9xy22当x=+1,y=﹣1时,22原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【考点】VB :扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b ,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A 组所占的百分比是=8%,则m=8.450a +b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是360°×=144°;2050(3)每月零花钱的数额x 在60≤x <120范围的人数是1000×=560(人).2850【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小. 18.(9分)(2017•河南)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 边于点D ,过点C 作CF ∥AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD=BF ;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt △ADB 中,由勾股定理得:BD==8,102‒62在Rt △BDC 中,由勾股定理得:BC==4.82+425【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)4535432【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作CE ⊥AB 于E .设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,根据tan53°=,可得=,求出x ,再求出BC 、AC ,分别求出A 、B 两船到C 的EC BE 43xx ‒5时间,即可解决问题.【解答】解:如图作CE ⊥AB 于E .g在Rt △ACE 中,∵∠A=45°,∴AE=EC ,设AE=EC=x ,则BE=x ﹣5,在Rt △BCE 中,∵tan53°=,ECBE ∴=,43x x ‒5解得x=20,∴AE=EC=20,∴AC=20=28.2,2BC==25,ECsin 53°∴A 船到C 的时间≈=0.94小时,B 船到C 的时间==1小时,28.2302525∴C 船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 20.(9分)(2017•河南)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的kx 图象交于点A (m ,3)和B (3,1).th (1)填空:一次函数的解析式为 y=﹣x +4 ,反比例函数的解析式为 y= ;3x (2)点P 是线段AB 上一点,过点P 作PD ⊥x 轴于点D ,连接OP ,若△POD 的面积为S ,求S的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B (3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x ,y ),由于点P 在直线AB 上,从而可知PD=y ,OD=x ,由题意可知:1≤x ≤3,从而可求出S 的范围【解答】解:(1)将B (3,1)代入y=,k x ∴k=3,将A (m ,3)代入y=,3x ∴m=1,∴A (1,3),将A (1,3)代入代入y=﹣x +b ,∴b=4,∴y=﹣x +4(2)设P (x ,y ),由(1)可知:1≤x ≤3,∴PD=y=﹣x +4,OD=x ,∴S=x (﹣x +4),12∴由二次函数的图象可知:S 的取值范围为:≤S ≤232故答案为:(1)y=﹣x +4;y=.3x 【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A :二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据两种活动方案即可得出w 活动一、w 活动二关于m 的函数关系式,再分别令w 活动一<w 活动二、w 活动一=w 活动二和w 活动一>w 活动二,解出m 的取值范围,此题得解.【解答】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:,{2x +6y =1303x =4y 解得:.{x =20y =15答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个,根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x 、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w 活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt △ABC 中,∠A=90°,AB=AC ,点D ,Eb分别在边AB ,AC 上,AD=AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 PM=PN ,位置关系是 PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【考点】RB :几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE ,PN=BD ,进而判断出1212BD=CE ,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD ≌△ACE ,得出BD=CE ,同(1)的方法得出PM=BD ,PN=BD ,即可得出PM=PN ,同(1)的方法即可得出结论;1212(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN ,AM ,即可得出MN 最大=AM +AN ,最后用面积公式即可得出结论.【解答】解:(1)∵点P ,N 是BC ,CD 的中点,∴PN ∥BD ,PN=BD ,12∵点P ,M 是CD ,DE 的中点,∴PM ∥CE ,PM=CE ,12∵AB=AC ,AD=AE ,∴BD=CE ,∴PM=PN ,∵PN ∥BD ,∴∠DPN=∠ADC ,∵PM ∥CE ,∴∠DPM=∠DCA ,∵∠BAC=90°,∴∠ADC +∠ACD=90°,∴∠MPN=∠DPM +∠DPN=∠DCA +∠ADC=90°,∴PM ⊥PN ,故答案为:PM=PN ,PM ⊥PN ,(2)由旋转知,∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD=∠ACE ,BD=CE ,同(1)的方法,利用三角形的中位线得,PN=BD ,PM=CE ,1212∴PM=PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM=∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC=∠DBC ,∵∠DPN=∠DCB +∠PNC=∠DCB +∠DBC ,∴∠MPN=∠DPM +∠DPN=∠DCE +∠DCB +∠DBC =∠BCE +∠DBC=∠ACB +∠ACE +∠DBC =∠ACB +∠ABD +∠DBC=∠ACB +∠ABC ,∵∠BAC=90°,∴∠ACB +∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM +AN ,连接AM ,AN ,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2,2在Rt △ABC 中,AB=AC=10,AN=5,2∴MN 最大=2+5=7,222∴S △PMN 最大=PM 2=×MN 2=×(7)2=.121212142492【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE ,PN=BD ,解(2)的关键是判断出△ABD ≌△ACE ,1212解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目. 23.(11分)(2017•河南)如图,直线y=﹣x +c 与x 轴交于点A (3,0),与y 轴23交于点B ,抛物线y=﹣x 2+bx +c 经过点A ,B .43(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【考点】HF :二次函数综合题.【分析】(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值;②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值.【解答】解:(1)∵y=﹣x +c 与x 轴交于点A (3,0),与y 轴交于点B ,23∴0=﹣2+c ,解得c=2,∴B (0,2),∵抛物线y=﹣x 2+bx +c 经过点A ,B ,43∴,解得,{‒12+3b +c =0c =2{b =103c =2∴抛物线解析式为y=﹣x 2+x +2;43103(2)①由(1)可知直线解析式为y=﹣x +2,23∵M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,∴P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∴PM=﹣m +2,PA=3﹣m ,PN=﹣m 2+m +2﹣(﹣m +2)=﹣m 2+4m ,23431032343∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN ⊥MN ,∴BN=OM=m ,∴=,即=,解得m=0(舍去)或m=2,BN AM PN PM m3‒m ‒43m 2+4m‒23m +2∴M (2,0);当∠NBP=90°时,则有=,PN PA BPMP ∵A (3,0),B (0,2),P (m ,﹣m +2),23∴BP==m ,AP==(3﹣m ),m 2+(‒23m +2‒2)2133(m ‒3)2+(‒23m +2)2133∴=,解得m=0(舍去)或m=,‒43m 2+4m 133(3‒m )133m‒23m +2118∴M (,0);118综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2,0)或(,0);118②由①可知M (m ,0),P (m ,﹣m +2),N (m ,﹣m 2+m +2),2343103∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(﹣m +2)=﹣m 2+m +2,解得m=3(三点重2343103合,舍去)或m=;12当M 为线段PN 的中点时,则有﹣m +2+(﹣m 2+m +2)=0,解得m=3(舍去)2343103或m=﹣1;当N 为线段PM 的中点时,则有﹣m +2=2(﹣m 2+m +2),解得m=3(舍去)或2343103m=﹣;14综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.1214【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年中考数学模拟试卷、选择题:1. 下列表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是()A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃【答案】C【解析】试题分析:根据数轴可知:该地区早晨、中午和午夜的温度(单位:℃)分别为:-7℃,-4℃,4℃,所以中午与早晨的温差=4-(-7)=ll℃,午夜与早晨的温差=-4-(-7)=3℃,中午与午夜的温差=4-(-4)=8℃,所以A、B、D错误,C正确。
故选:C.考点:数轴、有理数的加减.2. 下列各数精确到万分位的是()A. 0.0720B. 0.072C. 0.72D. 0.176【答案】A【解析】解:0.0720精确到万分位;0.072精确到千分位;0.72精确到百分位;0.176精确到千分位.故选A.3. 下列计算正确的是()A. 2a•3a=6aB. (﹣a3)2=a6C. 6a÷2a=3aD. (﹣2a)3=﹣6a3【答案】B【解析】试题分析:A、根据单项式乘单项式的方法判断即可;B、根据积的乘方的运算方法判断即可;C、根据整式除法的运算方法判断即可;D、根据积的乘方的运算方法判断即可.∵2a•3a=6a2,∴选项A不正确;∵(﹣a3)2=a6,∴选项B正确;∵6a÷2a=3,∴选项C不正确;∵(﹣2a)3=﹣8a3,∴选项D不正确考点:(1)整式的除法;(2)幂的乘方;(3)积的乘方;(4)单项式乘单项式.4. 在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】B【解析】试题分析:将一个图形沿着某条直线折叠,如果直线两边的图形能够完全重叠,则这个图形就是轴对称图形;将一个图形绕某一点旋转180°之后能够与原图形完全重叠,则这个图形就是中心对称图形.根据定义可得:A为中心对称图形;C和D为轴对称图形;B既是轴对称图形也是中心对称图形.5. 在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A. 平均数为160B. 中位数为158C. 众数为158D. 方差为20.3【答案】D........................6. 由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A. 正视图的面积最大B. 俯视图的面积最大C. 左视图的面积最大D. 三个视图的面积一样大【答案】B【解析】正视图为,面积为4;俯视图为面积为6;左视图为,面积为5;故选B7. 若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A. k>3B. 0<k≤3C. 0≤k<3D. 0<k<3【答案】A【解析】试题分析:经过第二、三、四象限是3-k<0,-k<0,∴k>3,k>0,取公共解k>3,故选A.考点:一次函数图像性质.8. 如图,将矩形纸片ABCD沿EF折叠,使D点与BC边中点D重合,若BC=8,CD=6,则CF长为()A. 1.5B.C. 2D. 1【答案】B【解析】∵D′是BC的中点,∴D′C=BC=4,由折叠的性质知:DF=D′F,设CF=x,则D′F=DF=6﹣x,在Rt△CFD′中,根据勾股定理得:D′F2=CF2+CD′2,即:(6﹣x)2=x2+42,解得x=,∴CF=.故选:B.、填空题:9. -27的立方根与的平方根之和是__________.【答案】-6或0【解析】试题分析:分别利用平方根、立方根的定义求解即可.解题注意=9,所以求的算术平方根就是求9的平方根.解:∵﹣27的立方根是﹣3,的平方根是±3,所以它们的和为0或﹣6.故答案:0或﹣6.考点:立方根;平方根.10. 若m2﹣n2=6,且m﹣n=2,则m+n=______.【答案】3.【解析】将m2-n2按平方差公式展开,再将m-n的值整体代入,即可求出m+n的值:∵,∴m+n=3。
湖北省襄阳市襄城区2017年中考数学5月模拟试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省襄阳市襄城区2017年中考数学5月模拟试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省襄阳市襄城区2017年中考数学5月模拟试卷(含解析)的全部内容。
2017年湖北省襄阳市襄城区中考数学模拟试卷(5月份)一、选择题(每小题3分,共计30分)1.互为相反数的两个数的和是()A.0 B.1 C.±1 D.π2.已知m2﹣4m=7,则代数式2m2﹣8m﹣13的值为()A.3 B.2 C.1 D.03.如图,∠1的同旁内角共有()A.1个B.2个C.3个D.4个4.为了解某市参加中考的40073名学生的身高情况,抽查了其中1000名学生的身高进行统计分析.下面叙述正确的是()A.40073名学生是总体B.每名学生是总体的一个个体C.本次调查是全面调查D.1000名学生的身高是总体的一个样本5.如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为( )A.2 B.3 C.D.6.内角和为540°的多边形是()A.B.C.D.7.如图,四边形ACDB内接于⊙O,若∠BDC=∠BOC,则∠BAC的度数为()A.50°B.60°C.45°D.90°8.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )A.B.C.D.9.如图,将一张矩形纸片ABCD折叠,使顶点C落在C′处,测量得AB=4,DE=8,则sin∠C′ED 为()A.2 B.C. D.10.如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.55°B.65°C.75°D.85°二、填空题(每小题3分,共18分)11.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0。