19.2.2一次函数(第一课时)教案
- 格式:doc
- 大小:182.00 KB
- 文档页数:4
连江县农村初中学校“小班化教学”数学教学设计课题:§19.2.2一次函数的图像及性质(1)班级:连江县百胜学校八年(2)班时间:2019年5月9日执教者:连江县敖江中学胡秀明【教学目标】1.能用“两点法”画出一次函数的图象,初步掌握一次函数y=kx+b(k 为常数,k≠0)的性质.2、通过探索一次函数的图象及性质,理解直线y=kx+b 与直线y=kx 之间的位置关系及平移规律,理解一次函数y=kx+b(k 、b 是常数,k≠0)常数k 和b 的取值对于直线的位置的影响.3、通过动手画图象和对问题的探究,学生经历观察、分析、交流等数学活动,进一步发展数学感知、数学概括能力,发展数学思维,体会数形结合的数学思想.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.【教学课时】第一课时【教学过程】一、温故知新1、画出下列函数的图象(1)y=2x(2)y=-3x xy=2x 二、探索新知1、画函数y =2x+1的图象.x y=-3xx…-2-1012…y=2x+1……思考:(1)比较函数y=2x 、y=2x+1,观察发现两个函数有什么关系?(2)比较这两个函数的图象的相同点和不同点,填出观察结果:这两个函数的图象形状都是______,并且倾斜程度______。
函数y=2x 的图象经过原点,函数y=2x+1的图象与y 轴交于点_____,即它可以看作由直线y=2x 向____平移___个单位长度而得到。
(3)在同一直角坐标系中画函数y =2x -3的图象.(4)观察发现:一次函数y=2x -3的图象形状是______,它与y 轴交于点____,即它可以看作由直线y=2x 向__平移__单位长度而得到.(5)观察这三个函数的图象,你还有什么其它发现?从解析式看,发现:从列表看,发现:从图像看,发现:你还能得到哪些结论:2、归纳:一次函数y=kx+b(k≠0)的图象与正比例函数y=kx (k≠0)的图象有什么关系:(1)一次函数y=kx+b(k≠0)的图象可以由直线y=kx 平移____个单位长度得到。
19.2一次函数——一次函数的图象和性质(第1课时)一、内容和内容解析1、内容:义务教育人教版数学八年级下册第十九章《一次函数》 19.2.2 “一次函数的图象和性质”第一课时。
2、内容解析:在学习本节课之前,学生已经掌握了变量和函数、正比例函数的图象和性质、一次函数的概念等相关知识,对于函数图象的画法有较好的基础。
本节内容的作用主要体现在以下几个方面:首先,学生对函数概念的认识,需要通过对具体函数的学习掌握来巩固和提高,而一次函数的学习提供了这样的条件;其次,一次函数的研究模式为今后研究反比例函数、二次函数提供了完整的研究模式,也是学习高中代数、解析几何及其他数学分支乃至其他学科的重要基础。
第三,为方程(组)、不等式、函数解法的相互转化和补充提供了新的途径,使学生更加深刻地理解“数形结合”的思想方法。
一次函数性质的核心是其增减性与系数k的符号之间的关系。
在一次函数的图象及其性质研究中,蕴含了数形结合的思想、分类讨论的思想和观察、表征、类比、归纳等数学认知活动。
二、教学目标(1)会画一次函数的图象。
(2)能从图象角度理解正比例函数与一次函数的关系,探究出一次函数的主要性质。
(3)通过观察图象、类比正比例函数性质概括一次函数性质的活动,发展数学感知、数学表征和数学概括能力,体会数形结合的思想,发展几何直观。
(4)通过学生在学习活动中获得成功的体验,增强学习数学的自信心。
教学重点:通过画图、观察,研究一次函数的的图象和增减变化规律。
教学难点:用数形结合的思想方法,概括和理解一次函数的性质。
三、教法选择和学法指导美国教育学家杜威先生说过这样一句话:“你可以将一匹马牵到河边,但是你决不可能按着马头让它饮水。
”这句话也道出了数学教学的灵魂在于主体探究。
因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。
用学生的眼光看教材,构造合理的思维场,使学生保持在欲知未知、半生不熟的中等强度上,逐步向学生体现数学事实的内在规律和联系;同时特别注重指导学生在独立思考的基础上,以分组活动、小组讨论等学习方式,最终达到共同提高的目的;运用多媒体适度辅助教学,增强问题直观性;同时设计简单的学案,配备好表格和平面直角坐标系,使作图简便、快捷、准确。
19.2.2 一次函数导学案(第1课时)[学习目标]1.理解一次函数的概念并掌握一次函数解析式的特点.2.归纳一次函数与正比例函数的关系.3.能结合实际问题中的数量关系求出一次函数的解析式。
[学习重点]一次函数的概念.[学习难点]灵活运用一次函数概念解决问题.[学习过程]一、温故知新1、下列式子中,哪些是正比例函数,哪些不是,为什么?8)1(-=y (2)28x y = (3)xy 4-= x y 3)4(-=(5)14-=x y2、某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃.登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃.试用函数解析式表示y 与x 的关系.反思:第二题中的函数是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还会有吗?二、观察分析,探究新知1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.这些函数解析式有哪些共同特征?(1)有人发现,在20℃~25℃时,蟋蟀每分鸣叫次数c 与温度t (单位:℃)有关,即c 的值是t 的7倍与35的差.________________________(2)一种计算成年人标准体重G (单位:kg )的方法是:以厘米为单位量出身高值h ,再减常数105,所得差是G 的值.____________________(3)某城市的市内电话的月收费额y (单位:元)包括月租费22元和拨打电话x min 的计时费(按0.1元/min 收取). ___________________(4)把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,长方形的面积y (单位:cm 2)随x 的变化而变化. ____________________思考:上面这些函数解析式有什么共同特征?共同特征:_________________________________________2、归纳总结,形成概念一般地,形如 的函数,•叫做一次函数.当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.强调:对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k ≠0;(2)自变量x 的次数为1;思考:当b=0时,y=kx(k ≠0)是不是一次函数呢?______________三、师生互动,运用新知1、 下列函数中哪些是一次函数,哪些又是正比例函数?(1)y=-5x (2)2x 3=y (3)652+=x y (4)y=-0.5x-12、若函数y=(m-1)x+m 是关于x 的一次函数,试求m 的值.四、达标测评,深化新知1、在一次函数53--=x y 中,k =_______,b =________2、若函数m x m y -+-=2)3(是一次函数,则m__________3、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t 之间的函数关系式是________________,它是__________函数。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为:.3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量y 与x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;解:一次函数:(1)、(4)、(5)、(7)、(8)。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为: .3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y (单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k 与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0 )的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量 y 与 x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案; 解:一次函数:(1)、(4)、(5)、(7)、(8)。
第1课时 一次函数(1)了解一次函数的一般形式.重点一次函数的一般形式. 难点探索实际问题中的一次函数关系.一、创设情境,引入新课问题:某登山队大本营所在地的气温是5℃,海拔每升高1 km 气温下降6℃,登山队员由大本营向上登高x km 时,他们所在位置的气温是y ℃,试用解析式表示y 与x 的关系.师:每升高1 km 气温下降6℃,那么升高x km ,气温下降6x ℃,因此所在位置的气温为5-6x ,即y =-6x +5.自变量是x ,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、讲授新课思考:下列问题中变量间的关系可用怎样的函数表示?这些函数有哪些共同点?师:在20℃~25℃时蟋蟀每分钟鸣叫的次数C 与t(℃)有关,即C 的值约是t 的7倍与35的差.这个函数的关系式怎么写?生:C = 7t -35.师:一种计算成年人标准体重G(kg )的方法是:以厘米为单位量出身高h ,再减去常数105,所得差是G 的值,即:G =h -105.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y 与每月电话x(分钟)的函数关系式.生:y =0.1x +22.师:把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,长方形的面积y(cm 2)随x 的变化的关系式是什么?生:y = 5(10-x)=-5x +50.师:上述这些函数有什么共同特点?比如说右边. 生:右边都是自变量的倍数与一个常数的和.师:对,上述这些函数的右边都是关于自变量的一次式,像这样的函数是一次函数. 一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数叫做一次函数,当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.师:下面的函数是一次函数吗?如果是一次函数,说说其中k 和b 的值分别是多少.①y =x -6;②y=2x ;③y=x8;④y=7-x.生1:y =x -6是一次函数,其中k =1,b =-6.生2:y =2x 不是一次函数.生3:y =x 8是一次函数,其中k =18,b =0.生4:y =7-x 是一次函数,其中k =-1,b =7.师:值得注意的是y =x8也是一次函数,它是当b =0时的特殊情况.例题:(1)已知函数y =(k -2)x +2k +1,当k 为何值时它是正比例函数?当k 为何值时它是一次函数?解决:当2k +1=0,即k =-12时,它为正比例函数.当k -2≠0,即k≠2时,它为一次函数.(2)已知y 与x -3成正比例,当x =4时,y =3,写出y 与x 的函数关系式并指出是什么函数.解:因为y 与x -3成正比例,所以设y =k(x -3).由题意知当x =4时,y =3,代入得k =3.所以y =3(x -3),即y =3x -9,y 是x 的一次函数. 三、巩固练习写出下列函数关系式,并指出哪些是一次函数,其中哪些又属于正比例函数.1.面积为10 cm 2的三角形的底a(cm )与这边上的高h(cm ).【答案】h =20a,不是一次函数.2.一边长为8 cm 的平行四边形的周长L(cm )与另一边长b(cm ). 【答案】L =16+2b ,是一次函数.3.食堂原有煤120吨,每天要用去5吨,x 天后还剩下煤y 吨. 【答案】y =120-5x ,是一次函数.4.汽车每小时行40千米,行驶的路程s(千米)和时间t(小时). 【答案】s =40t ,是一次函数,且是正比例函数.5.圆的面积y(平方厘米)与它的半径x(厘米)之间的关系.【答案】y =πx 2,不是一次函数.6.一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y(厘米). 【答案】y =50+2x ,是一次函数. 四、课堂小结本节课从实际出发得出一次函数的概念,并在实际问题中根据简单信息写出一次函数的表达式,进而解决问题.本节课主要学习了一次函数的概念和一次函数的一般形式.教学过程中充分调动了学生的学习积极性,让学生参与到学习活动中,在活动的过程中,理解并掌握知识,同时也培养了学生的学习能力及参与意识,取得了良好的教学效果.13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
《一次函数》教学设计方案(第一课时)一、教学目标1. 理解一次函数的概念,掌握一次函数的定义。
2. 能够识别一次函数图像,理解图像的性质。
3. 学会利用一次函数解决实际问题。
二、教学重难点1. 重点:理解一次函数的概念和图像性质,能够正确画出一次函数图像。
2. 难点:灵活运用一次函数解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、尺子、彩色笔等。
2. 准备教学材料:一次函数例题、习题及相关练习题。
3. 设计教学方案:明确教学内容和步骤,设计互动环节,引导学生积极参与。
4. 安排教学时间:预计一课时(45分钟),合理安排各个教学环节的时间。
四、教学过程:本节课的主要教学目标是帮助学生理解一次函数的概念,并能够解决实际问题。
在教学过程中,我们将采用以下步骤:1. 引入:通过具体问题情境引入一次函数的概念,引导学生思考如何用函数模型来描述这些问题。
引入问题:假设你正在参加一场长跑比赛,你的速度是x公里/小时,你需要跑y公里。
请问你应该以什么样的速度进行比赛,才能确保在规定时间内完成比赛?这个问题将帮助学生理解一次函数的基本形式,即y=kx+b (k≠0)。
2. 探究:通过探究活动,让学生自己发现一次函数的特点和性质。
探究问题:画出y=2x+1的图像,并观察图像的特点。
通过图像,你能发现哪些关于一次函数的信息?这个探究活动将帮助学生直观地理解一次函数的特点和性质,例如,图像是一条直线,直线的交点坐标对应于函数上的一个点等。
3. 讲解:教师对一次函数的概念和性质进行详细讲解,包括正比例函数、反比例函数等特殊形式的一次函数。
讲解内容:一次函数的概念、表达式、性质、正比例函数、反比例函数等特殊形式的一次函数的特点和区别。
4. 练习:通过一系列的练习题,帮助学生巩固一次函数的概念和性质。
练习题包括选择题、填空题和解答题,涵盖了不同形式的一次函数的应用和计算。
通过这些练习题,学生可以加深对一次函数的理解和应用。
19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。
19.2.2一次函数【课标内容】1.掌握一次函数的概念,并理解正比例函数与一次函数的关系.2.能画出一次函数的图象,并能根据图象理解掌握一次函数的性质.3.了解待定系数法的概念,并能用待定系数法确定一次函数的解析式.4.能利用一次函数解决一些实际问题.【教材分析】从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
.【学情分析】本节课主要是研究一次函数的图象与性质,是在学习了正比例函数的图象与性质,并初步了解了如何研究一个具体函数的图象与性质的基础上进的。
原有知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善,发展、比较、抽象与概括能力,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,在函数图象及其性质的探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】1.掌握一次函数的概念,并理解正比例函数与一次函数的关系.2.能画出一次函数的图象,并能根据图象理解掌握一次函数的性质.3.了解待定系数法的概念,并能用待定系数法确定一次函数的解析式.4.能利用一次函数解决一些实际问题.【教学重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【教学难点】一次函数的实际应用.【教学方法】五步教学法、引导探究法【课前准备】教学中出示的教学插图和例题.【课时设置三课时第一课时.一、预学自检互助点拨1..探索一次函数的概念思路一2011年开始运营的京沪高速铁路全长1318 km,设列车的平均速度为300 km/h.(1) 列车从始发站北京南站到终点站上海虹桥站,约需小时.(结果保留一位小数)(2)列车从北京南站出发,离终点站的距离y(单位:km)是运行时间t(h)的函数吗?它们之间的数量关系是:.(注意:实际问题要给出自变量的范围)(3)由(2)中的关系式求出当t=2.5时,y=;当y=1200时,t=.(保留一位小数)(4)列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km 的南京南站?学生思考,小组交流.答案:(1)4.4(2)y=1318-300t0≤t≤(3)5680.4(4)没有经过学生讨论:以上函数解析式有什么共同特点?学生观察思考,讨论总结其特征:这些函数都是常数k与自变量的积与常数b的和的形式.教师总结:确实如此,如果我们用b来表示这个常数的话,这些函数形式就可以写成:y=kx+b(k≠0).教师出示一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.引导学生思考:k的值能为0吗?b的值能为0吗?当b=0 时,y=kx+b 是什么函数?一种特殊的一次函数.[设计意图]这个探索活动是学习一次函数概念的基础.借助生活实例,引出一次函数概念,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到一次函数一般性的高度,有助于学生理解一次函数的概念,并且正确认识一次函数与正比例函数的关系.思路二(1)c=7t-35(20≤t≤25).(2)G=h-105.(3)y=0.1x+22.(4)y=-5x+50(0≤x<10).提问:以上函数解析式有什么共同特点?引导学生从解析式的形式上找共同点.师生共同归纳其特点:它们的形式都是自变量的k倍与一个常数的和.教师出示一次函数的定义: 一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.教师提醒:(1)k,b的取值范围;(2)自变量的取值范围为全体实数;(3)b可以为零.追问:当b=0 时,y=kx+b是什么函数?一种特殊的一次函数.[设计意图]由学生已有的学习经验和生活经验出发,拉近了数学与生活的距离,激发学生的学习热情.通过探索活动,让学生认识一次函数解析式的特征,掌握一次函数的概念,理解一次函数与正比例函数的关系.二、合作互学探究新知2.例题讲解(补充) 下列函数中是一次函数的有哪些?并说出k和b的值.(1)y=-x;(2)y=+2;(3)y=5x2-3;(4)m=2.5n-0.3;(5)y=3x+3(1-x);(6) l=r-.引导学生分析:根据一次函数y=kx+b的特征去判断,注意(1)是正比例函数,当然也是一次函数;(5)化简得y=3,不符合k≠0的要求,故不是一次函数.解:是一次函数的有(1),其中k=-,b=0;有(4),其中k=2.5,b=-0.3;有(6),其中k=,b=-.归纳总结:(1)一次函数成立的条件:①自变量的指数为1;②一次项系数k≠0.(2)一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数.一次函数y=kx+b中,当b=0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.(补充)已知y+b与x+a(a,b是常数)成正比例.(1)试说明y是x的一次函数;(2)如果x=3时y=5,x=2时y=2,求y与x的函数关系式.引导分析:(1)根据正比例函数的定义,把y+b与x+a分别看作一个整体,分别作为一个变量,可得y+b=k(x+a),所以y=kx+ka-b.根据一次函数的定义可知y是x的一次函数;(2)设y与x的一次函数解析式为y=mx+n,分别把x=3,y=5和x=2,y=2代入解析式中,得到关于m,n的方程组,解方程组即可.解:(1)设y+b与x+a的函数解析式为y+b=k(x+a),得y=kx+ka-b.根据一次函数的概念可知y是x的一次函数.(2)设y与x的函数解析式为y=mx+n.把x=3,y=5和x=2,y=2分别代入,得:解得则y=3x-4.归纳总结:判断一次函数,利用一次函数的定义判断即可.通常是利用待定系数法求一次函数的解析式.(补充)已知关于x的函数y=(k+2)x+k2-4,(1)当k满足什么条件时,它是正比例函数?(2)当k满足什么条件时,它是一次函数?〔解析〕(1)根据正比例函数的定义可知:k2-4=0且k+2≠0确定k的值.(2)根据一次函数的定义可知:k+2≠0确定k的值即可.解:(1)当k2-4=0且k+2≠0时,即k=2时,它是正比例函数.(2)当k+2≠0,即k≠-2时,它是一次函数.归纳总结:注意一次函数的定义,并且正确理解它和正比例函数的关系,一次函数y=kx+b中必须满足的条件是k≠0.当b=0时,一次函数也为正比例函数.三、自我检测成果展示1.下列说法中不正确的是()A.正比例函数一定是一次函数B.一次函数不一定是正比例函数C.不是一次函数就不是正比例函数D.正比例函数不是一次函数解析:利用一次函数和正比例函数的关系解决本题即可.故选D. 2.已知方程3x-2y=1,把它化成y=kx+b的形式是;这时k=,b=;当x=-2时,y=,当y=0时,x=.解析:利用一次函数的概念即可确定k,b的值,把x=-2代入解析式即可求出y的值,把y=0代入解析式即可求出x的值.答案:y=x---3.关于x的一次函数y=(m-2)x n-1+n中,m,n应满足的条件分别是.解析:根据一次函数的概念,可知m-2≠0,n-1=1,求出m,n符合的条件即可.故填m≠2,n=2.4.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解析:一次函数y=kx+b的解析式中k≠0,自变量的次数为1,常数项b可以为任意实数;正比例函数的解析式中,比例系数k是常数,k≠0,自变量的次数为1.解:(1)根据一次函数的定义,得2-|m|=1,解得m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数. (2)根据正比例函数的定义,得2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0,即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数.四、应用提升挑战自我5.某种气体在0 ℃时的体积为100 L,温度每升高1 ℃,它的体积增加0.37 L.(1)写出气体体积V(L)与温度t(℃)之间的函数解析式;(2)求当温度为30 ℃时气体的体积;(3)当气体的体积为107.4 L时,温度为多少摄氏度?五、经验总结反思收获本节课你学到了什么?写出来(设计思路:师生共同回忆所学内容,共同小结,渐渐补充.充分利用学案资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.教师引导学生总结今天学习的主要内容,在学习后进行适当总结有助于学生更加深刻理解内容.)【板书设计】第1课时1.一次函数的概念2.例题讲解例1例2例3【备课反思】本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境——分析探究——总结升华”为主线,使学生亲身体验一次函数特征的探索,深化一次函数与正比例函数的关系的理解,努力做到由传统的数学课堂向实验课堂转变.。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为: .3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y (单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k 与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0 )的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量 y 与 x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案; 解:一次函数:(1)、(4)、(5)、(7)、(8)。
19.2.2 一次函数(第一课时)
教学详案
【设计说明】.
一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本课是在学习正比例函数的基础上,进一步学习一次函数的概念.一次函数的概念是在观察一类具体函数的解析式的特点的基础上,通过抽象得到的函数模型.
【教学目标】
1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;
2.能辨别正比例函数与一次函数的区别与联系;
3.初步体会用待定系数法求一次函数解析式的方法.
【教学重难点】
重点:一次函数的概念.
难点:求一次函数解析式.
【课前准备】
多媒体、图片
【教学过程】
(-)导入新课
1、什么是正比例函数?能举例说明吗?
2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为:.
3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.
师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)
当然,这个函数也可表示为:y=-6x+5 (x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).
这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.
(二)探究新知
4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?
(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C•的值约是t的7倍与35的差.
(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.
(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).
(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.
师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:
(1).C=7t-35.(20≤t≤25)(2).G=h-105.
(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).
教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.
师:确实如此,如果我们用b 来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)
教师出示一次函数的定义: 一般地,形如y=kx+b (k 、b 是常数,k≠0•)的函数,•叫做一次函数(•linearfunction ).
教师引导学生继续思考 当b =0 时,y =kx +b 是什么函数?
学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.
5、同桌合作探究:请写出若干个变量 y 与 x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.
(三)新知应用
例1 下列函数中哪些是一次函数,哪些又是正比例函数?
师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;
解:一次函数:(4)、(5)、(7)、(8)。
正比例函数:(1)。
例2、 已知一次函数 y =kx +b ,当 x =1时,y =5;当x =-1时,y =1.求 k 和 b 的值.
分析:与前面求正比例函数的解析式同样的方法,将已知的x 、y 的数值代入即可求得。
师生活动:一生板演,其余学生独立完成。
解:把当 x =1时,y =5;当x =-1时,y =1代入y =kx +b ,得:
⎩⎨⎧=+-=+1
5b k b k 解这个方程组得⎩
⎨⎧==32b k 例3、一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s .
(1)求小球速度v (单位:m/s )关于时间t (单位:s )的函数解析式.它是一次函数吗?
(2)求第2.5 s 时小球的速度;
师生活动:学生先独立思考,教师加以点拨和分析:
v 与t 是正比例关系,若学生有困难,可出示下表帮助学生理解
解:(1)v=2t. (2)把t=2.5代入v=2t=2×2.5=5 (m/s)。
(四)课堂练习
1、
2、
3、
4、
5、
6、仓库内原有粉笔400盒,如果每个星期领出40盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系是,它是函数。
7、
8、
9、
10、已知y=y1+y2,其中y1与x成正比例,y2与x-1成正比例;当x=-1时,y=2;当x=2时,y=5.求当x=3时y的值。
参考答案:
3
1、-3,-5.
2、m≠3.
3、-3,-1
4、c。
5、D.
6、Q=400-40t;一次。
7、m≠1.
8、(1)m=
2
(2)m≠2. 9、(1)y=4x+60,是一次函数。
(2)x每增加1,y相应的增加4.(3)x=0时,y=60;此时y为三角形的面积。
10、y=x+3. x=3时,y=6.
(五)课堂小结
(1)什么叫一次函数?
(2)一次函数与正比例函数有什么联系?
(3)对于一次函数,需要变量的几对对应值才能确定函数解析式?怎样求函数解析式?
(4)一次函数中,当自变量每增加一个相同的值,函数值增加的值是变化的还是不变的?
(六)布置作业
教材第99页习题第3题。
预习教材91-92页例2、例3.
【板书设计】
19.2.2 一次函数
一、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.
二、一次函数的关系式:
三、例1、例2
例3、
【教学反思】。