紫外光谱法与红外光谱法
- 格式:doc
- 大小:54.50 KB
- 文档页数:6
部分一紫外光谱法与红外光谱法
摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。
一、原理不同
1、紫外光谱(UV)
分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。
紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。
2、红外光谱法(IR)
分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。
红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外
2.5—25μm远红外波长25—500μm 。
二、仪器对比
三、分析目的
1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。
2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。
3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究
4、红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。
UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。
5、紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。
红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。
部分二:红外分光光度法与紫外分光光度法
摘要:分光光度法是通过测定被测物质,在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。
一、红外分光光度法
1、红外分光光度法(infrared,peetropho- tometry)利用物质对红外光的选择吸收特性来进行结构分析、定性鉴定和定量测定的一种仪器分析方法(也叫红外吸收光谱法)。原理红外光谱分析法以红外吸收光谱为基础。红外光谱亦称振转光谱,因为它主要来源于分子振动,同时也因分子转动而产生。在分子中有伸缩振动和变形振动两种基本振动。键的振动频率不仅与键本身有关,也受到全分子的影响。一定颇率的红外线经过分子时,如果分子中某一个键的振动频率和它一样,这个键就吸收红外线而增加能振动就会加强;如果分子没有同样频率的键,红外线就不会被吸收。因此,用红外线照射样品时,若连续改变红外线的频率,则通过样品吸收池的红外线,有些区域较弱,有些区域较强,这就产生了红外吸收光谱。由于每个有机化合物的结构不同,它的原子质t和化学键力各不相同,就会出现不同的吸收颇率,因此各有其独特的红外吸收光谱,借此可以进行定性、定量分析和结构剖析。主要仪器为红外分光光度计.它的作用是测定被物质吸收后透过的各个波长的红外光的透过率,并给出该物质的红外吸收光谱。
2、紫外分光光度法
物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据
吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定波长的吸光度与它的吸收介质的厚度和吸光物质的浓度呈正比。
二、仪器组成
1、红外分光光度计仪器部分组成:
流程:光源->吸收池->单色器->检测器->记录装置
分为色散型(已淘汰)和干涉型。
光源:一般常见的为硅碳棒,特殊线圈,能斯特灯(已淘汰)。
检测器:真空热电偶及Golay池
吸收池:液体池和气体池(具有岩盐窗片)
检测器:多用热电性硫酸三甘肽(TGS)或光电导性检测器
2、紫外分光光度计部件组成
辐射源:钨灯、卤钨灯(波长范围350~2500纳米),氘灯或氢灯(180~460纳米),或可调谐染料激光光源等。
单色器:它由入射、出射狭缝、透镜系统和色散元件(棱镜或光栅)。
试样容器:又称吸收池。石英池
检测器:又称光电转换器。常用的有光电管或光电倍增管,
显示装置:常备有微处理机、荧光屏显示和记录仪等。
三、分析目的
(一)红外分光光度法
1、红外分光光度法化合物中各原子团组合排列情况,是同红外光谱中出现的特征官能团来确定的。
(1) 溴化四氯化对位甲酚的结构,过去实验认为它有三种可能的结构,但未能鉴别确定,现经过红外光谱证实只有一种结构。
(2) 二分子醛缩合醇酮,应为(I)式。若(I)式R换成吡啶基,则化学性质和(I)却不相同了,它具有烯二醇式的反应如(II)式。可是在极烯的溶液中,也看不到自由羟基的3700cm(-1)-谱带,却在2750cm(-1)有缔全氢键出现。可知