高中数学圆锥曲线试题(含答案)
- 格式:doc
- 大小:647.00 KB
- 文档页数:21
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
一、选择题1.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .BC .13-D .132.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞3.已知离心率为2的双曲线22221(0,0)x y a b a b-=>>,过右焦点且垂直于x 轴的直线与双曲线交于A 、B 两点,设A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且124d d +=,则双曲线的方程为( )A .223144x y -=B .224134x y -=C .221124x y -=D .221412x y -=4.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D 5.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A .4B .15C .14D .47.已知双曲线2222:1(0,0),,x y C a b A B a b-=>>是双曲线C 上关于原点对称的两点,P是双曲线C 上异于,A B 的一点,若直线PA 与直线PB 的斜率都存在且两直线的斜率之积为定值2,则双曲线的离心率是( )A B C .2D8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOB 的面积为3,则p =( ) A .1B .32C .2D .39.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .611.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 312.已知双曲线C 的两个焦点12,F F 都在x 3M 在C 上,且12MF MF ⊥,M 3C 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______.16.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线y =垂直,当a 取最大值时,双曲线C 的方程为________.17.双曲线22221(00)x y C a b a b-=>>:,的左、右焦点分别为1F ,2F ,过2F 的直线交曲线C 右支于P 、Q 两点,且1PQ PF ⊥,若3PQ =14PF ,则C 的离心率等于________.18.双曲线221916x y -=的左焦点到渐近线的距离为________.19.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.20.设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于两点P ,Q ,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为______.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.已知椭圆2222:1(0)x y D a b a b +=>>的离心率为2e =,点1)-在椭圆D 上.(1)求椭圆D 的标准方程;(2)设点(2,0)M -,(2,0)N ,过点F 的直线l 与椭圆交于A ,B 两点(A 点在x 轴上方),设直线MA ,NB (O 为坐标原点)的斜率分别为k 1,k 2,求证:12k k 为定值. 23.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF. (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由. 24.已知椭圆的焦点在x 轴上,一个顶点为()0,1,离心率255e =,过椭圆的右焦点F 的直线l 与坐标轴不垂直,且交椭圆于A ,B 两点 (1)求椭圆的标准方程 (2)当直线l 的斜率为12时,求弦长AB 的值. 25.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点相同,1F 、2F 分别为椭圆C 的左、右焦点,M 为C 上任意一点,12MF F S的最大值为1.(1)求椭圆C 的方程;(2)不过点F 2的直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点. ①若k 2=12,且S △AOB 2m 的值; ②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证:直线l 过定点,并求出该定点的坐标.26.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.【参考答案】***试卷处理标记,请不要删除1.C 解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-,123m =⇒=-, 故选C.2.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3yx,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题3.A【分析】先将A 、B 到双曲线的同一条渐近线的距离之和转化成焦点到渐近线的距离,得到b 值,再根据离心率,即求出a ,得到双曲线方程. 【详解】设右焦点0F c (,),依题意F 是AB 的中点,渐近线为0bx ay ±=,F bcb c== , 因为A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,F 是AB 的中点,所以122d d b +=,所以24b =,故2b =,得224c a -= ,又因为离心率2c e a ==,得243a =, 故双曲线的方程为223144x y -=.故选:A. 【点睛】本题考查了双曲线的方程,属于中档题.4.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a =2k . 5.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得15b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以15b a =所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.B解析:B 【分析】设点(,),(,),(,)A m n B m n P k t --,PA PB k k 求得,利用点,P A 在双曲线上,及已知定值2可求得22b a,从而可得离心率c e a =.【详解】根据题意,设点(,),(,),(,)A m n B m n P k t --,则222222221,1m n k ta b a b-=-=,,PA PB t n t nk k k m k m-+==-+, 所以2222PA PB t n t n t nk k k m k m k m-+-⋅=⋅==-+-22222222222(1)(1)t n b t n aa ab b-==+-+,所以双曲线的离心率2213c b e a a==+= 故选:B. 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的等式.解题方法是设出,,P A B 坐标,代入双曲线方程,然后把等式2PA PB k k =用坐标表示出来后,可者所要的关系式,从而求得离心率.8.C解析:C 【分析】求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOB p 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-, 故A ,B 两点的纵坐标分别是2pb y a=±,又由双曲线的离心率为2,所以2c a =2=,则b a =A ,B 两点的纵坐标分别是=y又AOB=,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=, 所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.11.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,3==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.C解析:C【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a ==⋅-, 由()ln 2x f x ⎛⎫=⎪⎝⎭, 得()()1212ln ,ln 22k k f k f k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21211224k k k k ⋅⇒==,所以c e a ===【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】 抛物线焦点为3,04⎛⎫⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小, 将34x =代入23y x =,解得32y =±,故133922428OABS =⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFB OFA SSS OF y y =+=-,故可得当直线的斜率不存在时, 即和x 轴垂直时,12y y -的值最大,即面积最大.15.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =,可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:222e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.16.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得3a b 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M 处的切线与直线3y x =-垂直,则(0312x ⨯=-, 解得023x =,则200143x y ==,所以,点M 的坐标为3133⎛⎫ ⎪ ⎪⎝⎭,抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==,因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.17.【分析】设则再利用双曲线的定义可得分别在中利用勾股定理即可获解【详解】如图设由=可得由双曲线定义有所以又所以因为所以即①②由②解得代入①得即所以故答案为:【点睛】本题考查双曲线的离心率的求法解题关键【分析】设||4(0)PQ t t =>,则13PF t =,再利用双曲线的定义可得232PF t a =-,1||4QF t a =+,分别在12PF F △,1PFQ 中利用勾股定理即可获解. 【详解】如图,设||4(0)PQ t t =>,由3PQ =14PF 可得13PF t =, 由双曲线定义,有12||||2PF PF a -=,所以232PF t a =-,21||||2QF PQ PF t a =-=+,又12||||2QF QF a -=,所以1||4QF t a =+,因为1PQ PF ⊥,所以22212||||4PF PF c +=,22211||||||PF PQ QF +=, 即222(3)(32)4t t a c +-=①,222(3)(4)(4)t t t a +=+②,由②解得t a =,代入①,得222(3)(32)4a a a c +-=,即22104a c =, 所以101042c e a ===. 故答案为:102【点睛】本题考查双曲线的离心率的求法,解题关键是建立关于,,a b c 的方程,考查学生的数学运算能力,是一道中档题.18.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4 【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-, 渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.19.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.20.【分析】由几何关系得出为正三角形结合椭圆的定义得出轴利用椭圆方程得出结合直角三角形的边角关系得出再解方程即可得出答案【详解】为正三角形则由椭圆的定义可知则即轴设点由解得即在中即解得故答案为:【点睛】【分析】由几何关系得出1PFQ 为正三角形,结合椭圆的定义,得出PQ x ⊥轴,利用椭圆方程得出22b PF a=,结合直角三角形的边角关系得出22332a c ac -=,再解方程23230e e +-=,即可得出答案.【详解】1160,||F PQ PF PQ ︒∠==1PFQ 为正三角形,则11||PFPQ FQ == 由椭圆的定义可知,2112||2,2PF PF a QF QF a +=+= 则1212PF PF PF QF +=+,即22PF QF =PQ x ∴⊥轴设点()00,,0P c y y >,由220222221y c a ba b c ⎧+=⎪⎨⎪=+⎩,解得20b y a =,即22b PF a = 在12F PF ∆中,222211tan 23F F F PF c PF ab∠==⋅= 即232b ac =,22332a c ac -=23230e e ∴+-=,解得33e =故答案为:33【点睛】本题主要考查了求椭圆的离心率,考查数形结合思想及运算能力,属于中档题.三、解答题21.(1) 32; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以2e ====(2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0. 设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b =+⎧⎨+=⎩,得()22224240m y mny n b +++-=所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)22142x y +=;(2)证明见解析.【分析】(1)由已知得到关于,a b 的方程组,解方程组即得解;(2)设直线l的方程为x my =理化简12k k 即得解. 【详解】(1)椭圆D的离心率e ==a ∴=,又点1)-在椭圆D 上,22211a b∴+=,得2a =,b = ∴椭圆D 的标准方程22142x y +=.(2)由题意得,直线l的方程为x my =由22142x y x my ⎧+=⎪⎨⎪=+⎩消元可得()22220m y ++-=, 设())()1122,,,A x y B x y ,则1222y y m+=-+,12222y y m =-+, ()()1212121212222()4(2(4x x x x x x my my my my ++=+++=++++221212(2()2)m y y m y y =+++2222(222)m m m ⎛⎛⎫=-++= ⎪ +⎝⎭⎝⎭()()()2112122121222212121212222223222422x k y x y y x y y y y k x y x y x x x x ----∴=⋅=⋅=⋅==-+++-++定值). 【点睛】方法点睛:定值问题在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明;(2)直接求题目给定的对象的值,证明其结果是一个常数.23.(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【分析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程.(2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案. 【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,直线l 与抛物线的方程联立得()22222202y kx mk x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k =,则122y y k +=,122m y y k =, 又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=,()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =,所以直线的方程为()21y m x =+,即直线经过定点1,02⎛⎫- ⎪⎝⎭.【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题.24.(1)2215x y +=(2)9【分析】(1)根据顶点坐标得到1b =,根据离心率5c e a ==,结合222a b c =+得到25a =,则可得椭圆的标准方程;(2)联立直线与椭圆,利用弦长公式可求得结果.【详解】(1)依题意设椭圆的标准方程为22221x y a b+=(0)a b >>,则1b =,c a =,所以22221a b c ⎫=+=+⎪⎪⎝⎭,解得25a =, 所以椭圆的标准方程为2215x y +=.(2)由(1)知(2,0)F ,则直线:l 1(2)2y x =-, 联立221(2)215y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y 并整理得22009x x -=,设1122(,),(,)A x y B x y , 则12209x x +=,120x x =,所以||AB ==209==. 【点睛】结论点睛:斜率为k 的直线l 与圆锥曲线交于11(,)A x y 、22(,)B x y两点,则弦长||AB =25.(1)2212x y +=;(2)①1m =±;②直线l 恒过定点(2,0).【分析】(1)根据题意,可求得1c =,1b =,进而求得a ,由此得到椭圆方程;(2)①联立方程,得到k 与m 的不等关系,及两根的关系,表示出弦长AB 及点O 到直线AB 的距离,由此建立等式解出即可;②依题意,120k k +=,由此可得到k 与m 的等量关系,进而求得定点. 【详解】(1)由抛物线的方程24y x =得其焦点为(1,0),则1c =, 当点M为椭圆的短轴端点时,12MF F 面积最大,此时1212S c b =⨯⨯=,则1b =,∴a =2212x y +=;(2)联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x kmx m +++-=,∆222222164(21)(22)8(21)0k m k m k m =-+-=-+>,得2212(*)k m +>,设1(A x ,1)y ,2(B x ,2)y ,则2121222422,1212km m x x x x k k-+=-=++, ①0m ≠且212k =,代入(*)得,202m <<,12|||AB x x -,设点O 到直线AB 的距离为d,则d ==∴12||||)23AOBm SAB d ==, 21(0,2)m ∴=∈,则1m =±;②1122121122,1111y kx m y kx mk k x x x x ++====----,由题意,120k k +=, ∴1212011kx m kx m x x +++=--,即12122()()20kx x m k x x m +-+-=, ∴2222242()()201212m km k m k m k k -+---=++,解得2m k =-,∴直线l 的方程为(2)y k x =-,故直线l 恒过定点,该定点坐标为(2,0).【点睛】方法点睛:证明曲线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数R λ∈,结合已知条件求出直线或曲线的方程,分离参数得到等式2123(,)(,)(,)0f x y f x y f x y λλ++=,(一般地,(,)(1,2,3)i f x y i =为关于,x y 的二元一次关系式)由上述原理可得方程组123(,)0{(,)0(,)0f x y f xy f x y ===,从而求得该定点.26.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出.【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得x <<,∴18y x x ⎛=-<< ⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法; (2)由直线与椭圆的位置关系得出m 的范围.。
一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D 3.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .0,2⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .11212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭5.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D6.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=7.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).A .12B .622+ C .31+ D .62+8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 312.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________. 17.曲线412x x y y -=上的点到直线y =的距离的最大值是________.18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x y a b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______. 20.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:则2C 的虚轴长为______.三、解答题21.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 22.抛物线Γ的方程为22y px =(0p >), ()1,2A 是Γ上的一点. (1)求p 的值,并求A 点处的切线方程;(2)不过点A 且斜率为1-的直线交抛物线Γ于P 、Q 两点.证明:直线PA 、 QA 的倾斜角互补.23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,过点(03,,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.25.已知椭圆2222:1(0)x y C a b a b+=>>的短轴为2,椭圆上的点到焦点的最短距离为23.(1)求椭圆的标准方程;(2)已知椭圆的右顶点和上顶点分别为,M N ,斜率为12的直线l 与椭圆C 交于P Q 、两点,求证:直线MP 与NQ 的斜率之和为定值;(3)过右焦点2F 作相互垂直的弦,AB CD ,求||||AB CD +的最小值.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数;(2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .3.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题.4.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据12r a >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C 5.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭, 因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程. 6.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =,由此可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =,所以22216124b a c =-=-=, 所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .7.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C的半径最小值为11225O l d -==,圆C面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,3==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1, 所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a ==⋅-, 由()ln 2x f x ⎛⎫=⎪⎝⎭, 得()()1212ln ,ln 22k k f k f k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21211224k k k k ⋅⇒==,所以c e a ===.【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】抛物线焦点为3,04⎛⎫ ⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小,将34x =代入23y x =,解得32y =±,故133922428OABS =⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFBOFA SSS OF y y =+=-,故可得当直线的斜率不存在时, 即和x 轴垂直时,12y y -的值最大,即面积最大.15.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.16.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF 和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==. 因为直线l 的斜率是3,则12sin PF F ∠=,12cos PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos PF F F PF F =∠=,21212sin PF F F PF F =∠=,则2125PF PF a -==,故双曲线C的离心率为2c a =.【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的【分析】 先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x =的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:22y x =- 故两平行线22y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =26. 26. 【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形, 即在椭圆中有1221122222PF PF a PF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭.故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=,即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去). 故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a ba b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.三、解答题21.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2p =,1y x =+;(2)证明见解析. 【分析】(1)将()1,2A 代入可求得p ,设出切线方程,联立切线与抛物线方程,利用0∆=可求;(2)设直线PQ 方程为y x m =-+,与抛物线方程联立,根据0PA QA k k +=可证明. 【详解】解:(1)将()1,2A 代入22y px =,可得2p =,由题意知,所求切线斜率显然存在,且不为0, 设切线方程为()21y k x -=-,与24y x =联立得()2204k y y k -+-=(0k ≠), 由()120k k ∆=--=得1k =. 所以,所求切线方程为1y x =+.(2)设直线PQ 方程为y x m =-+,代入24y x =得:240y y m +-=.由16160m ∆=+>,得1m >-.又∵直线PQ 不过点A ,∴3m ≠,∴1m >-,且3m ≠. 设()11,P x y ,()22,Q x y ,则124y y +=-,124y y m =-,()()()()22122112121211121222441111PA QA y y y y y y k k x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎝⎭⎝⎭+=+=----()()()121441684201m m x x +-++==-, 所以,直线PA 、PQ 的斜率角互补. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x -,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y +=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题 24.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+-=-=,解得:y =7-, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++,所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=- 也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d,则d ===0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.25.(1)2214x y +=;(2)证明见解析;(3)3.【分析】(1)由题知1b =,23a c -=-222a b c =+即可得椭圆的标准方程为2214x y +=; (2)由题意得(2,0),(0,1)M N ,设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,直线l 为12y x m =+,直线与椭圆联立化简得212122,22x x m x x m +=-=-,进而0MP NQ k k =+;(3)当直线AB 斜率不存在时,22||||23b AB CD a a+=+=,当直线AB 斜率存在时,设直线AB 为3y kx k =-,直线CD 为13y x k =-,进而得2245||||54174AB CD k k+=-++,再结合基本不等式即可得答案. 【详解】(1)因为短轴为2,所以22,1b b ==,又因为椭圆上的点到焦点的最短距离为a c -,所以23a c -=-,又因为222a b c =+,解得2,1,a b c ===所以椭圆的标准方程为2214x y +=;(2)由题意得(2,0),(0,1)M N ,设直线l 为12y x m =+,与2214x y +=联立得:222220x mx m ++-=设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则212122,22x x m x x m +=-=- 所以()12121212122111(1)222222MP NQx m x m x x m x x m k k x x x x x ++-+-+-++=+=--22222(1)(2)220222m m x m m m x -+---+==--,所以MP 与NQ 的斜率之和为定值0;(3)当直线AB 斜率不存在时,2225b AB CD a a+=+=当直线AB 斜率存在时,设直线AB为y kx =-,直线CD为1y x k k=-+, 得()2222411240k x x k +-+-=,所以223434221244141,k x x x x k k -+==++,所以()224141AB k k +==+,同理()2241||4k CD k +=+,所以()()2222224141445||||5414417k AB CD k k k kk +++=+=-++++因为22448k k +≥=,所以1635AB CD +≥>,当且仅当1k =±时取等号, 所以AB CD +的最小值为3. 【点睛】本题考查直线与椭圆的位置关系,椭圆中的最值问题,考查运算能力与化归转化思想,是中档题.本题解题的关键在于巧设点的坐标,结合韦达定理,设而不求,达到求解目标,化简运算;同时还要注意再设直线方程时,需要考虑斜率存在与否,做到周密解答.26.(1)||AB =12t;(2)7+ 【分析】(1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长. 【详解】(1)224y x ty x=+⎧⎨=⎩, 整理得()224410x t x t +-+=, 则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t;(2)由||AB ==4t =-, 经检验,此时16320t ∆=->, 所以1215x x t +=-=, 由抛物线的定义,有1212||||()()52722p pAF BF x x x x p +=+++=++=+=,又||AB =,所以AFB△的周长为7+ 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。
如皋市名师教育培训学校高中数学圆锥曲线专项训练材料(名校经典题型附答案)1、(省启东中学高三综合测试二)已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;错误!未找到引用源。
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值围.解:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.错误!未找到引用源。
错误!未找到引用源。
假设存在点C(-1,y),使△ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即错误!未找到引用源。
因此,直线l上不存在点C,使得△ABC是正三角形.(ii)解法一:设C(-1,y)使△ABC成钝角三角形,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
∠CAB为钝角.错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
.该不等式无解,所以∠ACB不可能为钝角.因此,当△ABC为钝角三角形时,点C的纵坐标y的取值围是:错误!未找到引用源。
.解法二:以AB为直径的圆的方程为:错误!未找到引用源。
.错误!未找到引用源。
当直线l上的C点与G重合时,∠ACB为直角,当C与G 点不重合,且A,B,C三点不共线时,∠ACB为锐角,即△ABC中∠ACB不可能是钝角.因此,要使△ABC为钝角三角形,只可能是∠CAB或∠CBA为钝角.错误!未找到引用源。
.错误!未找到引用源。
.错误!未找到引用源。
A,B,C三点共线,不构成三角形.因此,当△ABC为钝角三角形时,点C的纵坐标y的取值围是:错误!未找到引用源。
2、(省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A、B、C,证明:⊿ABC的垂心H 也在该双曲线上;(2)若正三角形ABC的一个顶点为C(―1,―1),另两个顶点A、B在双曲线xy=1另一支上,求顶点A、B的坐标。
第3章圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .87.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F2向∠F1QF2的平分线作垂线F2P,垂足为P,求P点的轨迹方程.18.(12分)已知点P到F1(0,3),F2(0,-3)的距离之和为4,设点P的轨迹为C,直线y=kx+1与轨迹C交于A,B两点.(1)求轨迹C的方程;(2)若|AB|=825,求k.19.(12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过20.(12分)如图,已知抛物线C1:y=14原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的左顶点为M(-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N(1,0)的直线AB交椭圆Γ于A,B两点;当MA→·MB→取得最大值时,求△MAB的面积.22.(12分)已知曲线C上任意一点S(x,y)都满足到直线l′:x=2的距离是它到点T(1,0)的距离的2倍.(1)求曲线C的方程;(2)设曲线C与x轴正半轴交于点A2,不垂直于x轴的直线l与曲线C交于A,B两点(异于点A2).若以AB为直径的圆经过点A2,试问直线l是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C:x2a2+y2b2=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若13<k<12,则椭圆离心率的取值范围是()2.若椭圆x2m+y2n=1(m>n>0)和双曲线x2a-y2b=1(a>b>0)有相同的左、右焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A.m-a B.12(m-a)C.m2-a2 D.m-a3.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .24.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.9.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.10.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l 与抛物线交于A,B两点,弦AB的中点为P,AB的垂直平分线与x轴交于E(x0,0).(1)求k的取值范围;(2)求证:x0<-3.13.设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为43 3.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若AC→·DB→+AD→·CB→=8,求k的值.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.第3章圆锥曲线的方程单元测试卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14 D.14答案C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=1答案C解析因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或0答案C解析由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .5答案B解析由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =ca= 5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()答案B解析方程ax 2-by 2=ab 变形为x 2b -y 2a=1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a =1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a =1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a =1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .8答案B解析由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3 D.2答案B解析如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =ca=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案D解析如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0)12=4x 1,22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x 2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ答案AD解析对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=θ(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=θF (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+1答案ABD 解析若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca =2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案CD解析设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取PF 1→·PF 2→2-142,--142,-=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案ABD解析设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =yx +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以y x +1·y x -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m =1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案38解析由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案2255解析抛物线y 2=2px (p >0)的准线方程为x =-p 2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p ×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案0或2或4解析设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案52解析利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax .=b a x ,-3y +m =0,得=-b a x ,-3y +m =0,得-am a +3b ,所以AB 的中点C设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a =52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b 2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|),即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y1),B (x 2,y 2).2+y 24=1,=kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析设A (x 1,y 1),B (x 2,y 2),(1)=x +m ,2=8x ,得x 2+(2m -8)x +m 2=0,=(2m -8)2-4m 2>0,1+x 2=8-2m ,1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),=k (x -t ),=14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,=-x 02t +1,-y 0=0,0=2t 1+t 2,0=2t 21+t 2.因此,点B(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA →·MB →取得最大值时,求△MAB 的面积.解析(1)由已知a =2,c a =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA →·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).ty +1,+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA →·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2t t 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA →·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA →·MB →的最大值为152.1,+y 22=1,=1,=6=1,=-62,不妨令|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析(1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),kx +m ,y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk 1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→·BA 2→=0.又AA 2→=(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =综上,直线l1.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是()答案C解析由题意知k =b 2a c +a=a -ca =1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是()A .m -a B.12(m -a )C .m 2-a 2D.m -a 答案A解析不妨取P 1|+|PF 2|=2m ,1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .2答案A解析利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.1+r 2=2a 1,1-r 2=2a 2,1=a 1+a 2,2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r 2=41-r 2r 14+34,当r 2r 1=12时,m max=163,∴max=433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案D解析根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A=2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=1答案AB解析因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab =2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c = 3.又c 2=a 2+b 2=3=2,=1=1,=2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案BD 解析∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则c k PO =kA 2B 1,∴b 2a -c =b -a,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案BD解析mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案2+1思路分析根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴b ,又∵点C ,F 在抛物线y 2=2px (p >0)上,2=pa ,2=2解得ba =2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案x 2+32y 2=1思路分析根据题意,求出点B 的坐标代入椭圆方程求解.解析设点B 的坐标为(x 0,y 0).∵x 2+y2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B -51-b 23,-将B -51-b 23,-x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案±1解析设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2)2=4x ,=k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即1+2k 2,又|FQ |=2,F (1,0),1+2k2-=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M ,23b 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设,23b ,代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析(1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),=k (x -1),2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3==-2k k 2=-2k.即直线PE 的方程为y +2k =-令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.解析(1)设F (-c ,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3.于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组k (x +1),+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k2.由已知得6+2k 2+122+3k 2=8,解得k =± 2.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.解析(1)椭圆x225+y29=1的右焦点为(4,0),所以抛物线C的方程为y2=16x.(2)设点M(a,0)(a≠0)满足题设,当PQ的斜率存在时,PQ的方程为y=k(x-a),2=16x,=k(x-a)⇒k2x2-2(ak2+8)x+a2k2=0,则x1+x2=2(ak2+8)k2,x1x2=a2.设P(x1,y1),Q(x2,y2),则由∠POQ=π2,得x1x2+y1y2=0.从而x1x2+k2(x1-a)(x2-a)=0⇒a2-16a=0⇒a=16,若PQ的方程为x=a,代入抛物线方程得y=±4a,当∠POQ=π2时,a=4a,即a=16,所以存在满足条件的点M(16,0).15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.解析(1)设M(x M,y M),∵F1(-c,0),∴x M=-c,y M=b2a,∴k OM=-b2ac.由题意知k AB=-ba,∵OM→与AB→是共线向量,∴-b2ac=-ba,∴b=c,∴a=2c,∴e=22(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,则r1+r2=2a.又|F1F2|=2c,∴由余弦定理,得cosθ=r12+r22-4c22r1r2=(r1+r2)2-2r1r2-4c22r1r2=a2r1r2-1a2-1=0,当且仅当r1=r2时等号成立,∴cosθ≥0,∴θ,π2..。
圆锥曲线习题及答案圆锥曲线习题及答案圆锥曲线是高中数学中的一个重要知识点,它是解析几何中的一个分支,涉及到椭圆、双曲线和抛物线这三种曲线。
掌握圆锥曲线的性质和解题方法,不仅可以帮助我们解决几何问题,还能提高我们的逻辑思维和解题能力。
在这篇文章中,我将为大家提供一些圆锥曲线的习题及答案,希望能够帮助大家更好地理解和掌握这一知识点。
1. 椭圆习题习题1:已知椭圆的长轴长为8,短轴长为6,求其离心率和焦点坐标。
解答:椭圆的离心率定义为离心距与长轴的比值。
离心距可以通过勾股定理计算得到,即离心距的平方等于长轴的平方减去短轴的平方。
根据这一定义,我们可以计算出离心距为√(8^2-6^2)=√(64-36)=√28。
因此,离心率为√28/8=√7/2。
焦点坐标可以通过离心率和长轴的长度计算得到,即焦点坐标的x坐标为±(长轴/2)*离心率,y坐标为0。
所以焦点坐标为(±√7,0)。
习题2:已知椭圆的焦点坐标为(±3,0),离心率为2/3,求其长轴和短轴的长度。
解答:根据椭圆的离心率定义,我们可以得到离心距为(长轴/2)*离心率。
由于离心率为2/3,离心距为(长轴/2)*(2/3)。
而离心距可以通过焦点坐标计算得到,即离心距的平方等于焦点坐标的x坐标的平方减去长轴的平方。
根据这一关系,我们可以得到(长轴/2)*(2/3)^2=(3/2)^2-长轴^2/4。
通过解这个方程,我们可以得到长轴的长度为8/5。
由于椭圆的长轴是短轴的两倍,所以短轴的长度为8/10=4/5。
2. 双曲线习题习题1:已知双曲线的离心率为2,焦点坐标为(±4,0),求其长轴和短轴的长度。
解答:双曲线的离心率定义为离心距与焦点之间的距离的比值。
根据焦点坐标和离心率的定义,我们可以得到离心距为焦点坐标的x坐标的绝对值。
由于离心率为2,离心距为4,所以焦点坐标的绝对值为4。
而双曲线的长轴和短轴可以通过焦点坐标和离心率计算得到,即长轴的长度为2*离心距,短轴的长度为2*焦点坐标的绝对值。
高中数学-高考圆锥曲线高考真题解析一、单选题1.(2011·湖北高考真题(文))(2011•湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n=0B .n=1C .n=2D .n≥3 【答案】C2.(2013·全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .112⎛⎫-⎪ ⎪⎝⎭, C .113⎛⎤-⎥ ⎝⎦, D .1132⎡⎫⎪⎢⎣⎭,【答案】B二、解答题3.(2014·上海高考真题(文)) 在平面直角坐标系中,对于直线:0ax by c和点记1122)().ax by c ax by c η=++++(若<0,则称点被直线分隔.若曲线C 与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C 的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明轴为曲线E的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-⋃+∞;(3)证明见解析. 4.(2014·福建高考真题(文))已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.【答案】(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析.5.(2011·山东高考真题(文))在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.【答案】(1)2 (2)见解析6.(2013·浙江高考真题(理))图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【答案】(1)(2)7.(2013·湖北高考真题(文))(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.【答案】(1)(2)见解析8.(2011·广东高考真题(理))在平面直角坐标系xOy 中,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记(){}12,max ,p q x x φ=(1)过点()20001,04A P P P ⎛⎫≠ ⎪⎝⎭作L 的切线交y 轴于点B ,证明:对线段AB 上的任一点(),Q p q ,均有()0,2P p q φ=; (2)设(,)M a b 是定点,其中,a b 满足2400a b a ->≠,,过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E P P E P P ,12,l l 与y 轴分别交于,'F F ,线段EF 上异于两端点的点集记为X ,证明:112(,)(,)2P M a b X P P a b φ∈⇔>⇔=;(3)设()21(,)|15144y x D x y y x ⎧⎫≤-⎧⎪⎪⎪=⎨⎨⎬≥+-⎪⎪⎪⎩⎩⎭,当点(),p q 取遍D 时,求(),p q φ的最小值(记为min ϕ)和最大值(记为max ϕ).【答案】(1)见解析;(2)见解析;(3)min 1ϕ=,max 54ϕ=. 9.(2019·全国高考真题(理))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)⎡⎢⎣⎦.11.(2017·山东高考真题(理))在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(1)2212x y += (2)SOT ∠ 的最大值为π3 ,取得最大值时直线l 的斜率为12k =±. 12.(2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值 【答案】(I )(-1,1);(II )2716. 13.(2014·重庆高考真题(理))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 14.(2015·湖北高考真题(文))一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内作往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 15.(2014·重庆高考真题(文))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 16.(2015·江苏高考真题)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)x 22+y2=1(2)y=x−1或y=−x+1.17.(2015·重庆高考真题(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且34≤λ≤43,试确定椭圆离心率的取值范围.【答案】(Ⅰ)x 24+y2=1,(Ⅱ)√22<e≤√53.。
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。
理数圆锥曲线1. (2014大纲全国,9,5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=()A. B. C. D.[答案] 1.A[解析] 1.由题意得解得|F2A|=2a,|F1A|=4a,又由已知可得=2,所以c=2a,即|F1F2|=4a,∴cos∠AF2F1===.故选A.2. (2014大纲全国,6,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1[答案] 2.A[解析] 2.由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A.3. (2014重庆,8,5分)设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3[答案] 3.B[解析] 3.设|PF1|=m,|PF2|=n,依题意不妨设m>n>0,于是∴m·n=··⇒m=3n.∴a=n,b=n⇒c=n,∴e=,选B.4. (2014广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等[答案] 4.A[解析] 4.∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.5. (2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6[答案] 5.D[解析] 5.设Q(cos θ,sin θ),圆心为M,由已知得M(0,6),则|MQ|====≤5,故|PQ|max=5+=6.6.(2014山东,10,5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0[答案] 6.A[解析] 6.设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.7.(2014天津,5,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=1[答案] 7.A[解析] 7.由题意得=2且c=5.故由c2=a2+b2,得25=a2+4a2,则a2=5,b2=20,从而双曲线方程为-=1.8.(2014山东青岛高三第一次模拟考试, 10) 如图,从点发出的光线,沿平行于抛物线的对称轴方向射向此抛物线上的点,经抛物线反射后,穿过焦点射向抛物线上的点,再经抛物线反射后射向直线上的点,经直线反射后又回到点,则等于()A. B. C.D.[答案] 8. B[解析] 8.由题意可得抛物线的轴为轴,,所以所在的直线方程为,在抛物线方程中,令可得,即从而可得,,因为经抛物线反射后射向直线上的点,经直线反射后又回到点,所以直线的方程为,故选B.9.(2014安徽合肥高三第二次质量检测,4) 下列双曲线中,有一个焦点在抛物线准线上的是()A. B.C. D.[答案] 9. D[解析] 9. 因为抛物线的焦点坐标为,准线方程为,所以双曲线的焦点在轴上,双曲线的焦点在轴且为满足条件. 故选D.10. (2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.[答案] 10.[解析] 10.设A(x1,y1),B(x2,y2),则+=1①,+=1②.①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.11. (2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=________.[答案] 11.1+[解析] 11.|OD|=,|DE|=b,|DC|=a,|EF|=b,故C,F,又抛物线y2=2px(p>0)经过C、F两点,从而有即∴b2=a2+2ab,∴-2·-1=0,又>1,∴=1+.12.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为____________.[答案] 12.x2+y2=1[解析] 12.不妨设点A在第一象限,∵AF2⊥x轴,∴A(c,b2)(其中c2=1-b2,0<b<1,c>0).又∵|AF1|=3|F1B|,∴由=3得B,代入x2+=1得+=1,又c2=1-b2,∴b2=.故椭圆E的方程为x2+y2=1.13.(2014浙江,16,4分)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.[答案] 13.[解析] 13.由得A,由得B,则线段AB的中点为M.由题意得PM⊥AB,∴k PM=-3,得a2=4b2=4c2-4a2,故e2=,∴e=.14. (2014天津蓟县第二中学高三第一次模拟考试,12) 抛物线+12y=0的准线方程是___________.[答案] 14. y=3[解析] 14. 抛物线的标准方程为:,由此可以判断焦点在y轴上,且开口向下,且p=6,所以其准线方程为y=3.15. (2014大纲全国,21,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C 的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.[答案] 15.查看解析[解析] 15.(Ⅰ)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(Ⅱ)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)16. (2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.[答案] 16.查看解析[解析] 16.(Ⅰ)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(Ⅱ)(i)由(Ⅰ)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).17. (2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.[答案] 17.查看解析[解析] 17.(1)由题意知c=,e==,∴a=3,b2=a2-c2=4,故椭圆C的标准方程为+=1.(2)设两切线为l1,l2,①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).②当l1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-,l1的方程为y-y0=k(x-x0),与+=1联立,整理得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0,∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,∴(-9)k2-2x0y0k+-4=0,∴k是方程(-9)x2-2x0y0x+-4=0的一个根,同理,-是方程(-9)x2-2x0y0x+-4=0的另一个根,∴k·=,整理得+=13,其中x0≠±3,∴点P的轨迹方程为x2+y2=13(x≠±3).检验P(±3,±2)满足上式.综上,点P的轨迹方程为x2+y2=13.18. (2014江西,20,13分)如图,已知双曲线C:-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N. 证明:当点P在C上移动时,恒为定值,并求此定值.[答案] 18.查看解析[解析] 18.(1)设F(c,0),因为b=1,所以c=,直线OB的方程为y=-x,直线BF的方程为y=(x-c),解得B.又直线OA的方程为y=x,则A,k AB==.又因为AB⊥OB,所以·=-1,解得a2=3,故双曲线C的方程为-y2=1.(2)由(1)知a=,则直线l的方程为-y0y=1(y0≠0),即y=.因为直线AF的方程为x=2,所以直线l与AF的交点为M;直线l与直线x=的交点为N,则===·.因为P(x0,y0)是C上一点,则-=1,代入上式得=·=·=,所求定值为==.19. (2014陕西,2017,13分)如图,曲线C由上半椭圆C 1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.[答案] 19.查看解析[解析] 19.(Ⅰ)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左,右顶点. 设C1的半焦距为c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)解法一:由(Ⅰ)知,上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)设点P的坐标为(x P,y P),∵直线l过点B,∴x=1是方程(*)的一个根.由求根公式,得x P=,从而y P=,∴点P的坐标为.同理,由得点Q的坐标为(-k-1,-k2-2k).∴=(k,-4),=-k(1,k+2).∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,∵k≠0,∴k-4(k+2)=0,解得k=-.经检验,k=-符合题意,故直线l的方程为y=-(x-1).解法二:若设直线l的方程为x=my+1(m≠0),比照解法一给分.20.(2014江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF 2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.[答案] 20.查看解析[解析] 20.设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2==a.又BF2=,故a=.因为点C在椭圆上,所以+=1,解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.21.(2014辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:-=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.[答案] 21.查看解析[解析] 21.(Ⅰ)设切点坐标为(x 0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=.由+=4≥2x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).由题意知解得a2=1,b2=2,故C1的方程为x2-=1.(Ⅱ)由(Ⅰ)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为+=1,其中b1>0.由P(,)在C2上,得+=1,解得=3,因此C2的方程为+=1.显然,l不是直线y=0.设l的方程为x=my+,点A(x1,y1),B(x2,y2),由得(m2+2)y2+2my-3=0,又y1,y2是方程的根,因此由x1=my1+,x2=my2+,得因=(-x1,-y1),=(-x2,-y2).由题意知·=0,所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0.⑤将①,②,③,④代入⑤式整理得2m2-2m+4-11=0,解得m=-1或m=-+1. 因此直线l的方程为x-y-=0或x+y-=0.22.(2012太原高三月考,20,12分)已知曲线C:x2+=1.(Ⅰ)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足:=3,求P点的轨迹方程,并讨论其轨迹的类型;(Ⅱ)如果直线l的斜率为,且过点M(0,-2),直线l与曲线C交于A、B两点,又·=-,求曲线C的方程.[答案] 22.(Ⅰ)设E(x0,y0),P(x,y),则F(x0,0),∵=3,∴(x-x0,y)=3(x-x0,y-y0),∴代入曲线C中得x2+=1为所求的P点的轨迹方程.(2分)①当λ=时,P点轨迹表示:以(0,0)为圆心,半径r=1的圆;(3分)②当0<λ<时,P点轨迹表示:中心在坐标原点,焦点在x轴上的椭圆;(4分)③当λ>时,P点轨迹表示:中心在坐标原点,焦点在y轴上的椭圆;(5分)④当λ<0时,P点轨迹表示:中心在坐标原点,焦点在x轴上的双曲线.(6分)(Ⅱ)由题设知直线l的方程为y=x-2,代入曲线C中得(λ+2)x 2-4x+4-λ=0,(7分)令A(x1,y1),B(x2,y2),∵以上方程有两解,∴Δ=32-4(λ+2)(4-λ)>0,且λ+2≠0,(8分)∴λ>2或λ<0且λ≠-2,x1+x2=,x1·x2=.又·=x1·x2+(y1+2)(y2+2)=3x1·x2==-.(10分)解得λ=-14,(11分)∴曲线C的方程是x2-=1.(12分)22.23.(2012山西大学附中高三十月月考,21,12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.[答案] 23.(I)由题意得,∴,∴.由题意得椭圆的右焦点到直线即的距离为,∴,∴∴椭圆C的方程为(II)设,直线AB的方程为则,,直线AB的方程与椭圆C的方程联立得消去得整理得则是关于的方程的两个不相等的实数根,∴,∴,整理得,∴,∴O到直线AB的距离即O到直线AB的距离定值. ……8分∴,当且仅当OA=OB时取“=”号.∴,又,∴,即弦AB的长度的最小值是23.24.(2012广东省“六校教研协作体”高三11月联考,20,14分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆的方程;(2)已知动直线与椭圆相交于、两点,①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.[答案] 24.(1)由题意得……2分解得,所以椭圆C的方程为.…4分(2)①设,直线方程与椭圆C的方程联立得消去,整理得,……6分则是关于的方程两个不相等的实数根,恒成立,,……7分又中点的横坐标为,所以,解得.…………9分②则,由①知,,所以,…………11分…………12分.…14分24.。
圆锥曲线复习题1.已知定点C (﹣3,0),D (3,0),动点M 满足:直线MC ,MD 的斜率之积为−49. (1)求动点M 的轨迹方程;(2)设M 的轨迹为G .直线I 过抛物线y 2=4√5x 的焦点且与C 相交于不同的两点A ,B .在x 轴上是否存在一个定点P (m ,0),使得PA →⋅PB →的值为定值?若存在,写出P 点的坐标;若不存在,说明理由.【分析】(1)设M (x ,y ),由直线MC ,MD 的斜率之积为−49,得yx+3•yx−3=−49,化简即可得出答案.(2)分两种情况:当直线与x 轴不垂直时,当直线l 与x 轴垂直时,写出直线l 的方程,联立椭圆的方程,结合韦达定理可得x 1+x 2,x 1x 2,y 1y 2,再由向量的数量积计算PA →•PB →,即可得出答案.【解答】解:(1)设M (x ,y ), 因为直线MC ,MD 的斜率之积为−49. 所以yx+3•yx−3=−49,整理得方程为x 29+y 24=1(y ≠0),(2)抛物线的焦点F (√5,0),当直线与x 轴不垂直时,设直线l 的方程为y =k (x −√5), 代入椭圆方程,得(9k 2+4)x 2﹣18√5k 2x +45k 2﹣36=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=18√5k 24+9k2,x 1x 2=45k 2−364+9k2,y 1y 2=k 2(x 1−√5)(x 2−√5)=k 2[x 1x 2−√5(x 1+x 2)+5]=−16k 24+9k2,所以PA →•PB →=(x 1﹣m ,y 1)•(x 2﹣m ,y 2)=(x 1﹣m )(x 2﹣m )+y 1y 2 =(9m 2−18√5m+29)k 2+4m 2−364+9k2,令PA →•PB →=t ,则t =(9m 2−18√5m+29)k 2+4m 2−364+9k2,所以{9m 2−18√5m +29=9t 4m 2−36=4t ,解得m =11√59,此时PA →•PB →=−12481,当直线l 与x 轴垂直时,l 的方程为x =√5, 代入椭圆方程解得A (√5,−43),B (√5,43),所以PA →•PB →=−12481,综上,在x 轴上存在一个定点P (11√59,0),使得PA →•PB →=−12481为定值. 【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.2.已知抛物线C :x 2=4y 的焦点为F ,过点F 的直线l 交抛物线C 于A ,B (B 位于第一象限)两点,且满足|BF |=λ|AF |. (1)若λ=4,求直线l 的方程;(2)若线段AB 位于直线y =4的下方,过点A ,B 分别作直线y =4的垂线,垂足分别为P ,Q ,求四边形ABQP 的面积的最大值.【分析】(1)直线l 的方程设为y =kx +1,A (x 1,y 1),B (x 2,y 2),与抛物线的方程联立,运用韦达定理,解方程可得k ,进而得到直线l 的方程;(2)由题意可得P (x 1,4),Q (x 2,4),−34<k <34,运用抛物线的定义求得|AP |+|BQ |,由两点的距离公式,可得|PQ |,再由四边形的面积公式,构造函数,求得导数和单调性,可得所求最大值.【解答】解:(1)由题意可得F (0,1),且直线l 的斜率存在,设为k , 直线l 的方程设为y =kx +1,A (x 1,y 1),B (x 2,y 2),由{y =kx +1x 2=4y ,化简可得x 2﹣4kx ﹣4=0,则x 1+x 2=4k ,x 1x 2=﹣4, |BF |=λ|AF |即为BF →=λAF →,可得λ=−x2x 1,所以(x 1+x 2)2x 1x 2=x 2x 1+x 1x 2+2=﹣λ−1λ+2=(4k)2−4=−4k 2, 即有λ+1λ=4k 2+2,因为λ=4,可得4k 2=94,解得k =±34,由于B 在第一象限,且λ=4>1, 所以k >0,则k =34, 直线l 的方程为y =34x +1;(2)由题意可得P (x 1,4),Q (x 2,4),直线y =4与抛物线x 2=4y 的交点为(﹣4,4)和(4,4),因为线段AB 位于直线y =4的下方,所以−34<k <34,所以|AP |=4﹣y 1,|BQ |=4﹣y 2,|AP |+|BQ |=8﹣y 1﹣y 2=8﹣k (x 1+x 2)﹣2=6﹣4k 2, |PQ |=|x 1﹣x 2|=√(x 1+x 2)2−4x 1x 2=√16k 2+16, 所以四边形ABQP 的面积为12(|AP |+|BQ |)•|PQ |=√16k 2+16(3﹣2k 2)=4√(1+k 2)(3−2k 2)2, 令t =k 2∈[0,916),f (t )=(t +1)(3﹣2t )2=4t 3﹣8t 2﹣3t +9,f ′(t )=12t 2﹣16t ﹣3,因为t ∈[0,916),f ′(t )=12t 2﹣16t ﹣3的图象的对称轴为t =23,23>916,所以,f ′(t )=12t 2﹣16t ﹣3在[0,916)递减,又t =0时,f ′(0)=﹣3<0,所以f ′(t )<0, 则f (t )在[0,916)递减,所以当t =0即k =0时,f (t )取得最大值9,此时四边形ABQP 的面积最大,且最大值为12.【点评】本题考查抛物线的方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力、推理能力,属于中档题.3.设A ,B 为双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,△AMN 为等腰直角三角形. (1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线x =a2于P ,Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.【分析】(1)由已知可得|AF |=|NF |=|MF |,得到a +c =b2a ,结合隐含条件可得关于e的方程,求解得答案;(2)由e =ca =2,得双曲线C :x 2a 2−y 23a2=1,设直线l :x =my +2a ,M (x 1,y 1),N(x 2,y 2),联立直线方程与双曲线方程,化为关于y 的一元二次方程,由根与系数的关系可得M 与N 的横纵坐标的和与积,设AM :y =y 1x 1+a (x +a),直线AN :y =y2x 2+a(x +a),与x =a2联立求得P 与Q 的坐标,设G (x ,y )是以PQ 为直径的圆上的任意一点,则PG →⋅QG →=0,写出以PQ 为直径的圆的方程,取y =0可得关于x 的方程,代入根与系数的关系即可求得x 值,则答案可求.【解答】解:(1)由l ⊥x 轴时,△AMN 为等腰直角三角形,可得|AF |=|NF |=|MF |,∴a +c =b2a,即c 2﹣ac ﹣2a 2=0,故e 2﹣e ﹣2=0,结合e >1,解得e =2. 故双曲线C 的离心率为2;(2)∵e =ca =2,∴双曲线C :x 2a 2−y 23a2=1,由题知直线l 的斜率不为0,设直线l :x =my +2a ,M (x 1,y 1),N (x 2,y 2),联立直线l 与双曲线C 的方程得{x =my +2ax 2a 2−y 23a 2=1,化简得(3m 2﹣1)y 2+12amy +9a 2=0, 根据根与系数的关系,得y 1+y 2=−12am 3m 2−1,y 1⋅y 2=9a 23m 2−1,①∴x 1+x 2=m(y 1+y 2)+4a =−4a3m 2−1,② x 1⋅x 2=m 2y 1⋅y 2+2am(y 1+y 2)+4a 2=−3a 2m 2−4a 23m 2−1,③设直线AM :y =y 1x 1+a (x +a),直线AN :y =y2x 2+a (x +a), 令x =a2,可得P(a2,3ay12(x 1+a)),Q(a2,3ay22(x 2+a)),设G (x ,y )是以PQ 为直径的圆上的任意一点,则PG →⋅QG →=0, 则以PQ 为直径的圆的方程为(x −a2)2+[y −3ay 12(x 1+a)][y −3ay 22(x 2+a)]=0,由对称性可得,若存在定点,则一定在x 轴上,令y =0,可得(x −a2)2+3ay12(x 1+a)⋅3ay 22(x 2+a)=0,即(x −a 2)2+9a 2y 1y 24[x 1x 2+a(x 1+x 2)+a 2]=0,将①②③代入,可得(x−a2)2+9a2⋅9a23m2−14(−3a2m2−4a23m2−1+a⋅−4a3m2−1+a2)=0,即(x−a2)2=94a2,解得x=﹣a或x=2a,故以PQ为直径的圆过定点(﹣a,0),(2a,0).【点评】本题考查双曲线的几何性质,考查直线与双曲线位置关系的应用,考查运算求解能力,属难题.。
圆锥曲线复习题1.已知抛物线C :x 2=2py (p >0)的焦点为F ,且点F 与圆M :(x +4)2+y 2=1上点的距离的最大值为√17+1. (1)求p ;(2)已知直线l :y =kx +4与C 相交于A ,B 两点,过点B 作平行于y 轴的直线BD 交直线l ':y =﹣4于点D .问:直线AD 是否过y 轴上的一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.【分析】(1)由抛物线的方程可得焦点F 的坐标,由焦点F 在圆M 外可得F 到圆心的距离加圆的半径为F 到圆上的点的最大值,再由椭圆求出p 的值;(2)设A ,B 的坐标,联立直线AB 与抛物线的方程,求出两根之积及两根之和,由题意求出D 的坐标,进而求出直线AD 的方程,令x =0,求出y 的表达式,将两根之和及两根之积代入求出y =0,即求出直线AD 恒过定点. 【解答】解:(1)由抛物线的方程可得焦点F (0,p2),圆M :(x +4)2+y 2=1可得圆心M (﹣4,0),半径r =1, F 到圆M 的最大距离为:|FM |+r =√(−4)2+(p 2)2+1, 由题意可得√(−4)2+(p2)2+1=√17+1,p >0, 解得:p =2;(2)由(1)得抛物线的方程为:x 2=4y , 设A (x 1,y 1),B (x 2,y 2),联立{y =kx +4x 2=4y ,整理可得:x 2﹣4kx ﹣16=0,x 1+x 2=4k ,x 1x 2=﹣16, 由题意可得D (x 2,﹣4), 所以直线AD 的方程为:y +4=y 1+4x 1−x 2(x ﹣x 2)=kx 1+8x 1−x 2x −kx 1x 2+8x 2x 1−x 2, 令x =0,可得y =−kx 1x 2+4(x 1+x 2)x 1−x 2=−k⋅(−16)+16kx 1−x 2=0,所以直线AD 恒过y 轴上的一定点(0,0).【点评】本题考查求抛物线的方程及直线与抛物线的综合,直线恒过定点的求法,属于中档题.2.已知椭圆C 1:x 24+y 2b2=1(b >0)的短轴端点与抛物线C 2:x 2=2py(p >0)的交点重合,椭圆C 1的离心率为√32. (1)求椭圆C 1及抛物线C 2的方程;(2)设P 是抛物线C 2准线上的一个动点,过P 作抛物线C 2的切线P A ,PB ,A ,B 为切点.(ⅰ)求证:直线AB 经过一个顶点;(ⅱ)若直线AB 与椭圆C 1交于M ,N 两点,椭圆的下顶点为D ,求△MDN 面积的最大值.【分析】(1)利用椭圆的离心率公式,即可求得b 的值,抛物线的焦点坐标,即可求得抛物线方程;(2)(ⅰ)根据导数的几何意义,即可表示出P A ,PB 的方程,联立即可求得直线AB 的方程,即可判断AB 恒过定点;(ⅱ)设直线AB 的方程,代入椭圆方程,表示出△MDN 面积,利用基本不等式即可求得△MDN 面积的最大值.【解答】解:(1)由椭圆的离心率e =ca =√32,由a =2,则c =√3,所以b 2=a 2﹣c 2=1, 由抛物线C 2:x 2=2py 的焦点为(0,p2),则p 2=1,则p =2,所以椭圆方程为x 24+y 2=1,抛物线方程为x 2=4y ;(2)(ⅰ)证明:抛物线的准线为y =﹣1,设P (t ,﹣1),A (x 1,y 1),B (x 2,y 2),则x 12=4y 1,x 22=4y 2,由y =14x 2,求导y′=12x , 则k PA =12x 1,所以P A 的方程为y =12x 1x −12x 12+y 1, 将x 12=4y 1代入可得P A 的方程:y =12x 1x −y 1,P A 过点P (t ,﹣1),代入得tx 1﹣2y 1+2=0,由PB 过点P (t ,﹣1),同理可得,tx 2﹣2y 2+2=0,则直线AB :tx ﹣2y +2=0, 故直线AB 恒过定点(0,1);(ⅱ)由题意得直线AB 斜率存在且不为0,设直线AB :y =kx +1,代入椭圆x 24+y 2=1,得(4k 2+1)x 2+8kx =0,所以x =0或x =−8k4k 2+1,则Δ>0,即有S △MON =12×2×|−8k 4k 2+1|=8|4k+1k|≤2, 当k =±12时,S △MDN 取得最大值, 所以,△MDN 面积的最大值2,此时直线AB 的斜率k =±12,AB 的方程为y =±12x +1.【点评】本题考查椭圆及抛物线的位置关系,考查导数的几何意义,基本不等式的应用,考查抛物线的极点与极线,考查转化思想,计算能力,属于难题. 3.已知抛物线C 1:y 2=2px (p >0)和右焦点为F 的椭圆C 2:x 24+y 23=1.如图,过椭圆C 2左顶点T 的直线交抛物线C 1于A ,B 两点,且AB =2TA .连接AF 交C 2于两点M ,N ,交C 1于另一点C ,连接BC ,Q 为BC 的中点,TQ 交AC 于D . (Ⅰ)证明:点A 的横坐标为定值;(Ⅱ)记△CDT ,△QMN 的面积分别为S 1,S 2,若S 1S 2=√512,求抛物线的方程.【分析】(Ⅰ)设直线TA 的斜率,写出TA 的方程,与抛物线联立,利用韦达定理及向量的坐标运算,即可证明A 的横坐标为定值;(Ⅱ)由(Ⅰ)写出AF 的方程,与椭圆联立,利用韦达定理及弦长公式求得|MN |,与抛物线联立求得C 点坐标,利用中点坐标公式求得Q ,求得TQ 的方程,与AF 联立,求得D 点坐标,可得|CD |;分别求得T 到AF 的距离,Q 到AF 的距离,根据三角形的面积公式,即可表示出S 1S 2,根据关系式,求得A 点坐标,代入抛物线方程,即可求得p 的值.【解答】解:(Ⅰ)证明;由题意可知,T (﹣2,0),直线TA 的斜率存在设为k ,A (x 1,y 1),B (x 2,y 2),不妨设直线TA 的方程为y =k (x +2)(k >0),与抛物线方程联立得{y =k(x +2)y 2=2px ,整理得k 2x 2+(4k 2﹣2p )x +4k 2=0,则x 1+x 2=2p−4k 2k2,x 1x 2=4,因为AB →=2TA →,所以y 1y 2=13,则x 1x 2=y 12y 22=19,设x 1=a (a >0),则x 2=9a ,x 1x 2=9a 2=4,则a =23或a =−23(舍去),所以x 1=23,即点A 的横坐标为定值;(Ⅱ)由(Ⅰ)可知,A(23,83k),B (6,8k ),则直线AF 的方程为y =﹣8k (x ﹣1), 与椭圆联立得{y =−8k(x −1)x 24+y 23=1,整理得(3+256k 2)x 2﹣512k 2x +256k 2﹣12=0,设M (x 3,y 3),N (x 4,y 4),则x 3+x 4=512k23+256k2,x 3x 4=256k 2−123+256k2,则|MN|=√1+64k 2√(x 3+x 4)2−4x 3x 4=12(1+64k 2)3+256k2,直线AF 与抛物线联立得{y 2=2px y =−8k(x −1),整理得64k 2x 2﹣(128k 2+2p )x +64k 2=0,设C (x 5,y 5),则x 5×23=1,则x 5=32,C(32,−4k),则Q(154,2k), 所以直线TQ 的方程为y =8k 23(x +2),与直线AF 联立得{y =8k23(x +2)y =−8k(x −1),解得{x =2124y =k,则D(2124,k),即|CD|=√(32−2124)2+(−5k)2=√225576+25k 2, T 到AF 的距离d 1=|−16k−8k|√1+64k =24k√1+64k ,Q 到AF 的距离d 2=154+2k−8k|√1+64k=24k√1+64k,由S 1=12|CD|d 1,S 2=12|MN|d 2, 所以S 1S 2=|CD||MN|=√512,因此√225576+25k 212(1+64k 2)3+256k 2=√512,整理得5×2562k 4+358k 2k 2﹣19=0, 解得k 2=1256,则k =116,所以A(23,16),由A 在抛物线上,则(16)2=2p ×23,解得p =148,则抛物线的方程为y2=124x.【点评】本题考查直线与圆锥曲线的综合应用,思路清晰,结合韦达定理,弦长公式,点到直线的距离公式等知识点,考查计算能力,属于难题.。
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .33.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF FB =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .536.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F FMF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .28.已知点P 是抛物线22y x =上的一个动点,则点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条11.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( ) A .12B .22C .34D .4512.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.15.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.16.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线与圆()22234x y +-=相交于A ,B 两点,且2AB =,则双曲线C 的离心率为___________.17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=_____.三、解答题21.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.22.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为222 (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.23.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.24.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.25.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.26.已知椭圆2222:1(0)x y C a b a b +=>>(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴> ∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN =23(12p k k +=,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.7.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213FMF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MFO 为等边三角形,故双曲线C 的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点332D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍) 当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.11.B解析:B 【分析】设直线2a x c=交x 轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x 轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为44212r a a =-=->. 因此当2r >时,圆无法触及抛物线的顶点O . 故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p p x x k ++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线):232AB y x -=-,直线):232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故1683A B x x -=,由2A x =得843B x -=,故236B y -=, 联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x -++=,故1683A C x x +=,由2A x =得843C x +=,故236C y --=, 故236236433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC 的方程为2361843323y x ⎛--=-- ⎝⎭,即3640x y ++=. 故答案为:3640x y ++=15.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 解析:223【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y , 联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m . 由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =,因此,直线l 的斜率为13k m ===.. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.16.2【分析】由双曲线圆的方程确定渐近线方程为圆心为半径为根据圆的相交弦与半径弦心距之间的几何关系有结合双曲线参数间的关系即可求其离心率【详解】由题意知:双曲线的渐近线为而圆心为半径为∴圆心到渐近线的距解析:2 【分析】由双曲线、圆的方程确定渐近线方程为by x a=±,圆心为,半径为2r ,根据圆的相交弦与半径、弦心距之间的几何关系有222||4AB r d -=,结合双曲线参数间的关系即可求其离心率. 【详解】由题意知:双曲线的渐近线为by x a=±,而圆心为,半径为2r ,∴圆心到渐近线的距离d ==,而2AB =,∴221r d -=,故222123a ab =+,又222,1c a b c e a +==>, ∴2e =. 故答案为:2. 【点睛】关键点点睛:根据双曲线、圆的标准方程确定渐近线方程、圆心、半径长,结合圆中相交弦的几何性质及双曲线参数关系,列出关于,a c 的齐次方程求离心率.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=.由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析: 【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出b a =,b c=即可求出结果. 【详解】由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b bBAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么b =,极有b a =,b c =5=-.故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO∠=∠+∠;(2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c的比值问题.(3)根据离心率求出,,a b c的比值,代入可求.20.【分析】分别过作准线的垂线利用抛物线的定义将到焦点的距离转化到准线的距离利用已知和相似三角形的相似比建立关系式求解可算得弦长【详解】设可知如图作垂直于准线分别于则又解得故答案为:【点睛】1本题体现了解析:16 3【分析】分别过,A B作准线的垂线,利用抛物线的定义将,A B到焦点的距离转化到准线的距离,利用已知和相似三角形的相似比,建立关系式,求解,AF BF可算得弦长.【详解】设242y x px ==,可知2p =如图,作AM ,BN 垂直于准线分别于,M N ,则BN BF =, 又2BC BN =,23CB CF=,23BN p ∴= 43BN =,83BC =,4CF ∴= 2CF AM CA=,244CF AM CA AM ∴==+,解得4AM = 4AF ∴=416433AB AF BF ∴=+=+= 故答案为:163【点睛】1.本题体现了数形结合,解析几何问题,一定要注意对几何图形的研究,以便简化计算2. 抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.三、解答题21.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=,12c e a ==,且222a b c =+,解得:2,a b =, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11xy m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可.【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m-=+, ∴AB==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果. 23.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QRx =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQp PR x k p QR x k ===. ()2因为222,p p A kk ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离. 24.(1)1p =;(2). 【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案. 【详解】 (1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y ,联立22y x =与y x t =+得2220y y t -+=,480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-, 则122y y +=,124y y =-, 所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.25.(1)22132x y +=;(2)22y x =±+或2y =+.【分析】(1)由离心率公式、将点3,22⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出22317S k ==+,求出k 的值得出直线l 的方程.【详解】解:(1,所以2222133b a ⎛⎫=-= ⎪ ⎪⎝⎭.①又因为椭圆经过点3,22⎛ ⎝⎭,所以有2291142a b +=.②联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y+=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB 的面积为17=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以k =或k = 所以直线l的方程为2y x =+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.26.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q 的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程. 【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭.又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =, 综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.。
【2023届新高考必刷】圆锥曲线大题综合1.(2023春·江苏扬州·高三统考开学考试)已知AB 为抛物线G :y 2=2px (p >0)的弦,点C 在抛物线的准线l 上.当AB 过抛物线焦点F 且长度为8时,AB 中点M 到y 轴的距离为3.(1)求抛物线G 的方程;(2)若∠ACB 为直角,求证:直线AB 过定点.【答案】(1)y 2=4x(2)证明见解析【分析】(1)利用抛物线弦长公式,以及中点到y 轴的距离公式,计算出p 即可;(2)先设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,联立方程组,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,又因为∠ACB 为直角可得CA ⋅CB=0,化简求解可得n =1,所以得出直线过定点1,0 .【详解】(1)设A x A ,y A ,B x B ,y B ,则由题意得|AB |=x A +x B +p =8x A +x B 2=3,解得p =2,所以抛物线的方程为y 2=4x (2)直线AB 过定点1,0 ,证明如下:设C -1,c ,A y 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,将x =ty +n 代入y 2=4x 得y 2-4ty -4n =0,则Δ>0,得t 2+n >0,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,所以CA =y 214+1,y 1-c ,CB =y 224+1,y 2-c,因为∠ACB =90∘,所以CA ⋅CB =0,即y 21y 2216+y 21+y 224+1+y 1y 2-c y 1+y 2 +c 2=0,即n 2+4t 2+2n +1-4n -4tc +c 2=0,即(n -1)2+(2t -c )2=0,所以n =1,所以直线AB 过定点1,0 .2.(2023·江苏泰州·统考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过左焦点F 的直线与C 交于P ,Q 两点.当PQ ⊥x 轴时,PA =10,△PAQ 的面积为3.(1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.【答案】(1)x2-y23=1(2)证明见解析【分析】(1)根据题意,可得PF=b2a,b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,进而求解;(2)设PQ方程为x=my-2,P x1,y1,Q x2,y2,联立直线和双曲线方程组,可得3m2-1y2-12my+9 =0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,进而得到x2-x1+x2x+x1x2+y1y2=0,进而求解.【详解】(1)当PQ⊥x轴时,P,Q两点的横坐标均为-c,代入双曲线方程,可得y P=b2a,y Q=-b2a,即PF=b2a,由题意,可得b2a2+c-a2=10212⋅2b2a⋅c-a=3c2=a2+b2,解得a=1,b=3,c=2,∴双曲线C的方程为:x2-y23=1;(2)方法一:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2y2-4my+4-y2=3⇒3m2-1y2-12my+9=0,以PQ为直径的圆的方程为x-x1x-x2+y-y1y-y2=0,x2-x1+x2x+x1x2+y2-y1+y2y+y1y2=0,由对称性知以PQ为直径的圆必过x轴上的定点,令y=0,可得x2-x1+x2x+x1x2+y1y2=0,而x1+x2=m y1+y2-4=12m23m2-1-4=43m2-1,x1x2=my1-2my2-2=m2y1y2-2m y1+y2+4=-3m2-4 3m2-1,∴x2-43m2-1x+-3m2-43m2-1+93m2-1=0⇒3m2-1x2-4x+5-3m2=0⇒3m2-1x+3m2-5x-1=0对∀m∈R恒成立,∴x=1,∴以PQ为直径的圆经过定点1,0;方法二:设PQ方程为x=my-2,P x1,y1,Q x2,y2,x=my-2 3x2-y2=3⇒3m2-1y2-12my+9=0,由对称性知以PQ为直径的圆必过x轴上的定点.设以PQ 为直径的圆过E t ,0 ,∴EP ⋅EQ=0⇒x 1-t x 2-t +y 1y 2=0⇒x 1x 2-t x 1+x 2 +t 2+y 1y 2=0,而x 1x 2=my 1-2 my 2-2 =m 2y 1y 2-2m y 1+y 2 +4=m 2⋅93m 2-1-2m ⋅12m 3m 2-1+4=-3m 2-43m 2-1,x 1+x 2=m y 1+y 2 -4=12m 23m 2-1-4=43m 2-1∴-3m 2-43m 2-1-4t 3m 2-1+t 2+93m 2-1=0,3m2-1 t 2-4t +5-3m 2=0,即3m 2-1 t +3m 2-5 t -1 =0对∀m ∈R 恒成立,∴t =1,即以PQ 为直径的圆经过定点1,0 .3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.【答案】(1)x 24+y 2=1(x ≠±2)(2)证明见解析【分析】(1)设P 点坐标为(x ,y ),由y x +2⋅y x -2=-14可得结果;(2)设M x 1,y 1 ,N x 2,y 2 ,联立y =kx +m x 24+y 2=1,得x 1+x 2和x 1x 2,再求出E ,F 的坐标,根据EO =3OF得k =m ,从而可得结果.【详解】(1)设P 点坐标为(x ,y ),则y x +2⋅y x -2=-14,即x 24+y 2=1(x ≠±2),所以曲线C 的方程为x 24+y 2=1(x ≠±2).(2)设M x 1,y 1 ,N x 2,y 2 ,由y =kx +mx 24+y 2=1,消去y 并整理得4k 2+1 x 2+8km x +4m 2-4=0,由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,得4k 2+1>m 2,所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.MA :y =y 1x 1+2(x +2)⇒E 0,2y 1x 1+2 ,NB :y =y 2x 2-2x -2 ⇒F 0,-2y 2x 2-2 ,因为EO =3OF ,所以-2y 1x 1+2=3⋅-2y 2x 2-2,即y 1(x 2-2)=3y 2(x 1+2),∴kx 1+m x 2-2 =3kx 2+m x 1+2 ,∴2kx 1x 2+(2k +3m )x 1+x 2 +4(k -m )x 2+8m =0,所以2k ⋅4m 2-44k 2+1+(2k +3m )⋅-8km4k 2+1+4(k -m )x 2+8m =0,所以(k -m )4km -2+4k 2+1 x 2 =0对任意x 2都成立,∴k =m ,故直线l 过定点(-1,0).4.(2023秋·浙江·高三期末)已知点A 463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与A 关于原点对称,F 是右焦点,∠AFB =π2.(1)求双曲线的方程;(2)已知圆心在y 轴上的圆C 经过点P (-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.【答案】(1)x 28-y 24=1(2)x 2+(y ±26)2=40【分析】(1)由已知条件列方程求出a ,b ,c ,即可求出双曲线的方程;(2)讨论直线MN 的斜率不存在时不满足题意;当斜率存在时设直线MN 的方程为y =kx +m ,联立双曲线的方程,由韦达定理求出MN 的中点Q 的坐标以及C 的坐标,根据勾股定理有CN 2=CP 2=CQ 2+12MN2,代入解方程即可得出答案.【详解】(1)由已知条件得:463+c ,233 ⋅463-c ,233 =0323a 2-43b 2=1a 2+b 2=c 2⇒a 2=8b 2=4c =23双曲线方程为:x 28-y 24=1.(2)若直线MN 的斜率不存在,则圆C 的圆心不在y 轴上,因此不成立.设直线MN 的方程为y =kx +m ,由y =k (x -23)x 28-y 24=1消元得:2k 2-1 x 2-83k 2x +24k 2+8 =0⇒2k 2-1≠0Δ=32k 2+1 >0x 1+x 2=83k 22k 2-1,y 1+y 2=k x 1+x 2 -43k =83k 32k 2-1-43k =43k2k 2-1∴MN 的中点Q 的坐标为43k 22k 2-1,23k2k 2-1.设C (0,m ),直线CQ :y =-1k x +m ,得C 0,63k2k 2-1,又|MN |=k 2+1⋅82⋅-8k 2+4+12k 28k 2-4 =42k 2+1 2k 2-1,根据勾股定理有CN 2=CP 2=CQ 2+12MN2∴63k 2k 2-1 2+42=43k 22k 2-1 2+23k 2k 2-1-63k 2k 2-1 2 +22k 2+1 2k 2-12.化简得2k 4-5k 2+2=0解得k 2=2或k 2=12(舍)∴C (0,±26),∴圆C 的方程为x 2+(y ±26)2=40.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E :y 2=2px p >0 的焦点为F ,点F 关于直线y =12x +34的对称点恰好在y 轴上.(1)求抛物线E 的标准方程;(2)直线l :y =k x -2 k ≥6 与抛物线E 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点C ,若D 6,0 ,求AB CD的最大值.【答案】(1)y 2=4x(2)2915【分析】(1) 由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F 0,m ,根据题意列出方程组,解之即可求解;(2)将直线方程与抛物线方程联立,利用韦达定理和弦长公式,并求得线段AB 的垂直平分线方程为y -2k =-1k x -2k 2+2k 2 ,进而得到AB CD=22+49t +36t-12,利用函数的单调性即可求解.【详解】(1)由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F0,m ,则m -p 2=-2m 2=18p +34 ,解得m =p =2,∴抛物线E 的标准方程为y 2=4x .(2)由y =k x -2 y 2=4x 可得k 2x 2-4k 2+4 x +4k 2=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k 2+4k 2,x 1x 2=4,∴AB =1+k 2⋅x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅4k 2+4k 22-16=42k 4+3k 2+1k 2,y 1+y 2=k x 1+x 2 -4k =4k ,∴线段AB 的中点坐标为2k 2+2k 2,2k ,则线段AB 的垂直平分线方程为y-2k =-1k x -2k 2+2k 2 ,令y =0,得x =4+2k2,故C 4+2k 2,0 ,又D 6,0 ,得CD =4+2k 2-6=2-2k 2.∴ABCD =22k 4+3k 2+1k 2-1=22+7k 2-1k 4-2k 2+1,令t =7k 2-1k ≥6 ,则k 2=17t +1 ,t ≥41,∴AB CD=22+t 149t +1 2-27t +1+1=22+49t +36t-12,易知函数f t =t +36t在41,+∞ 上单调递增,∴当t =41时,f t 取得最小值,此时k =6,故AB CD的最大值为22+4136-12+1=2915.6.(2023·湖南邵阳·统考二模)已知双曲线C :x 2a 2-y 2b2=10<a 10,b 0 的右顶点为A ,左焦点F -c ,0 到其渐近线bx +ay =0的距离为2,斜率为13的直线l 1交双曲线C 于A ,B 两点,且AB=8103.(1)求双曲线C 的方程;(2)过点T 6,0 的直线l 2与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线x =6相交于M ,N 两点,试问:以线段MN 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【答案】(1)x 29-y 24=1(2)以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【分析】(1)根据点到直线的距离公式即可求解b =2,进而联立直线与双曲线方程,根据弦长公式即可求解a =3,(2)联立直线与曲线的方程得韦达定理,根据圆的对称性可判断若有定点则在x 轴上,进而根据垂直关系得向量的坐标运算,即可求解.【详解】(1)∵双曲线C 的左焦点F -c ,0 到双曲线C 的一条渐近线bx +ay =0的距离为d =bca 2+b2=b ,而d =2,∴b =2.∴双曲线C 的方程为x 2a2-y 24=10<a <10 .依题意直线l 1的方程为y =13x -a .由x 2a 2-y 24=1,y =13x -a ,消去y 整理得:36-a 2 x 2+2a 3x -a 2a 2+36 =0,依题意:36-a 2≠0,Δ>0,点A ,B 的横坐标分别为x A ,x B ,则x A x B =a 2a 2+36a 2-36.∵x A =a ,∴x B =a a 2+36a 2-36.∴AB =1+132x A -x B =103x A -x B =8103,∴x A -x B =8.即a -a a 2+36a 2-36=8,解得a =3或a =12(舍去),且a =3时,Δ>0,∴双曲线C 的方程为x 29-y 24=1.(2)依题意直线l 2的斜率不等于0,设直线l 2的方程为x =my +6.由x =my +6,x 29-y 24=1,消去x 整理得:4m 2-9 y 2+48my +108=0,∴4m 2-9≠0,Δ1>0.设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-48m 4m 2-9,y 1y 2=1084m 2-9.直线AP 的方程为y =y 1x 1-3x -3 ,令x =6得:y =3y 1x 1-3,∴M 6,3y 1x 1-3 .同理可得N 6,3y 2x 2-3.由对称性可知,若以线段MN 为直径的圆过定点,则该定点一定在x 轴上,设该定点为R t ,0 ,则RM =6-t ,3y 1x 1-3 ,RN =6-t ,3y 2x 2-3 ,故RM ⋅RN =6-t 2+9y 1y 2x 1-3 x 2-3 =6-t 2+9y 1y 2my 1+3 my 2+3 =6-t 2+9y 1y 2m 2y 1y 2+3m y 1+y 2 +9=6-t 2+9×1084m 2-9m 2×1084m 2-9-3m ×48m 4m 2-9+9=6-t 2-12=0.解得t =6-23或t =6+23.故以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【点睛】关键点睛:本题解题的关键是根据圆的对称性可判断定点在坐标轴上,结合向量垂直的坐标运算化简求解就可,对计算能力要求较高.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x 2a 2+y 2b 2=λ(a >b >0)表示的椭圆C λ称为椭圆x 2a 2+y 2b2=1(a >b >0)的相似椭圆.(1)如图,已知F 1-3,0 ,F 23,0 ,M 为⊙O :x 2+y 2=4上的动点,延长F 1M 至点N ,使得MN =MF 1 ,F 1N 的垂直平分线与F 2N 交于点P ,记点P 的轨迹为曲线C ,求C 的方程;(2)在条件(1)下,已知椭圆C λ是椭圆C 的相似椭圆,M 1,N 1是椭圆C λ的左、右顶点.点Q 是C λ上异于四个顶点的任意一点,当λ=e 2(e 为曲线C 的离心率)时,设直线QM 1与椭圆C 交于点A ,B ,直线QN 1与椭圆C 交于点D ,E ,求AB +DE 的值.【答案】(1)x 24+y 2=1(2)5【分析】(1)由图可知OM 是△F 1NF 2的中位线,由此可得F 2N 长为定值,因为点P 在F 1N 的垂直平分线上,所以PF 1 +PF 2 =PF 2 +PN ,根据椭圆定义求解析式即可;(2)假设出点Q 坐标,表示直线QM 1与直线QN 1的斜率,并找出两斜率关系,最后表示出两直线方程,分别与椭圆C 联立方程,利用弦长公式和韦达定理求出AB +DE 的值.【详解】(1)连接OM ,易知OM ∥12F 2N 且OM =12F 2N ,∴F 2N =4,又点P 在F 1N 的垂直平分线上,∴PF 1 =PN ,∴PF 1 +PF 2 =PF 2 +PN =NF 2 =4>23,满足椭圆定义,∴a =2,c =3,b =1,∴曲线C 的方程为x 24+y 2=1.(2)由(1)知椭圆C 方程为x 24+y 2=1,则离心率e =32⇒λ=34,∴楄圆C λ的标准方程为x 23+4y 23=1,设Q x 0,y 0 为椭圆C λ异于四个顶点的任意一点,直线QM 1,QN 1斜率k QM 1,k QN 1,则k QM1⋅k QN 1=y 0x 0+3⋅y 0x 0-3=y 2x 20-3,又x 203+4y 203=1⇒y 20=143-x 20 ,∴k QM 1⋅k QN 1=-14k QM 1≠±12.设直线QM 1的斜率为k ,则直线QN 1的斜率为-14k.∴直线QM 1为y =k x +3 ,由y =k x +3 ,x 24+y 2=1,得1+4k 2 x 2+83k 2x +12k 2-4=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,∴AB =1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=41+k 21+4k 2,同理可得DE =1+16k 21+4k 2,∴AB +DE =41+k 2 1+4k 2+1+16k 21+4k 2=5.8.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆C :(x +2)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.【答案】(1)y 2=2x(2)(i )0;(ii )48【分析】(1)设直线PQ 与x 轴交于P 0-p 2,0 ,由几何性质易得:CP 2=CP 0 ⋅CO ,即可解决;(2)设T x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,(i )中,由于TA 中点M 在抛物线E 上,得y 0+y 12 2=2⋅x 0+x 12,将A x 1,y 1,B x 2,y 2 ,代入联立得D 点纵坐标为y 1+y 22=y 0,即可解决;(ⅱ)由(i )得点D 3y 20-4x 02,y 0,S =12TD ⋅y 1-y 2 =322⋅y 20-2x 03,又点T 在圆C 上,得y 20=-x 20-4x 0-1,可得:S =322⋅-x 0+32+8 3即可解决.【详解】(1)设直线PQ 与x 轴交于P 0-p2,0 .由几何性质易得:△CPP 0与△OCP 相似,所以CP CP 0=CO CP,CP2=CP 0 ⋅CO ,即:3=-p2+2 ⋅2,解得:p =1. 所以抛物线E 的标准方程为:y 2=2x .(2)设T x0,y0,A x1,y1,B x2,y2(i)由题意,TA中点M在抛物线E上,即y0+y122=2⋅x0+x12,又y21=2x1,将x1=y212代入,得:y21-2y0y1+4x0-y20=0,同理:y22-2y0y2+4x0-y20=0,有y1+y2=2y0y1y2=4x0-y20,此时D点纵坐标为y1+y22=y0,所以直线TD的斜率为0.(ⅱ)因为x1+x22=y21+y224=y1+y22-2y1y24=3y20-4x02,所以点D3y20-4x02,y0 ,此时S=12TD⋅y1-y2,TD =3y20-4x02-x0=32y20-2x0,y1-y2=y1+y22-4y1y2=8y20-2x0,所以S=322⋅y20-2x03,又因为点T在圆C上,有x0+22+y20=3,即y20=-x20-4x0-1,代入上式可得:S=322⋅-x20-6x0-13=322⋅-x0+32+83,由-2-3≤x0≤-2+3,所以x0=-3时,S取到最大价322⋅83=48.所以S的最大值为48.9.(2023·山东·潍坊一中校联考模拟预测)已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.【答案】(1)y2=4x(2)存在,-1,0或-1,-4【分析】(1)设点M的坐标为-p 2,a,根据直线MF的斜率为-1,得到a=p,再根据△OFM的面积为1求出p,即可得解;(2)假设存在点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方.设直线l 的方程为x=my+1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立直线与抛物线方程,消元列出韦达定理,又k NF =-t2,k NA+k NB =y 1-t x 1+1+y 2-tx 2+1,化简k NA +k NB ,即可得到方程,求出t 的值,即可得解.【详解】(1)解:由题意知F p 2,0 ,设点M 的坐标为-p2,a ,则直线MF 的斜率为a -0-p 2-p 2=-ap .因为直线MF 的斜率为-1,所以-ap =-1,即a =p ,所以△OFM 的面积S =12OF a =p 24=1,解得p =2或p =-2(舍去),故抛物线C 的方程为y 2=4x .(2)解:假设存在点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方.由(1)得F 1,0 ,抛物线C 的准线l 的方程为x =-1.设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立x =my +1y 2=4x得y 2-4my -4=0,所以Δ=16m 2+16>0,y 1+y 2=4m ,y 1y 2=-4.因为k NF =0-t 1+1=-t 2,k NA +k NB =y 1-t x 1+1+y 2-tx 2+1=2my 1y 2+2-tm y 1+y 2 -4t m 2y 1y 2+2m y 1+y 2 +4=2m ⋅-4 +4m 2-tm -4t -4m 2+2m ⋅4m +4=-4t m 2+14m 2+1 =-t ,所以-t =-t22,解得t =0或t =-4.故存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方,其坐标为-1,0 或-1,-4 .10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;(2)若B 、D 分别为椭圆C 的上、下顶点,不垂直坐标轴的直线l 交椭圆C 于P 、Q (P 在上方,Q 在下方,且均不与B ,D 点重合)两点,直线PB ,QD 的斜率分别为k 1,k 2,且k 2=-3k 1,求△PBQ 面积的最大值.【答案】(1)x 24+y 2=1(2)12【分析】(1)根据条件,得到关于a ,b ,c 的方程,即可得到结果;(2)根据题意设直线PQ 的方程为y =kx +m ,联立直线与椭圆方程,结合韦达定理,再由k 2=-3k 1列出方程,代入计算,即可得到结果.【详解】(1)S ΔF 1AF 2=12⋅23⋅b =3,∴b =1,a =b 2+3=2,故椭圆的方程为x 24+y 2=1;(2)依题意设直线PQ 的方程为y =kx +m ,P x 1,y 1 ,Q x 2,y 2 ,联立方程组y =kx +mx 24+y 2=1,消元得:1+4k 2 x 2+8km x +4m 2-4=0,∴x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2,Δ=64k 2m 2-41+4k 2 4m 2-4 =161+4k 2-m 2 >0,由k 2=-3k 1得:y 2+1x 2=-3⋅y 1-1x 1,两边同除x 1,y 2+1x 1x 2=-3⋅y 1-1x 21=-3⋅y 1-141-y 21 =341+y 1 ,即3x 1x 2-41+y 1 1+y 2 =0;将y 1=kx 1+m ,y 2=kx 2+m 代入上式得:3x 1x 2-41+y 1 1+y 2 =3x 1x 2-4kx 1+m +1 kx 2+m +1 =3-4k 2 x 1x 2-4k m +1 x 1+x 2 -4m +1 2=3-4k 2 4m 2-41+4k 2-4k m +1 -8km 1+4k 2 -4m +1 2=0,整理得:m 2-m -2=0所以m =2或m =-1(舍),S △PQB =12⋅1⋅x 1-x 2 =12x 1+x 2 2-4x 1x 2=12-8km 1+4k 2 2-44m 2-41+4k 2=24k 2-31+4k 2=24k 2-3+44k 2-3≤12,当k =±72时等号成立,满足条件,所以△PQB 面积的最大值为12.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.【答案】(1)k =±12;(2)证明过程见解析.【分析】(1)根据圆弦长公式,结合点到直线距离公式、椭圆切线的性质进行求解即可;(2)根据直线斜率公式,结合一元二次方程根与系数关系进行求解即可.【详解】(1)当直线l 不存在斜率时,方程为x =±2,显然与圆也相切,不符合题意,设直线l 的斜率为k ,方程为y =kx +m ,与椭圆方程联立,得x 24+y 23=1y =kx +m⇒(3+4k 2)x 2+8km x +4m 2-12=0,因为直线l 与C 相切,所以有Δ=64k 2m 2-43+4k 2 4m 2-12 =0⇒m 2=4k 2+3,圆O :x 2+y 2=4的圆心坐标为0,0 ,半径为2,圆心0,0 到直线y =kx +m 的距离为mk 2+-12,因为|MN |=455,所以有455=2×4-mk 2+-1 22⇒45=4-4k 2+3k 2+1⇒k =±12;(2)A -2,0 ,B 2,0 ,由x 2+y 2=4y =kx +m ⇒1+k 2 x 2+2km x +m 2-4=0,设M x 1,y 1 ,N x 2,y 2 ,x 1<x 2,则有x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2,k 1k 2=y 1x 1+2⋅y 2x 2-2=kx 1+m kx 2+m x 1x 2-2x 1+2x 2-4=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2-2x 1+2x 2-4,把x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2代入上式,得k 1k 2=k 24k 2-1k 2+1+km -2km k 2+1+m 24k 2-1k 2+1-2⋅-km -1k 2+1+2⋅-km +1k 2+1-4=m 2-4k 2m 2-4-4k2,而m 2=4k 2+3,所以k 1k 2=4k 2+3-4k 24k 2+3-4-4k 2=-3.【点睛】关键点睛:利用一元二次方程根与系数关系,结合椭圆切线的性质进行求解是解题的关键.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.【答案】(1)12(2)证明见解析【分析】(1)设P x ,y ,根据向量关系用x 1,x 2,y 1,y 2表示x 3,y 3,代入椭圆方程即可求解;(2)用x 1,x 2,y 1,y 2表示x 3,y 3,代入斜率公式即可求解.【详解】(1)设P x ,y ,因为OP =2AO ,所以x ,y =2-x 1,-y 1 解得x =-2x 1y =-2y 1 ,又因为BP =2CP ,所以-2x 1-x 2,-2y 1-y 2 =2-2x 1-x 3,-2y 1-y 3 解得x 3=-x 1+12x 2y 3=-y 1+12y 2,因为点C 在椭圆上,所以-x 1+12x 2 22+-y 1+12y 2 2=1⇒x 212+y 21+14x 222+y 22-12x 1x 2-y 1y 2=1,即x 1x 2+2y 1y 2=12.(2)设直线AC 与OB 斜率分别为k AC ,k OB ,k AC k OB =y 3-y 1x 3-x 1×y 2x 2=-y 1+12y 2-y 1-x 1+12x 2-x 1×y 2x 2=-2y 1y 2+12y 22-2x 1x 2+12x 22=x 1x 2-12+121-12x 22 -2x 1x 2+12x 22=x 1x 2-14x 22-2x 1x 2+12x 22=-12是定值.13.(2023·浙江嘉兴·统考模拟预测)已知抛物线C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.【答案】(1)y 2=4x (2)证明见解析【分析】(1)设AB :x =my +p2m ∈R ,联立抛物线方程,由根与系数的关系及抛物线的定义,根据AB =AF ⋅BF 建立方程求出p 得解;(2)由直线方程求出M ,N 的坐标,计算y M ⋅y N =-4,设Q x ,y 是以线段MN 为直径的圆上任意一点,根据MQ ⋅NQ=0化简0=x +1 2+y -y M y -y N ,根据对称性令y =0可得解.【详解】(1)设AB :x =my +p2m ∈R ,A x 1,y 1 ,B x 2,y 2 ,则联立y 2=2pxx =my +p 2得y 2-2pmy -p 2=0,所以Δ=4p 2m 2+4p 2>0y 1+y 2=2pm y 1y 2=-p 2,所以x 1+x 2=2m 2+1 px 1x 2=p 24,又AF =x 1+p 2,BF =x 2+p2,所以AB =AF +BF =x 1+x 2+p 由AB =AF ⋅BF 得x 1+x 2+p =x 1+p 2 x 2+p2 ,即x 1+x 2+p =x 1x 2+p 2x 1+x 2 +p 24所以2m 2+1 p +p =p 22m 2+1 p +p 22,化简得m 2+1 p p -2 =0,又p >0,所以p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)知AB :x =my +1m ∈R ,A x 1,y 1 ,B x 2,y 2 ,所以y 1+y 2=4m ,y 1y 2=-4,易得x 1+x 2=4m 2+2,x 1x 2=1,由题意知AP :y -4=y 1-4x 1-4x -4 ,BP :y -4=y 2-4x 2-4x -4 ,所以令x =-1得y M =-5y 1-4 my 1-3+4,y N =-5y 2-4my 2-3+4,即M -1,-5y 1-4 x 1-4+4,N -1,-5y 2-4 x 2-4+4,所以y M ⋅y N =-5y 1-4my 1-3+4-5y 2-4 my 2-3+4=4m -5 y 1+8 4m -5 y 2+8my 1-3 my 2-3=4m -52y 1y 2+84m -5 y 1+y 2 +64m 2y 1y 2-3m y 1+y 2 +9=-44m -5 2+32m 4m -5 +64-4m 2-12m 2+9=64m 2-36-16m 2+9=-4设Q x ,y 是以线段MN 为直径的圆上得任意一点,则有MQ ⋅NQ=0,即0=x +1 2+y -y M y -y N ,由对称性令y =0得0=x +1 2+y M y N =x +1 2-4,所以x =1或x =-3所以以线段MN 为直径的圆经过定点,定点坐标为-3,0 与1,0 .【点睛】关键点点睛:求出M ,N 的点的坐标,计算出y M ⋅y N 为定值-4,是解题的关键之一,其次写出以MN 为直径的圆的方程,根据圆的方程0=x +1 2+y -y M y -y N ,由对称性,令y =0求定点是解题的关键.14.(2023·江苏连云港·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的焦距为23,且经过点P -3,12 .(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点F 1作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求AB MF 1的最大值.【答案】(1)x 24+y 2=1(2)2【分析】(1)由待定系数法求解析式;(2)设出直线方程,由韦达定理法及导数法求得两切线方程,即可联立两切线方程解得交点M ,再由弦长公式及两点距离公式表示出AB MF 1,进而讨论最值.【详解】(1)由题意得2c =233a 2+14b 2=1a 2=b 2+c2 ,所以a =2b =1 ,即椭圆方程为x24+y 2=1;(2)当直线l 斜率为0时,A ,B 分别为椭圆的左右顶点,此时切线平行无交点.故设直线l :x =ty -3,由x 24+y 2=1x =ty -3,得t 2+4 y 2-23ty -1=0.Δ=16t 2+16>0,y 1+y 2=23t t 2+4,y 1y 2=-1t 2+4.AB =1+t 2y 1-y 2 =1+t 2y 1+y 22-4y 1y 2=1+t212t 2t 2+42+4t 2+4=4t 2+1t 2+4不妨设A x 1,y 1 在x 轴上方,则B x 2,y 2 在x 轴下方.椭圆在x 轴上方对应方程为y =1-x 24,y =-x41-x 24,则A 处切线斜率为-x 141-x 214=-x 14y 1,得切线方程为y -y 1=-x 14y 1x -x 1 ,整理得x 1x4+y 1y =1.同理可得B 处的切线方程为x 2x4+y 2y =1.由x 1x 4+y 1y =1①x 2x 4+y 2y =1②得x M =4y 2-y 1 x 1y 2-x 2y 1=4y 2-y 1 ty 1-3 y 2-ty 2-3 y 1=4y 2-y 1 3y 1-y 2 =-433,代入①得y M =1+33x 1y 1=1+33ty 1-3 y 1=3t 3,所以M -433,3t 3.因为MF 1 =-433+3 2+t 23=1+t 23,所以AB MF 1 =4t 2+1t 2+41+t 23=43t 2+1t 2+4设m =t 2+1≥1,则t 2=m 2-1,则AB MF 1=43m m 2+3=43m +3m≤4323=2,当且仅当m 2=3,即t =±2时,ABMF 1的最大值是2.另解:当直线l 的斜率存在时,设l :y =k x +3 ,由x 24+y 2=1y =k x +3得1+4k 2 x 2+83k 2x +12k 2-4=0,所以Δ=k 2+1>0,x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅64×3k 21+4k 22-412k 2-41+4k 2=41+k 21+4k 2椭圆在x轴上方的部分方程为y=1-x24,y'=-x41-x24,则过A x1,y1y1>0的切线方程为y-y1=-x14y1x-x1,即x1x4+y1y=x214+y21=1,同理可得过B x2,y2y2<0的切线方程为x2x4+y2y=1.由x1x4+y1y=1x2x4+y2y=1得x M=4y2-y1x1y2-x2y1=4y2-y1y1k-3y2-y2k-3y1=4y2-y13y1-y2=-433设M-43 3,t,则-3x13+ty1=1-3x23+ty2=1 ,所以直线l的方程为-33x+ty=1,所以t=33k.MF1=-433+32+t2=1+k23k2,AB MF1=41+k21+4k2⋅3k21+k2=43k21+k21+4k22令n=1+4k2≥1,则k2=n-14,所以ABMF1=3-3⋅1n2+2⋅1n+1,当1n=-22×-3⇒n=3时,即k=±22时,ABMF1取得最大值,为2.【点睛】直线与圆锥曲线问题,一般设出直线,联立直线与圆锥曲线方程,结合韦达定理表示出所求的内容,进而进行进一步讨论.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.【答案】(1)证明见解析(2)10【分析】(1)根据题意求出椭圆方程为:x28+y22=1,将椭圆,及相关直线、点进行平移,将y1x1,y2x2看作方程8n-4X2+8t-4nX-4t+1=0的两不等实根,进而可得n=-2t,代入直线方程化简即可;(2)联立直线与椭圆方程,结合韦达定理得y3+y4=m,y3y4=m2-22,化简QA|2+QB|2=5y3+y42-2y3y4,代入韦达定理即可求解.【详解】(1)由题意知2a=424a2+1b2=1⇒a=22b=2,∴椭圆方程为:x28+y22=1.将椭圆平移至(x +2)28+(y -1)22=1即x 2+4y 2+4x -8y =0,此时P 点平移至P 0,0 ,A ,B 分别平移至A x 1,y 1 ,B x 2,y 2 ,设直线A B 方程为tx +ny =1代入椭圆⇒x 2+4y 2+4x -8y tx +ny =0,整理得8n -4 y 2+8t -4n xy -4t +1 x 2=0,两边同除以x 2⇒8n -4 ⋅y x2+8t -4n ⋅y x-4t +1 =0,∴k PA ⋅k PB=k PA ⋅k PB =14⇒y 1x 1⋅y 2x 2=14令y x =X ,则y 1x 1,y 2x 2可看作关于X 的一元二次方程,8n -4 X 2+8t -4n X -4t +1 =0的两不等实根,∴y 1x 1⋅y 2x 2=X 1X 2=-4t +1 8n -4=14,∴4t =-2n ,即n =-2t ,∴直线A B 方程为tx -2ty =1t ≠0 ,∴y =12x -12t,∴A B 的斜率为定值12,即k 的定值12.(2)设A x 3,y 3 ,B x 4,y 4 ,y =12x +m x 2+4y 2=8⇒8y 2-8my +4m 2-8=0,即2y 2-2my +m 2-2=0,Δ>0,故y 3+y 4=m ,y 3y 4=m 2-22,∴QA |2+ QB 2=1+4⋅y 3 2+1+4⋅y 4 2=5y 23+y 24 =5y 3+y 4 2-2y 3y 4=5m 2-2×m 2-22=10,∴QA |2+ QB |2=1016.(2023春·江苏苏州·高三统考开学考试)已知抛物线y 2=a 2x 的焦点也是离心率为32的椭圆x 2a2+y 2b 2=1a >b >0 的一个焦点F .(1)求抛物线与椭圆的标准方程;(2)设过F 的直线l 交抛物线于A 、B ,交椭圆于C 、D ,且A 在B 左侧,C 在D 左侧,A 在C 左侧.设a =AC ,b =μCD ,c =DB .①当μ=2时,是否存在直线l ,使得a ,b ,c 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由;②若存在直线l ,使得a ,b ,c 成等差数列,求μ的范围.【答案】(1)抛物线的标准方程是y 2=12x ,椭圆的标准方程为x 212+y 23=1(2)①不存在,理由见解析;②μ∈43-12,+∞【分析】(1)根据相同焦点得到a 24=32a ,解得a =23,得到答案.(2)设l :x =my +3和各点坐标,联立方程利用韦达定理得到根与系数的关系,计算AB =12m 2+1 ,CD =43m 2+1m 2+4,根据等差数列的性质得到方程,方程无解得到答案;整理得到m 2=3+23μ-123>0,解不等式即可.【详解】(1)抛物线的焦点F a 24,0 ,椭圆的焦点F c ,0 ,由于e =c a =32,即F 32a ,0 ,则有a 24=32a ,因此a =23,c =3,b =a 2-c 2=3,故椭圆的标准方程为x 212+y 23=1,抛物线的标准方程是y 2=12x .(2)①设l :x =my +3,m ≠0 ,A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4 ,将直线与抛物线联立,则有y 2=12xx =my +3 ,y 2-12my -36=0,Δ=144m 2+36×4>0,则y 1+y 2=12m y 1y 2=-36,于是x 1x 2=my 1+3 my 2+3 =m 2y 1y 2+3m y 1+y 2 +9=9,将直线与椭圆联立,则有x 2+4y 2-12=0x =my +3,得到二次方程m 2+4 y 2+6my -3=0,Δ>0,则有y 3+y 4=-6m m 2+4y 3y 4=-3m 2+4,则AB =x 1-x 22+y 1-y 2 2=1+m 2⋅y 1+y 22-4y 1y 2=12m 2+1 ,CD =x 3-x 42+y 3-y 4 2=1+m 2⋅y 3+y 4 2-4y 3y 4=1+m236m 2m 2+4 2+12m 2+48m 2+42=43m 2+1 m 2+4,AC +DB =AB -CD =12m 2+1 -43m 2+1m 2+4,假设存在直线l ,使得a ,b ,c 成等差数列,即AC +DB =4CD 即有12m 2+1 -43m 2+1 m 2+4=2×2×43m 2+1m 2+4,整理得到12m 2=203-48,方程无解,因此不存在l 满足题设.②只需使得方程12m 2+1 -43m 2+1 m 2+4=2μ×43m 2+1m 2+4有解即可.整理得到m 2=3+23μ-123,故m 2=3+23μ-123>0,解得μ∈43-12,+∞【点睛】关键点睛:本题考查了抛物线和椭圆的标准方程,等差数列性质,直线和抛物线,椭圆的位置关系,意在考查学生的计算能力,转化能力和综合应用能力,其中,利用韦达定理得到根与系数的关系,根据设而不求的思想,可以简化运算,是解题的关键,需要熟练掌握.17.(2023秋·江苏无锡·高三统考期末)已知椭圆C 1:x 2a 2+y 2b 2=1a >b >0 的右焦点F 和抛物线C 2:y 2=2px p >0 的焦点重合,且C 1和C 2的一个公共点是23,263.(1)求C 1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使1AB -λPQ为定值?若存在,求出λ的值;若不存在,说明理由.【答案】(1)x 24+y 23=1, y 2=4x (2)存在,λ=13【分析】(1)先求出抛物线的方程,进而求出焦点,再根据椭圆的右焦点与其重合,列出方程组求解即可;(2)利用弦长公式分别表示出AB ,PQ ,然后代入1AB -λPQ ,可求出使1AB -λPQ为定值的常数λ.【详解】(1)解:由题意知2632=2p ⋅23⇒p =2,∴y 2=4x ,抛物线焦点1,0 ,∴c =149a 2+83b 2=1a 2=b 2+c2 ⇒a =2b =3 ⇒C 1方程:x 24+y 23=1,C 2方程:y 2=4x .(2)解:方法一:假设存在这样的l ,设直线l 的方程为:x =my +1,A x 1,y 1 ,B x 2,y 2 ,x =my +13x 2+4y 2=12⇒3m 2y 2+2my +1 +4y 2=12,3m 2+4 y 2+6my -9=0.Δ=36m 2+363m 2+4 =144m 2+1 ,∴AB =1+m 2⋅y 1-y 2 =1+m 2⋅144m 2+1 3m 2+4=12m 2+13m 2+4.设P x 3,y 3 ,Q x 4,y 4 ,x =my +1y 2=4x⇒y 2=4my +4,y 2-4my -4=0,Δ=16m 2+16,∴PQ =1+m 2⋅y 3-y 4=1+m 2⋅16m 2+16=4m 2+1 ,∴1AB -λPQ =3m 2+412m 2+1 -λ4m 2+1 =3m 2+4-3λ12m 2+1 为定值.∴312=4-3λ12⇒λ=13,∴存在常数λ=13使1AB -λPQ为定值14.方法二:1AB -λPQ =1-14cos 2θ3-λ1-cos 2θ4对比cos 2θ前系数λ=13.方法三:设l 倾斜角为θ,∴AB =2ab 2a 2-c 2cos 2θ=2×2×34-cos 2θ=124-cos 2θ,PQ =2p sin 2θ=4sin 2θ,∴1AB -λPQ =4-cos 2θ12-λsin 2θ4=4-3λsin 2θ-cos 2θ12为定值,∴3λ=1,λ=13,此时定值为14.18.(2023秋·江苏·高三统考期末)如图,已知椭圆x 24+y 2=1的左、右顶点分别为A ,B ,点C 是椭圆上异于A ,B 的动点,过原点O 平行于AC 的直线与椭圆交于点M ,N ,AC 的中点为点D ,直线OD 与椭圆交于点P ,Q ,点P ,C ,M 在x 轴的上方.(1)当AC =5时,求cos ∠POM ;(2)求PQ ⋅MN 的最大值.【答案】(1)-35(2)10【分析】(1)根据题意求出k AC ⋅k OD =-14,根据AC =5分析出点C 满足的方程,求出点C 坐标,进而求出cos ∠POM ;(2)利用弦长公式求出PQ 和MN ,再利用基本不等式求出最值.【详解】(1)由题知A -2,0 ,设C x 0,y 0 ,则D x 0-22,y 02,则k AC ⋅k OD =y 0x 0+2⋅y 0x 0-2=1-14x 2x 20-4=-14.因为AC =5,所以C 在圆(x +2)2+y 2=5上,又C 在椭圆x 24+y 2=1上,所以C x 0,y 0 满足(x +2)2+y 2=5x 24+y 2=1,所以(x +2)2+1-x 24=5,34x 2+4x =0,所以x 0=0或x 0=-163<-2(舍去),又C 在x 轴上方,所以C 0,1 ,所以直线AC 的斜率为12,故直线OD 的斜率为-12,所以直线AC 与直线OD 关于y 轴对称.设直线AC 的倾斜角θ,cos ∠POM =cos2π2-θ=-cos2θ=sin 2θ-cos 2θ=sin 2θ-cos 2θsin 2θ+cos 2θ=tan 2θ-1tan 2θ+1=-35(2)当直线MN 斜率为k ,k >0,则直线MN :y =kx ,直线PQ :y =-14k x ,M x 1,y 1 ,N x 2,y 2 满足y =kxx 24+y 2=1,所以4k 2+1 x 2=4,x 2=44k 2+1,所以MN 2=1+k 2 164k 2+1,同理PQ 2=1+116k 2 114k 2+1=416k 2+1 4k 2+1,所以MN 2⋅PQ 2=164k 2+4 16k 2+1 4k 2+1 2≤164k 2+4+16k 2+12 24k 2+1 2=420k 2+5 24k 2+12=100所以MN ⋅PQ ≤10,当且仅当4k 2+4=16k 2+1,即k ≤12时取“=”,所以PQ ⋅MN 的最大值为10.【点睛】方法点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.(2023·浙江·校联考模拟预测)设双曲线C :x 2a 2-y 2b 2=1的右焦点为F 3,0 ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线x =53于点M ,(i )求|AF |⋅|BM ||AM |⋅|BF |的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP =PQ .【答案】(1)x 25-y 24=1(2)(i )1;(ii )证明见解析【分析】(1)结合点F 到其中一条渐近线的距离为2和a 2+b 2=c 2,即可求得本题答案;(2)(i )设AB 直线方程为x =my +3,A x 1,y 1 ,B x 2,y 2 ,得y M =-43m,直线方程与双曲线方程联立消x ,然后由韦达定理得y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,把|AF |⋅|BM ||AM |⋅|BF |逐步化简,即可求得本题答案;(ii )把QM 和OB 的直线方程分别求出,联立可得到点P 的坐标,由此即可得到本题答案.【详解】(1)因为双曲线其中一条渐近线方程为bx +ay =0,又点F 3,0 到它的距离为2,所以3b b 2+a2=3bc =2,又c =3,得b =2,又因为a 2+b 2=c 2,所以a 2=5,所以双曲线C 的方程为x 25-y 24=1.(2)(2)设AB 直线方程为x =my +3,则y M =-43m,代入双曲线方程整理得:4m 2-5 y 2+24my +16=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5,(i )|AF |⋅|BM ||AM |⋅|BF |=y 1 ⋅y 2-y M y M -y 1 ⋅y 2 =y 1y 2-y 1y My 2y M -y 2y 1 而y 1y 2-y 1y M -y 2y M -y 2y 1 =2y 1y 2-y M y 1+y 2 =324m 2-5--24m 4m 2-5⋅-43m =0,所以y 1y 2-y 1y M =y 2y M -y 2y 1,,则y 1y 2-y 1y M =y 2y M -y 2y 1 ,所以|AF |⋅|BM ||AM |⋅|BF |=1 ;(ii )过M 平行于OA 的直线方程为y +43m =y 1my 1+3x -53,直线OB 方程为y =y 2my 2+3x 与y +43m =y 1my 1+3x -53联立,得y +43m =y 1my 1+3my 2+3y 2y -53,即y 2my 1+3 y +43m my 1+3 y 2=y 1my 2+3 y -53y 1y 2,则3y 2-y 1 y =-3y 1y 2-4my 2,所以y P =-3y 1y 2-4my 23y 2-y 1 ,由y 1+y 2=-24m 4m 2-5,y 1y 2=164m 2-5两式相除得,y 1y 2y 1+y 2=2-3m ,则y 1y 2=-23m y 1+y 2 ,所以y P =-3y 1y 2-4m y 23y 2-y 1 =2m y 1+y 2 -4m y 23y 2-y 1 =2m y 1-y 2 3y 2-y 1 =-23m ,因为y Q =0,所以y P =y M +y Q2,故P 为线段MQ 的中点,所以|MP |=|PQ |.【点睛】关键点点睛:本题第二小题第一问考了|AF |⋅|BM ||AM |⋅|BF |如何用y 1,y 2,y M 表示出来,进而利用韦达定理进行化简求值,考查了学生的转化能力以及对复杂运算的求解能力20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.【答案】(1)23,6(2)y =54x -355或y =-54x +355【分析】(1)设点P (x 0,y 0),将PO ⋅PB转化为坐标表示,求取值范围;(2)设直线方程,与椭圆方程联立,设MN 中点为D ,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN ,BD ⊥MN ,解出直线方程.【详解】(1)设点P (x 0,y 0),则x 204+y 20=1,PO ⋅PB =(-x 0,-y 0)⋅(1-x 0,-y 0)=x 0(x 0-1)+y 20=34x 0-23 2+23,因为-2≤x 0≤2,所以当x 0=-2时,PO ⋅PB max =34×-2-23 2+23=6,当x 0=23时,PO ⋅PB min =34×23-23 2+23=23,所以PO ⋅PB ∈23,6 .(2)设直线l :y =kx +m (k ≠0),M (x 1,y 1),N (x 2,y 2),y =kx +mx 24+y 2=1,消去y 得,(4k 2+1)x 2+8km x +4m 2-4=0,由题,Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1+y 2=kx 1+m +kx 2+m =2m 4k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 24k 2+1,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN , BM ⋅BN=(x 1-1,y 1)⋅(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+y 1y 2=8km +5m 2-34k 2+1=0,所以8km +5m 2-3=0,①设MN 中点为D ,则D -4km 4k 2+1,m4k 2+1,因为BD ⊥MN ,。
高中数学高考总复习圆锥曲线的综合问题习题及详解一、选择题1.(2010·聊城模考)已知双曲线x 2a 2-y 2b 2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A .5x 2-45y 2=1B.x 25-y 24=1 C.y 25-x 24=1D .5x 2-54y 2=1[答案] D[解析] 抛物线y 2=4x 焦点为(1,0),∴双曲线中c =1, 又e =c a =5,∴a =55,∴b 2=c 2-a 2=1-15=45,∴双曲线方程为x 215-y 245=1.2.(2010·山东郓城)已知对k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)[答案] C[解析] 直线y =kx +1过定点(0,1),只要(0,1)在椭圆x 25+y 2m =1上或共内部即可,从而m ≥1.又因为椭圆x 25+y 2m=1中m ≠5,∴m ∈[1,5)∪(5,+∞).[点评] 含参数的直线与曲线位置关系的命题方式常常是直线过定点,考虑定点与曲线位置,以确定直线与曲线的位置.3.图中的椭圆C 1、C 2与双曲线C 3、C 4的离心率分别为e 1、e 2、e 3、e 4,则它们的大小关系是( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3[答案] B[解析] ∵C 1、C 2为椭圆,∴e ∈(0,1) ∵C 3、C 4为双曲线,∴e ∈(1,+∞) 比较C 1、C 2∵a 相等而C 1比C 2的短轴小, ∴C 1的焦距比C 2的焦距大,从而e 1>e 2 同理C 4的虚轴长>C 3的虚轴长,而实轴长相同 ∴C 4的焦距>C 3的焦距 ∴e 4>e 3 综上可得:e 2<e 1<e 3<e 4,选B. [点评] 对于椭圆e =ca =1-⎝⎛⎭⎫b a 2,e 越大越扁,对于双曲线e =c a=1+⎝⎛⎭⎫b a 2,e 越大开口越宽阔.4.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为( )A .3 2B .2 6C .27D .4 2[答案] C[解析] 根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程得,4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个公共点, ∴Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0, 即(b 2+4)(b 2-3)=0,∴b 2=3, 长轴长为2b 2+4=27,故选C.5.已知椭圆x 2a 2+y 2b 2=1(a >b >0),过椭圆的右焦点作x 轴的垂线交椭圆于A 、B 两点,若OA →·OB →=0,则椭圆的离心率e 等于( )A.-1+52B.-1+32C.12D.32[答案] A[解析] 如图,F 2(c,0)把x =c 代入椭圆x 2a 2+y 2a 2=1得A (c ,b 2a).由OA →·OB →=0结合图形分析得 |OF 2|=|AF 2|,即c =b 2a⇒b 2=ac ⇒a 2-c 2=ac⇒(c a )2+ca -1=0⇒e 2+e -1=0⇒e =5-12. 6.(2010·重庆南开中学)双曲线x 2n -y 2=1(n >1)的两焦点为F 1,F 2,点P 在双曲线上,且满足:|PF 1|+|PF 2|=2n +2,则△PF 1F 2的面积是( )A .1 B.12 C .2D .4[答案] A[解析] 由条件知⎩⎨⎧|PF 1|-|PF 2|=2n|PF 1|+|PF 2|=2n +2,∴|PF 1|=n +2+n ,|PF 2|=n +2-n 又∵|F 1F 2|=2n +1,∴|PF 1|2+|PF 2|2=|F 1F 2|2, ∴S △PF 1F 2=12|PF 1|·|PF 2|=12(n +2+n )(n +2-n )=1. 7.在同一坐标系中方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )[答案] D[解析] 方程a 2x 2+b 2y 2=1,即x 21a 2+y 21b2=1,因为1a 2<1b 2,所以是焦点在y 轴上的椭圆.方程ax +by 2=0化为y 2=-abx ,为焦点在x 轴的负半轴的抛物线.8.(2010·长沙一中、雅礼中学联考)若椭圆mx 2+ny 2=1(m >0,n >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的连线的斜率为12,则椭圆的离心率为( )A.12B.22C.32D.62[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则AB 中点为⎝⎛⎭⎫x 1+x 22,y 1+y 22,mx 12+ny 12=1,mx 22+ny 22=1,两式相减得y 1+y 2x 1+x 2=-m n ×x 1-x 2y 1-y 2,∴12=-m n ×(-1),即m n =12,离心率e =1m -1n1m=1-m n =22,故选B.9.(2010·福建福州市质检)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 C.17-1D.5+2[答案] C[解析] 抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |,由圆的几何性质及三角形两边之和大于第三边可知,当P 、Q 、F 、C 四点共线时取最小值,故最小值为|FC |-1=17-1.10.(2010·北方四校联考)已知抛物线C :y 2=2px (p >0),过点A ⎝⎛⎭⎫p 2,0的直线与抛物线C 交于M 、N 两点,且MA →=2AN →,过点M 、N 向直线x =-p 2作垂线,垂足分别为P 、Q ,△MAP 、△NAQ 的面积分别为记为S 1与S 2,那么( )A .S 1∶S 2=2∶1B .S 1∶S 2=5∶2C .S 1∶S 2=4∶1D .S 1∶S 2=7∶1[答案] C[解析] 依题意,点A 为抛物线的焦点,直线x =-p2为抛物线的准线,则|MP |=|MA |,|NA |=|NQ |,∠PMA =π-∠QNA ,故S 1=|MP ||MA |sin ∠PMA =4|AN |2sin ∠QNA =4S 2,故选C.二、填空题11.(2010·吉林省调研)已知过双曲线x 2a 2-y 2b 2=1右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e 的取值范围是________.[答案] (1,2)[解析] 由条件知,渐近线的倾斜角小于45°,即b a <1,∴c 2-a 2a 2<1,∴c 2a 2<2,即e 2<2,∵e >1,∴1<e < 2.12.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为________.[答案] x 2-y 28=1(x >1)[解析] 设另两个切点为E 、F ,如图所示,则|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,所以点P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.∴a =1,c =3,∴b 2=8.故方程为x 2-y 28=1(x >1).13.(2010·平顶山市调研)在下列命题中:①方程|x |+|y |=1表示的曲线所围成区域面积为2; ②与两坐标轴距离相等的点的轨迹方程为y =±x ;③与两定点(-1,0)、(1,0)距离之和等于1的点的轨迹为椭圆;④与两定点(-1,0)、(1,0)距离之差的绝对值等于1的点的轨迹为双曲线.正确的命题的序号是________.(注:把你认为正确的命题序号都填上) [答案] ①②④[解析] 方程|x |+|y |=1与两轴交点A (-1,0),B (0,-1),C (1,0),D (0,1)组成正方形的面积S =12|AC |·|BD |=12×2×2=2,故①真;设与两坐标轴距离相等的点为P (x ,y ),则|x |=|y |,∴y =±x ,故②真;∵两点E (-1,0),F (1,0)的距离|EF |=2>1,∴到两点E 、F 距离之和等于1的点不存在,∴③错误;与两点E 、F 距离之差的绝对值等于1的点的轨迹为双曲线正确.14.(2010·安徽安庆联考)设直线l :y =2x +2,若l 与椭圆x 2+y 24=1的交点为A 、B ,点P 为椭圆上的动点,则使△P AB 的面积为2-1的点P 的个数为________.[答案] 3[解析] 设与l 平行且与椭圆相切的直线方程为y =2x +b , 代入x 2+y 24=1中消去y 得,8x 2+4bx +b 2-4=0,由Δ=16b 2-32(b 2-4)=0得,b =±22,显见y =2x +2与两轴交点为椭圆的两顶点A (-1,0),B (0,2), ∵直线y =2x +22与l 距离d =22-25,∴欲使S △ABP =12|AB |·h =52h =2-1,须使h =22-25,∵d =h ,∴直线y =2x +22与椭圆切点,及y =2x +4-22与椭圆交点均满足,∴这样的点P 有3个.三、解答题15.(2010·新课标全国)设F 1、F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A 、B 两点,且|AF 2|、|AB |、|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. [解析] (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a .l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1.消去y ,整理得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 得43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c3.由|P A |=|PB |得k PN =-1. 即y 0+1x 0=-1, 得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.16.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,坐标原点到直线AB 的距离为32,其中A (0,-b ),B (a,0).(1)求双曲线的标准方程;(2)设F 是双曲线的右焦点,直线l 过点F 且与双曲线的右支交于不同的两点P 、Q ,点M 为线段PQ 的中点.若点M 在直线x =-2上的射影为N ,满足PN →·QN →=0,且|PQ →|=10,求直线l 的方程.[解析] (1)依题意有⎩⎨⎧ca=2,ab a 2+b2=32,a 2+b 2=c 2.解得a =1,b =3,c =2.所以,所求双曲线的方程为x 2-y 23=1.(2)当直线l ⊥x 轴时,|PQ →|=6,不合题意.当直线l 的斜率存在时,设直线l 的方程为y =k (x -2).由⎩⎪⎨⎪⎧x 2-y 23=1(x >0)y =k (x -2)得,(3-k 2)x 2+4k 2x -4k 2-3=0.①因为直线与双曲线的右支交于不同两点,所以3-k 2≠0.设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),则x 1、x 2是方程①的两个正根,于是有⎩⎨⎧x 1+x 2=4k 2k 2-3>0,x 1x 2=4k 2+3k 2-3>0,Δ=(4k 2)2-4(3-k 2)(-4k 2-3)>0,所以k 2>3.②因为PN →·QN →=0,则PN ⊥QN ,又M 为PQ 的中点,|PQ →|=10,所以|PM |=|MN |=|MQ |=12|PQ |=5. 又|MN |=x 0+2=5,∴x 0=3,而x 0=x 1+x 22=2k 2k 2-3=3,∴k 2=9,解得k =±3.∵k =±3满足②式,∴k =±3符合题意. 所以直线l 的方程为y =±3(x -2). 即3x -y -6=0或3x +y -6=0.17.(2010·北京崇文区)已知椭圆的中心在坐标原点O ,焦点在x 轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F 与x 轴不垂直的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求△POQ 的面积;(3)在线段OF 上是否存在点M (m,0),使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.[解析] (1)由已知,椭圆方程可设为x 2a 2+y 2b2=1(a >b >0).∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2, ∴b =c =1,a = 2. 所求椭圆方程为x 22+y 2=1.(2)右焦点F (1,0),直线l 的方程为y =x -1. 设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 2+2y 2=2y =x -1得,3y 2+2y -1=0, 解得y 1=-1,y 2=13.∴S △POQ =12|OF |·|y 1-y 2|=12|y 1-y 2|=23.(3)假设在线段OF 上存在点M (m,0)(0<m <1),使得以MP 、MQ 为邻边的平行四边形是菱形.因为直线与x 轴不垂直,所以设直线l 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧x 2+2y 2=2y =k (x -1)可得,(1+2k 2)x 2-4k 2x +2k 2-2=0. ∴x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.MP →=(x 1-m ,y 1),MQ →=(x 2-m ,y 2),PQ →=(x 2-x 1,y 2-y 1).其中x 2-x 1≠0以MP ,MQ 为邻边的平行四边形是菱形⇔(MP →+MQ →)⊥PQ →⇔(MP →+MQ →)·PQ →=0 ⇔(x 1+x 2-2m ,y 1+y 2)·(x 2-x 1,y 2-y 1)=0 ⇔(x 1+x 2-2m )(x 2-x 1)+(y 1+y 2)(y 2-y 1)=0 ⇔(x 1+x 2-2m )+k (y 1+y 2)=0 ⇔⎝⎛⎭⎫4k 21+2k 2-2m +k 2⎝⎛⎭⎫4k21+2k 2-2=0 ⇔2k 2-(2+4k 2)m =0⇔m =k 21+2k 2(k ≠0).∴0<m <12.。
2023届高考数学复习:精选好题专项(圆锥曲线)练习题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△.2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上.1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.()2:20C x py p ->AB OP 22‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点 【3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值.()2:20C x py p ->E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,31,2Q ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值.题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +参考答案题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.【答案解析】【要点分析】(1)依题意可得,根据椭圆的定义、三角形面积公式及勾股定理求出,即可求出,从而得解;(2)首先求出的坐标,分直线的斜率为与不为两种情况讨论,当直线的斜率不为时,设直线的方程为,,,,联立直线与椭圆的方程,结合韦达定理可得,,由,推出,解得,进而可得答案.【小问1详解】解:因为,所以,即,所以,所以又,,,所以,即,所以,所以,所以椭圆方程为.【小问2详解】解:由(1)知,,所以,即, 当直线的斜率为时,此时,不合题意,2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=122F MF π∠=2a 2b M l 00l 0l x my =+11(,)A x y 22(,)B x y l 12y y +12y y MA MB⊥1212(0x x y y +-=m 120MF MF ⋅= 12MF MF ⊥ 122F MF π∠=1212122MF F MF MF S ⋅==△124MF MF ⋅=122MF MF a +=122F F c ==2221212MF MF F F +=()2121228MF MF MF MF +-=⋅24248a -⨯=24a =2222b a c =-=22142x y +=124MF MF ⋅=124MF MF +=122MF MF ==(M l 090AMB ∠≠︒当直线的斜率不为时,设直线的方程为,,,联立,得,所以,, 因为, 所以,所以,所以,所以, 所以, 解得或,当时,直线过点,不符合题意, 所以直线的方程为.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△. 【答案解析】【要点分析】(1)通过解方程组进行求解即可;(2)将直线2l 方程与椭圆方程联立,结合椭圆弦长公式、相似三角形判定定理进行运算证明即可. 【小问1详解】l 0l x my =+11(,)A x y 22(,)B xy 22142x my x y ⎧=⎪⎨+=⎪⎩22(2)20m y ++-=1222y y m+=-+12222y y m -=+90AMB ∠=︒MA MB⊥1212(0x x y y +-=21212(1)1)()40m y y m y y ++-++=2222(1)4(1)4022m m m m m -+--+=++2230m m --=1m =-3m =1m =-l Ml 30x y --=解:222224y x x y ⎧=-+⎪⎨⎪+=⎩,消y得:220x -+=,解得:x =,故)M ;【小问2详解】联立222y x y x t⎧=-+⎪⎪⎨⎪=+⎪⎩,解之得:,122t N t ⎫-+⎪⎪⎝⎭联立22224y x t x y ⎧=+⎪⎨⎪+=⎩,消y得:2220x t +-=, 由题可得:2Δ820t =->,∴12x x +=,2122x x t =-.12NA t ⎫=-⎪⎪⎭,22NB t ⎫=--⎪⎪⎭,()()212122223222332,2224NA NB x x t x x t t t t t ⎫⎫=--++⎪⎪⎪⎪⎭⎭⎫⎫=--+=⎪⎪⎪⎪⎭⎭2NM t ⎫=--=⎪⎪⎭, 2NM NA NB =,∴AN MNNM NB =,又ANB MNB ∠=∠,∴ANM MNB ∽△△ 1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上. .(本小题满分12分) 解:设),(),,(2211y x N y x M2222222221422x y x y x y k k -=-⋅+=⋅....................2分 2222154x y +=又22224(15x y =⋅-所以所以54451(4222221-=--=⋅x x k k .....................4分(2)设3:+=kx y PM 224520x y +=联立 得到02530)54(22=+++kx x k1223045kx x k -+=+所以2215425k x x +=⋅ 0)1(400)54(100900222>-=+-=∆k k k .....................6分直线:MB 2211-+=x x y y 直线:NA 2222+-=x x y y联立得:1212)2()2(22x y y x y y -+=-+.....................8分2121(2)(2)2524y y y y x x +++=-⋅-法一:525)(5452121212-=+++⋅-=x x x x k x x k..............10分解得34=y所以点G 在定直线34=y 上 .....................12分法二:由韦达定理得k x x x x 562121-=+2112221121(5)5221x kx kx x x y y kx x kx x x +++==-++所以5)(655)(65121221-=++-++-x x x x x x .........10分解得34=y所以点G 在定直线34=y 上 .....................12分1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.解:(1)由题显然直线l 的斜率存在,设:l y kx m =+,设11(,)P x y ,22(,)Q x y ,则联立直线与双曲线得:222(21)4220k x kmx m -+++=,0> ,故122421km x x k +=--,21222221m x x k +=-,12121212111102222AP AQ y y kx m kx m k k x x x x --+-+-+=+=+=----, 化简得:12122(12)()4(1)0kx x m k x x m +--+--=,故2222(22)4(12)()4(1)02121k m kmm k m k k ++-----=--, 即(1)(21)0k m k ++-=,而直线l 不过A 点, 故l 的斜率 1.k =-(2)设直线AP 的倾斜角为α,由tan PAQ ∠=tan 22PAQ ∠=,由2PAQ απ+∠=,得tan AP k α==,即1112y x -=-联立1112y x -=-221112x y -=得1103x -=,153y =,同理,2103x +=,253y --=, 故12203x x +=,12689x x =而1|||2|AP x =-,2|||2|AQ x =-,由tan PAQ ∠=sin 3PAQ ∠=,故12121||||sin |2()4|29PAQ S AP AQ PAQ x x x x =∠=-++= 题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值..答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分) (2),∴,设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+2AB =OP1c =1EF 2212x y +=1OP =y kx m=+2212x y y kx m ⎧+=⎪⎨⎪=+⎩()222214220kx kmx m +++-=2216880k m ∆=-+>122421kmx x k -+=+21222221m x x k -=+∵,化简得.又设M 是弦AB 的中点,∴,, ∴,令, 则,∴(仅当时取等),又∵(仅当时取等号). 综上,.2‐3、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.解:(1)因为P 在椭圆上,所以12||||2PF PF a +=, 又因为12||3||PF PF =,所以2||2a PF =,13||2aPF =, 因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:22 1.2x y +=(2)设11(,)A x y ,22(,)B x y ,2221AB k ==+2222122k m k +=+222,2121kmm M k k -⎛⎫ ⎪++⎝⎭()222224121k OM m k +=⋅+()()()22222222241214122212221k k k OM k k k k +++=⋅=++++2411k t +=≥()()24443134t OMt t t t==≤=-++++1OM ≤=-t=1OP OM MP OM ≤+=+≤214k -=max OP =联立直线l 与椭圆E 的方程:221220x my x y =+⎧⎨+-=⎩,整理可得22(2)210m y my ++-=, 12222m y y m -+=+,12212y y m-=+,所以弦长2122)||||2m AB y y m+=-=+, 设圆222x y +=的圆心O 到直线l的距离为d =,所以||CD ==,所以2222222212)2)3||||41222m m m AB CD m m m m+++⋅=⋅⋅==-++++ 因为233022m <+…,2132222m ∴-<+…,2||||AB CD ∴⋅<,所以2||||AB CD ⋅的取值范围2‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分)(2),∴,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为, 即,(10分) ∴直线恒过定点, ∴点到直线距离的最大值为.(12分)题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点【答案解析】(1)由已知得22222()1c e a ba c c a b⎧==⎪⎪⎪⋅-=-⎨⎪=+⎪⎪⎩,解得3a b c ⎧=⎪=⎨⎪=⎩,即22:139x y C -=;(2)由题意设()()1122:2,,,,AB l y kx A x y B x y =+()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+()()2110t x y ---=AB 1,12M ⎛⎫⎪⎝⎭OAB 2OM ==则()12122222222121222124233341301312913933k y kx y y x x k k k x kx x y kx x y y k k ⎧⎧⎧=++=+=⎪⎪⎪⎪⎪⎪--⇒---=⇒⇒⎨⎨⎨---=⎪⎪⎪==⎪⎪⎪--⎩⎩⎩由题意得2120030k x x ∆>⎧⇒<<⎨<⎩①221212222131299128193333k k OA OB x x y y k k k -+-+⋅=+===+<---- ; ②由对称性得直线AD 过定点在y 轴上,设定点(0,)T t ,则有A ,T ,D 三点共线, 即1221122121211212AT DT y t y t x y x yk k x y x t x y x t t x x x x ---+=⇒=⇒+=+⇒=+()()21121212122222x kx x kx kx x t x x x x +++⇒==+++代入韦达定理得92t =-,即直线AD 过定点90,2⎛⎫- ⎪⎝⎭.3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值. 【答案解析】【要点分析】(1)根据条件列出关于a,b 的方程,求得a,b 的值,即得答案; (2)设直线方程,,联立椭圆方程,可得根与系数的关系式,表示P点坐标,结合,可得N 点坐标,从而可证明结论. 【小问1详解】E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y MB NBMC NC=由椭圆:的离心率为,短轴长为2,可知 ,则 ,故的方程为;【小问2详解】证明:由题意可知直线的斜率一定存在,故设直线的方程为,设,联立,可得,, 则, 所以,又,所以, 解得, 从而 , 故,即为定值.3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,E ()222210x y a b a b +=>>2,222c b a==22231,44b a a -=∴=E 2214x y +=l l (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y 2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩2222(41)326440k x k x k +++-=22116(112)0,012k k ∆=->∴<<2212122232644,4141k k x x x x k k --+==++220002222164164,,(,414114)4(41k k k kx y x P k k k k k --==∴++++=+MB NB MC NC=31122344x x x x x x -+=+-2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++(1,3)N k -03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=12k k31,2Q ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值. 【答案解析】【要点分析】(1)将椭圆上两点代入方程,得到方程组,求解,可得到a 、b ;(2)设出直线AB 方程y =k (x -1),得到D 点坐标()4,3k ,联立直线AB 与椭圆方程,得到A ,B 两点坐标之间的关系,根据坐标,分别表示出1k ,2k ,3k ,化简代入即可得到定值. 【小问1详解】将点2P ⎛⎫ ⎪ ⎪⎝⎭,点31,2Q ⎛⎫ ⎪⎝⎭代入椭圆方程()222210x y a b a b +=>>, 得222233141914a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=.【小问2详解】由题意直线AB 的斜率一定存在,由(1)知,c =1,则椭圆的右焦点坐标为()1,0, 设直线AB 方程为:y =k (x -1),D 坐标为()4,3k .所以23312412k k k -==--, 设()11,A x y ,()22,B x y ,将直线AB 方程与椭圆方程联立得()22223484120kxk x k +-+-=.()()()()22222844341214410k k k k ∆=--+-=+>恒成立,由韦达定理知2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,且()111y k x =-,()221y k x =-, 则()()121213121233331122221111y y k x k x k k x x x x ------+=+=+----()12121223221x x k x x x x +-=-⋅-++2222228233424128213434k k k k k k k-+=-⋅--+++21k =-.故13221212k k k k k +-==-(定值). 题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.【答案解析】(1)由题意知,点M 在第一象限.M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当c x =时,a b y 2=,即.,2⎪⎪⎭⎫ ⎝⎛a b c M …………………(2分) 又直线MN 的斜率为42,所以4222tan 2221===∠acb c a b F MF , 即22222c a ac b -==,即02222=-+a ac c ,………………………………(4分)则01222=-+e e ,解得22=e 或2-=e (舍去), 即.22=e …………………………………(5分)(2)已知)1,0(D 是椭圆的上顶点,则1=b ,椭圆的方程为1222=+y x ,………(6分)设直线AB 的方程为m kx y +=,),(),,(2211y x B y x A ,由⎩⎨⎧=++=2222y x m kx y 可得)*(0)1(24)21(222=-+++m kmx x k , 所以221214kkm x x +-=+,222121)1(2k m x x +-=, 又)1,(11-=y x DA )1,(.22-=y x DB , ………………………………(8分))1)(1()1)(1(21212121-+-++=--+=⋅m kx m kx x x y y x x DB DA221212)1())(1()1(-++-++=m x x m k x x k021)1)(21()(4)1)(1(2)1(214).1(21)1(2).1(222222222222=+-++--+-=-++--++-+=k m k m m k k m m k km m k k m k , 化简整理有01232=--m m ,得31-=m 或.1=m 当1=m 时,直线AB 经过点D ,不满足题意; ………………………………(10分) 当31-=m 时满足方程(*)中0>∆,故直线AB 经过y 轴上定点.31,0⎪⎭⎫ ⎝⎛-G 又Q 为过点D 作线段AB 的垂线的垂足,故Q 在以DG 为直径的圆上,取DG 的中点为⎪⎭⎫ ⎝⎛31,0R ,则||RQ 为定值,且=||RQ .32||21=DG …………………………(12分)4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.【答案解析】【要点分析】(1)结合中点坐标公式表示出点A 的坐标带入抛物线的方程即可求出结果; (2)设出直线的方程与抛物线联立,进而结合根与系数的关系得到TA TB ⋅的表达式,从而可得4040m ⎧+-=⎪⎨-=⎪⎩,因此解方程组即可求出结果.【小问1详解】 因为(),0,0,22p F P ⎛⎫⎪⎝⎭,且点A 恰好为线段PF 中点,所以,14p A ⎛⎫ ⎪⎝⎭,又因为A 在抛物线上,所以2124p p =⋅,即22p =,解得P =【小问2详解】设(),T m n ,可知直线l 斜率存在;设l :2y kx =+,()()1122,,,A x y B x y联立方程得:22y y kx ⎧=⎪⎨=+⎪⎩,所以220y k -+=,所以1212,y y y y k k+==, 又:()()()1212)(TA TB x m x m y n y n ⋅=--+--()()22121244y m y m y n y n ⎛⎫⎛⎫--+-- ⎪⎪ ⎪⎪⎭⎝⎭= ⎝()()222222*********y y m y y m n y y n -++-++=2222484m m n k k k k k ⎛⎫=--++-+ ⎪ ⎪⎝⎭22244m m n k k+-+++=-,令4040m ⎧+=⎪⎨-=⎪⎩,解之得:4m n ⎧=⎪⎨=⎪⎩,即)4T ,此时2218TA TB m n ⋅=+=4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +答案解析:(1)设点P 为,动点M 为,则Q 点为求得:又即点M 的轨迹方程为:4分(2)设直线AB 方程为:则消x 得 或设A 点,B 点则求得: 8分()00,x y (,)x y ()0,0x ()()00,,0,MQ x x y PQ y =--=-())0022,0,MQ x x y y =∴--=-002x x y =⎧⎪⎨-=⎪⎩2222004443x y x y +=∴+= 221(0)43x y y +=≠4x my =+224143x my x y=+⎧⎪⎨+=⎪⎩()223424360m y my +++=()22(24)436340m m =-⨯+> △2m ∴>2m <-()11,x y ()22,x y 1212222436,3434m y y y y m m +=-⋅=++()121232my y y y =-+()()1212121221212123332392223339my y m y y y y k k my my m y y m y y ⎛⎫+-+--- ⎪⎝⎭∴+=+=+++++()()()1212123923392m y y m y y m y y -+-=-++++()()1212392392m y y m y y -+-=++1=-。
理数圆锥曲线1. (2014大纲全国,9,5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若|F1A|=2|F2A|,则cos∠AF2F1=( )A. B. C. D.[答案]1.A[解析] 1.由题意得解得|F2A|=2a,|F1A|=4a,又由已知可得=2,所以c=2a,即|F1F2|=4a,∴cos∠AF2F1===.故选A.2.(2014大纲全国,6,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为( )A.+=1B.+y2=1C.+=1D.+=1[答案]2.A[解析] 2.由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A.3. (2014重庆,8,5分)设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为( )A. B.C.D.3[答案] 3.B[解析] 3.设|PF1|=m,|PF2|=n,依题意不妨设m>n>0,于是∴m·n=··⇒m=3n.∴a=n,b=n⇒c=n,∴e=,选B.4. (2014广东,4,5分)若实数k满足0<k<9,则曲线-=1与曲线-=1的()A.焦距相等B.实半轴长相等 C.虚半轴长相等 D.离心率相等[答案] 4.A[解析] 4.∵0<k<9,∴9-k>0,25-k>0.∴-=1与-=1均表示双曲线,又25+(9-k)=34-k=(25-k)+9,∴它们的焦距相等,故选A.5.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+ C.7+D.6[答案] 5.D[解析] 5.设Q(cos θ,sin θ),圆心为M,由已知得M(0,6),则|MQ|====≤5,故|PQ|max=5+=6.6.(2014山东,10,5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0[答案] 6.A[解析]6.设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.7.(2014天津,5,5分)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.-=1B.-=1 C.-=1D.-=1[答案] 7.A[解析]7.由题意得=2且c=5.故由c2=a2+b2,得25=a2+4a2,则a2=5,b2=20,从而双曲线方程为-=1.8.(2014山东青岛高三第一次模拟考试,10)如图,从点发出的光线,沿平行于抛物线的对称轴方向射向此抛物线上的点,经抛物线反射后,穿过焦点射向抛物线上的点,再经抛物线反射后射向直线上的点,经直线反射后又回到点,则等于()A. B.C.D.[答案] 8. B[解析] 8.由题意可得抛物线的轴为轴,,所以所在的直线方程为,在抛物线方程中,令可得,即从而可得,,ﻫ因为经抛物线反射后射向直线上的点,经直线反射后又回到点,ﻫ所以直线的方程为,ﻫ故选B.9.(2014安徽合肥高三第二次质量检测,4) 下列双曲线中,有一个焦点在抛物线准线上的是( )A. B.C. D.[答案] 9. D[解析] 9.因为抛物线的焦点坐标为,准线方程为,所以双曲线的焦点在轴上,双曲线的焦点在轴且为满足条件. 故选D.10. (2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.[答案]10.[解析]10.设A(x1,y1),B(x2,y2),则+=1①,+=1②.①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.11.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=________.[答案] 11.1+[解析]11.|OD|=,|DE|=b,|DC|=a,|EF|=b,故C,F,又抛物线y2=2px(p>0)经过C、F两点,从而有即∴b2=a2+2ab,∴-2·-1=0,又>1,∴=1+.12.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为____________.[答案]12.x2+y2=1[解析]12.不妨设点A在第一象限,∵AF2⊥x轴,∴A(c,b2)(其中c2=1-b2,0<b<1,c>0).又∵|AF1|=3|F1B|,∴由=3得B,代入x2+=1得+=1,又c2=1-b2,∴b2=.故椭圆E的方程为x2+y2=1.13.(2014浙江,16,4分)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.[答案]13.[解析] 13.由得A,由得B,则线段AB的中点为M.由题意得PM⊥AB,∴kPM=-3,得a2=4b2=4c2-4a2,故e2=,∴e=.14. (2014天津蓟县第二中学高三第一次模拟考试,12) 抛物线+12y=0的准线方程是___________.[答案] 14. y=3[解析] 14. 抛物线的标准方程为:,由此可以判断焦点在y轴上,且开口向下,且p=6,所以其准线方程为y=3.15. (2014大纲全国,21,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.[答案]15.查看解析[解析] 15.(Ⅰ)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(Ⅱ)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4),则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=.化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)16.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q. (i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.[答案] 16.查看解析[解析]16.(Ⅰ)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(Ⅱ)(i)由(Ⅰ)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率kOT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).17. (2014广东,20,14分)已知椭圆C:+=1(a>b>0)的一个焦点为(,0),离心率为. (1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.[答案]17.查看解析[解析] 17.(1)由题意知c=,e==,∴a=3,b2=a2-c2=4,故椭圆C的标准方程为+=1.(2)设两切线为l1,l2,①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).②当l 1与x轴不垂直且不平行时,x0≠±3,设l1的斜率为k,且k≠0,则l2的斜率为-,l1的方程为y-y0=k(x-x0),与+=1联立,整理得(9k2+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0,∵直线l1与椭圆相切,∴Δ=0,即9(y0-kx0)2k2-(9k2+4)·[(y0-kx0)2-4]=0,∴(-9)k2-2x0y0k+-4=0,∴k是方程(-9)x2-2x0y0x+-4=0的一个根,同理,-是方程(-9)x2-2x0y0x+-4=0的另一个根,∴k·=,整理得+=13,其中x0≠±3,∴点P的轨迹方程为x2+y2=13(x≠±3).检验P(±3,±2)满足上式.综上,点P的轨迹方程为x2+y2=13.18. (2014江西,20,13分)如图,已知双曲线C:-y2=1(a>0)的右焦点为F,点A,B分别在C 的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.[答案]18.查看解析[解析] 18.(1)设F(c,0),因为b=1,所以c=,直线OB的方程为y=-x,直线BF的方程为y=(x-c),解得B.又直线OA的方程为y=x,则A,k AB==.又因为AB⊥OB,所以·=-1,解得a2=3,故双曲线C的方程为-y2=1.(2)由(1)知a=,则直线l的方程为-y0y=1(y0≠0),即y=.因为直线AF的方程为x=2,所以直线l与AF的交点为M;直线l与直线x=的交点为N,则===·.因为P(x0,y0)是C上一点,则-=1,代入上式得=·=·=,所求定值为==.19.(2014陕西,2017,13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.[答案]19.查看解析[解析]19.(Ⅰ)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左,右顶点.设C1的半焦距为c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.(Ⅱ)解法一:由(Ⅰ)知,上半椭圆C1的方程为+x2=1(y≥0).易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0),代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)设点P的坐标为(x P,y P),∵直线l过点B,∴x=1是方程(*)的一个根.由求根公式,得x P=,从而yP=,∴点P的坐标为.同理,由得点Q的坐标为(-k-1,-k2-2k).∴=(k,-4),=-k(1,k+2).∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0,∵k≠0,∴k-4(k+2)=0,解得k=-.经检验,k=-符合题意,故直线l的方程为y=-(x-1).解法二:若设直线l的方程为x=my+1(m≠0),比照解法一给分.20.(2014江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.[答案]20.查看解析[解析] 20.设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2==a.又BF2=,故a=.因为点C在椭圆上,所以+=1,解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.21.(2014辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:-=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB 为直径的圆过点P,求l的方程.[答案]21.查看解析[解析]21.(Ⅰ)设切点坐标为(x0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y=-(x-x0),即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=.由+=4≥2x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).由题意知解得a2=1,b2=2,故C1的方程为x2-=1.(Ⅱ)由(Ⅰ)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为+=1,其中b1>0.由P(,)在C2上,得+=1,解得=3,因此C2的方程为+=1.显然,l不是直线y=0.设l的方程为x=my+,点A(x1,y1),B(x2,y2),由得(m2+2)y2+2my-3=0,又y1,y2是方程的根,因此由x1=my1+,x2=my2+,得因=(-x1,-y1),=(-x2,-y2).由题意知·=0,所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0.⑤将①,②,③,④代入⑤式整理得2m2-2m+4-11=0,解得m=-1或m=-+1. 因此直线l的方程为x-y-=0或x+y-=0.22.(2012太原高三月考,20,12分)已知曲线C:x2+=1.(Ⅰ)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足:=3,求P点的轨迹方程,并讨论其轨迹的类型;(Ⅱ)如果直线l的斜率为,且过点M(0,-2),直线l与曲线C交于A、B两点,又·=-,求曲线C的方程.[答案] 22.(Ⅰ)设E(x0,y0),P(x,y),则F(x0,0),∵=3,∴(x-x0,y)=3(x-x0,y-y0),∴代入曲线C中得x2+=1为所求的P点的轨迹方程.(2分)①当λ=时,P点轨迹表示:以(0,0)为圆心,半径r=1的圆;(3分)②当0<λ<时,P点轨迹表示:中心在坐标原点,焦点在x轴上的椭圆;(4分)③当λ>时,P点轨迹表示:中心在坐标原点,焦点在y轴上的椭圆;(5分)④当λ<0时,P点轨迹表示:中心在坐标原点,焦点在x轴上的双曲线.(6分)(Ⅱ)由题设知直线l的方程为y=x-2,代入曲线C中得(λ+2)x2-4x+4-λ=0,(7分)令A(x1,y1),B(x2,y2),∵以上方程有两解,∴Δ=32-4(λ+2)(4-λ)>0,且λ+2≠0,(8分)∴λ>2或λ<0且λ≠-2,x1+x2=,x1·x2=.又·=x1·x2+(y1+2)(y2+2)=3x1·x2==-.(10分)解得λ=-14,(11分)∴曲线C的方程是x2-=1.(12分)22.23.(2012山西大学附中高三十月月考,21,12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.[答案] 23.(I)由题意得,∴,∴.由题意得椭圆的右焦点到直线即的距离为,∴,∴∴椭圆C的方程为(II)设,直线AB的方程为则,,直线AB的方程与椭圆C的方程联立得消去得整理得则是关于的方程的两个不相等的实数根,∴,∴,整理得,∴,∴O到直线AB的距离即O到直线AB的距离定值. ……8分∴,当且仅当OA=OB时取“=”号.∴,又,∴,即弦AB的长度的最小值是23.24.(2012广东省“六校教研协作体”高三11月联考,20,14分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为. (1)求椭圆的方程;(2)已知动直线与椭圆相交于、两点,①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.[答案] 24.(1)由题意得……2分解得,所以椭圆C的方程为.…4分(2)①设,直线方程与椭圆C的方程联立得消去,整理得,……6分则是关于的方程两个不相等的实数根,恒成立,,……7分又中点的横坐标为,所以,解得.…………9分②则,由①知,,所以, (1)…………12分.…14分24.-- --。