人教版_选修2-1_第三章_空间向量试卷(含答案)
- 格式:doc
- 大小:663.00 KB
- 文档页数:8
§3.1.4 空间向量的正交分解及其坐标表示一、选择题1.对于向量a ,b ,c 和实数λ,下列命题中真命题是( )A .若a ·b =0,则a =0或b =0B .若λa =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a ·b =a ·c ,则b =c2.以下四个命题中正确的是( )A .空间的任何一个向量都可用其它三个向量表示B .若{a ,b ,c }为空间向量的一组基底,则a ,b ,c 全不是零向量C .△ABC 为直角三角形的充要条件是AB →·AC →=0D .任何三个不共线的向量都可构成空间向量的一个基底3.长方体ABCD -A 1B 1C 1D 1中,若AB →=3i ,AD →=2j ,AA 1→=5k ,则AC 1→( )A .i +j +k B.13i +12j +15k C .3i +2j +5k D .3i +2j -5k4.已知向量{a ,b ,c }是空间的一个基底,p =a +b ,q =a -b ,一定可以与向量p ,q 构成空间的另一个基底的是( )A .aB .bC .cD .无法确定5.给出下列两个命题:①如果向量a ,b 与任何向量不能构成空间的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA →,OB → ,OC →不构成空间的一个基底,那么点O ,A ,B ,C 一定共面. 其中正确的命题是( )A .仅①B .仅②C .①②D .都不正确6.已知i 、j 、k 是空间直角坐标系O -xyz 的坐标向量,并且AB →=-i +j -k ,则B 点的坐标为( )A .(-1,1,-1)B .(-i ,j ,-k )C .(1,-1,-1)D .不确定7.设O -ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG→=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A .⎝⎛⎭⎫14,14,14B .⎝⎛⎭⎫34,34,34C .⎝⎛⎭⎫13,13,13D .⎝⎛⎭⎫23,23,238.对于空间的四个向量a ,b ,c ,d 最多能构成的基底个数是( )A .1B .2C .3D .4二、填空题9.已知e 1、e 2、e 3是不共面向量,若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3, d =e 1+2e 2+3e 3,又d =αa +βb +γc ,则α、β、γ分别为________.10.向量p 在基底{a ,b ,c }下的坐标为(2,1,-1),则p 在基底{a +b ,a -b ,c }下的坐标为________,在基底{2a ,b ,-c }下的坐标为________.11.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.12.棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.三、解答题13.如图所示,平行六面体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→.(2)设G 、H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.14.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E 、F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A 、E 、C 1、F 四点共面;(2)若EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值.参考答案一、选择题1.[答案] B[解析] a ·b =0⇒a ⊥b ,|a |2=|b |2⇒(a +b )·(a -b )=0⇒(a +b )⊥(a -b ); a ·b =a ·c ⇒a ⊥(b -c );故A 、C 、D 均错.2.[答案] B[解析] 使用排除法.因为空间中的任何一个向量都可用其它三个不共面...的向量来表示,故A 不正确;△ABC 为直角三角形并不一定是AB →·AC →=0,可能是BC →·BA →=0,也可能是CA →·CB →=0,故C 不正确;空间向量基底是由三个不共面的向量组成的,故D 不正确,故选B.3.[答案] C4.[答案] C[解析] ∵a =12p +12q ,∴a 与p 、q 共面, ∵b =12p -12q ,∴b 与p 、q 共面, ∵不存在λ、μ,使c =λp +μq ,∴c 与p 、q 不共面,故{c ,p ,q }可作为空间的一个基底,故选C.5.[答案] B[解析] ①对空间任意向量c ,都有c 与a 、b 共面,则必有a 与b 共线,∴①错;②∵OA →、OB →、OC →不能构成空间的基底,∴OA →、OB →、OC →必共面,故存在实数λ,μ,使OA →=λOB →+μOC →,∴O 、A 、B 、C 四点共面,∴②正确.6.[答案] D[解析] 向量AB →的坐标与B 点的坐标不同.7.[答案] A[解析] 连AG 1交BC 于E ,则E 为BC 中点,AE →=12(AB →+AC →)=12(OB →-2OA →+OC →),AG 1→=23AE →=13(OB →-2OA →+OC →), ∵OG →=3GG 1→=3(OG 1→-OG →),∴OG =34OG 1, ∴OG →=34OG 1→=34(OA →+AG 1→) =34(OA →+13OB →-23OA →+13OC →) =14OA →+14OB →+14OC →,故选A. 8.[答案] D[解析] 最多的情况是a ,b ,c ,d 中任两个不共线,任三个不共面,从中任选三个都可做一组基底,共4个.二、填空题9.[答案] 52 -1 -12[解析] d =αa +βb +γc =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3,又因为d =e 1+2e 2+3e 3,e 1、e 2、e 3不共面,∴⎩⎪⎨⎪⎧ α+β+γ=1α+β-γ=2α-β+γ=3,解得⎩⎪⎨⎪⎧ α=52β=-1γ=-12.10.[答案] (32,12,-1) (1,1,1) [解析] 由条件p =2a +b -c .设p 在基底{a +b ,a -b ,c }下的坐标为(x ,y ,z ),则p =x (a +b )+y (a -b )+z c =(x +y )a +(x -y )b +z c ,∵a 、b 、c 不共面,∴⎩⎪⎨⎪⎧ x +y =2x -y =1z =-1,∴⎩⎪⎨⎪⎧ x =32y =12z =-1.即p 在基底{a +b ,a -b ,c }下的坐标为(32,12,-1), 同理可求p 在基底{2a ,b ,-c }下的坐标为(1,1,1).11.[答案] 12a +14b +14c12.[答案] (12,0,-12) [解析] MN →=BN →-BM →=12(BA →+BC →)-12(BP →+BC →)=12BA →-12BP →, 即MN →=⎝⎛⎭⎫12,0,-12. 三、解答题13.[解析] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c .AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a .(2)GH →=GO →+OH →=-OG →+OH →=-12(OB →+OC ′→)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c )=12(c -b ) 14.[解析] (1)证明:因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→ =⎝⎛⎭⎫AB →+13AA 1→+⎝⎛⎭⎫AD →+23AA 1→ =(AB →+BE →)+(AD →+DF →)=AE →+AF →,所以A 、E 、C 1、F 四点共面.(2)解:因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→, 所以x =-1,y =1,z =13, 所以x +y +z =13.。
3.1.4空间向量的正交分解及其坐标表示双基限时练(十九)1.在空间直角坐标系O -xyz 中,下列说法中正确的是( )A .向量AB →的坐标与点B 的坐标相同B .向量AB →的坐标与点A 的坐标相同C .向量AB →的坐标与向量OB →的坐标相同D .向量AB →的坐标与OB →-OA →的坐标相同解析 在空间直角坐标系中,从原点出发的向量的坐标等于终点的坐标,不从原点出发的向量AB →的坐标等于终点的坐标减去始点的坐标,所以AB →=OB →-OA →.答案 D2.以下四个命题中正确的是( )A .空间的任何一个向量都可用其他三个向量表示B .若{a ,b ,c }为空间向量的一组基底,则{a +b ,b +c ,c +a }构成空间向量的另一组基底C. △ABC 为直角三角形的充要条件是AB →·AC →=0D .任何三个不共线的向量都可构成空间向量的一个基底答案 B3.下列说法不正确的是( )A .只要空间的三个基本向量的模为1,那么它们就是空间的一个单位正交基底B .竖坐标为0的向量平行于x 轴与y 轴所确定的平面C .纵坐标为0的向量都共面D .横坐标为0的向量都与x 轴上的基向量垂直答案 A4.从空间一点出发的三个不共线的向量a ,b ,c 确定的平面个数是( )A .1B .2C .3D .1或3解析 当三个向量共面时,可确定一个平面,当三个向量不共面时,可以确定三个平面.答案 D5.正方体ABCD -A ′B ′C ′D ′,O 1,O 2,O 3分别是AC ,AB ′,AD ′,的中点,以{AO 1→,AO 2→,AO 3→}的基底,AC ′→=xAO 1→+yAO 2→+zAO 3→,则x ,y ,z 的值是( )A .x =y =z =1B .x =y =z =12C .x =y =z =22D .x =y =z =2解析 AC ′→=AB →+BC ′→=AB →+BB ′→+B ′C ′→=AB →+AA ′→+AD →=12(AB →+AD →)+12(AB →+AA ′→)+12(AA ′→+AD →)=12AC →+12AB ′→+12AD ′→=AO 1→+AO 2→+AO 3→.对比AC ′→=xAO 1→+yAO 2→+zAO 3→,知x =y =z =1.答案 A6.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =3e 1+2e 2-e 3,b =-2e 1+4e 2+2e 3,则向量a ,b 的坐标分别是________.答案 a =(3,2,-1),b =(-2,4,2)7.若{a ,b ,c }构成空间的一个基底,且存在实数x ,y ,z 使得x a +y b +z c =0,则x ,y ,z 满足的条件是__________.解析 ∵{a ,b ,c }构成空间的一个基底,∴a ,b ,c 都是非零向量.由0=x a +y b +z c 知,x =y =z =0.答案 x =y =z =08.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=__________(用a ,b ,c 表示).解析 OE →=OA →+AE →=OA →+12AD →=OA →+12·12(AB →+AC →)=OA →+14(OB →-OA →)+14(OC →-OA →)=12OA →+14OB →+14OC →=12a +14b +14c .答案 12a +14b +14c9.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,PM =2MC ,N 为PD 的中点,求满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解 如图所示,取PC 的中点E ,连接NE ,则MN →=EN →-EM →.由题意易知EN →=12CD →=12BA →=-12AB →,EM →=PM →-PE →=23PC →-12PC →=16PC →,连接AC ,则PC →=PA →+AC →=AB →+AD →-AP →.∴MN →=-12AB →-16PC →=-12AB →-16(AB →+AD →-AP →)=-23AB →-16AD →+16AP →.∴x =-23,y =-16,z =16.10.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,O ,O 1分别为底面ABCD 、底面A 1B 1C 1D 1的中心,AB =6,AA 1=4,M 为B 1B 的中点,N 在C 1C 上,且C 1N :NC =1:3.(1)若以O 为原点,分别以OA ,OB ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,求图中各点的坐标;(2)若以D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,求图中各点的坐标.解 (1)正方形ABCD 中,AB =6,∴AC =BD =62,从而OA =OC =OB =OD =3 2.∴各点坐标分别为A (32,0,0),B (0,32,0),C (-32,0,0),D (0,-32,0),O (0,0,0),O 1(0,0,4),A 1(32,0,4),B 1(0,32,4),G 1(-32,0,4),D 1(0,-32,4),M (0,32,2),N (-32,0,3).(2)同理,A (6,0,0),B (6,6,0),C (0,6,0),D (0,0,0),A 1(6,0,4),B 1(6,6,4),C 1(0,6,4),D 1(0,0,4),O (3,3,0),O 1(3,3,4),M (6,6,2),N (0,6,3).11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,取AB →=a ,AD →=b ,AA 1→=c 作为基底.(1)求BD 1→;(2)若M ,N 分别为边AD ,CC 1的中点,求MN →.解 (1)BD 1→=AD 1→-AB →=AD →+DD 1→-AB →=AD →+AA 1→-AB →=b +c -a .(2)MN →=MA →+AB →+BC →+CN →=12DA →+AB →+AD →+12CC 1→=AB →+12AD→+12AA1→=a+12b+12c.12.如图所示,在三棱锥O-ABC中,OA,OB,OC两两垂直,OA=1,OB=2,OC=3,E,F分别为AC,BC的中点,建立以OA→,OB→,OC→方向上的单位向量为正交基底的空间坐标系O-xyz.求EF中点P的坐标.解令Ox,Oy,Oz轴方向上的单位向量分别为i,j,k.∵OP→=OE→+EP→=12(OA→+OC→)+12EF→=12(OA→+OC→)+12×12AB→=12 (OA→+OC→)+14(OB→-OA→)=14OA→+14OB→+12OC→=14i+14×2j+12×3k=14i+12j+32k∴P点的坐标为⎝⎛⎭⎪⎫14,12,32.。
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
AA 1DCB B 1C 1图高二数学(选修2-1)空间向量试题姓名:_________班级:________ 得分:________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 图图7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66 B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
这时Q ⎝ ⎛⎭⎪⎫43,43,83.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.若A (x,5-x,2x -1),B (1,x +2,2-x ),则当|AB →|取最小值时,x 的值等于________.解析:AB →=(1-x,2x -3,-3x +3),则 |AB →|=1-x2+2x -32+-3x +32=14x 2-32x +19=14⎝⎛⎭⎪⎫x -872+57,故当x =87时,|AB →|取最小值.答案:8714.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 夹角的正弦值是________. 解析:如图,以DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C 1(0,1,1), 易证AC 1→是平面A 1BD 的一个法向量.AC 1→=(-1,1,1),BC 1→=(-1,0,1). cos 〈AC 1→,BC 1→〉=1+13×2=63. 所以BC 1与平面A 1BD 夹角的正弦值为63.答案:63设AC ∩BD =N ,连结NE ,则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1), ∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1. 又A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1, ∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1. ∴NE →=AM →,且NE 与AM 不共线.∴NE ∥AM .又NE ⊂平面BED ,AM ⊄平面BDE ,∴AM ∥平面BDE .(2)设P (t ,t,0)(0≤t ≤2),则PF →=(2-t ,2-t,1),CD →=(2,0,0).又∵PF →与CD →所成的角为60°,|2-t ·2|2-t2+2-t 2+1·2=12, 解之得t =22,或t =322(舍去). 故点P 为AC 的中点.22.(本小题满分12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设a ,b ,c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )A .①②B .②③C .③④D .②④【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中,|a |2·b =|b |2·a 不一定成立,④运算正确.【答案】 D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( )A .30°B .45°C .60°D .以上都不对【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14.【答案】 D3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( )A.PC →与BD →B.DA →与PB →C.PD→与AB → D.P A →与CD→ 【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD→=0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C.【答案】 A4.如图3-1-25,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )图3-1-25A .2BA →·AC →B .2AD →·DB →C .2FG→·AC → D .2EF→·CB → 【解析】 2BA→·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2,故D 错;2FG→·AC →=AC →2=a 2,故只有C 正确. 【答案】 C5.在正方体ABCD -A 1B 1C 1D 1中,有下列命题:①(AA 1→+AD →+AB →)2=3AB →2; ②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°.其中正确命题的个数是( ) 【导学号:18490091】 A .1个 B .2个 C .3个D .0个【解析】 由题意知①②都正确,③不正确,AD 1→与A 1B →的夹角为120°.【答案】 B 二、填空题6.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61, ∴|2a -3b |=61. 【答案】617.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.【解析】 由题意知⎩⎪⎨⎪⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1.即⎩⎪⎨⎪⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b | 得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.【答案】 (-1-3,-1+3)8.如图3-1-26,已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3-1-26【解析】 不妨设棱长为2,则AB →1=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=(BB 1→-BA →)·⎝ ⎛⎭⎪⎫BC →+12BB 1→22×5=0-2+2-022×5=0,故填90°.【答案】 90° 三、解答题9.如图3-1-27,在正方体ABCD -A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面BDG .图3-1-27【证明】 设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c . 则a ·b =0,a ·c =0,b ·c =0.而A 1O →=A 1A →+AO → =A 1A →+12(AB →+AD →) =c +12(a +b ), BD→=AD →-AB →=b -a , OG→=OC →+CG → =12(AB →+AD →)+12CC 1→ =12(a +b )+12c .∴A 1O →·BD →=⎝⎛⎭⎪⎫c +12a +12b ·(b -a )=c ·(b -a )+12(a +b )·(b -a ) =c ·b -c ·a +12(b 2-a 2) =12(|b |2-|a |2)=0. ∴A 1O →⊥BD →. ∴A 1O ⊥BD . 同理可证A 1O →⊥OG →. ∴A 1O ⊥OG .又OG ∩BD =O 且A 1O ⊄平面BDG , ∴A 1O ⊥平面BDG .10.已知长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点,试计算:(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=AD →·(EA 1→+A 1D 1→)=AD →·⎣⎢⎡⎦⎥⎤12(AA 1→-AB→)+AD → =b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+BB 1→) =⎝ ⎛⎭⎪⎫AA 1→-AB →+12AD →·(AB →+AA 1→) =⎝⎛⎭⎪⎫c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.(3)EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB → =⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a=-12|a |2+14|b |2=2.[能力提升]1.已知边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( ) A .-1 B .0 C .1D .2【解析】 AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C.【答案】 C2.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°【解析】 由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD→=CD →2=1. cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,得〈AB→,CD →〉=60°. 【答案】 B3.已知正三棱柱ABC -DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CNCF =________. 【导学号:18490092】【解析】 设CN CF =m ,由于AE →=AB →+BE →,MN →=12BC →+mAD →,又AE→·MN →=0, 得12×1×1×⎝ ⎛⎭⎪⎫-12+4m =0,解得m =116. 【答案】 1164.如图3-1-28,平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.图3-1-28【解】 ∵AC 1→=AB →+AD →+AA 1→, ∴|AC 1→|=(AB →+AD →+AA 1→)2= AB →2+AD →2+AA 1→2+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→). ∵AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,∴〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA 1→〉=60°, ∴|AC 1→| =1+4+9+2(1×3×cos 60°+2×3×cos 60°) =23.。
1.已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55 B .555 C .553 D .511 2.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为 ( ) A .3 B .32 C .6 D .263.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则= ( )A .21 B .22C .-21D .04.设A 、B 、C 、D 是空间不共面的四点,且满足000=∙=∙=∙AD AB ,AD AC ,AC AB ,则∆BCD 是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5.已知空间四边形ABCD 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( )A .213221+- B .212132++- C .c b a 212121-+ D .c b a 213232-+6.与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22)7.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85BC .D .50 8.在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OC OB OA OM --=2B .OC OB OA OM 213151++=C .=++D .=+++ 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小 ( )A .3π B .6π C .65π D .32π10.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值( )A .32B .37C .23 D .73 11.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( )A .621 B .338 C .60210 D .3021012.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( )A .63B .33 C .332 D .23 13.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( ) A .a 42 B .a 82 C .a 423 D .a 2214.正四棱锥S ABCD -的高2SO =,底边长AB BD 和SC 之间的距离( ) A .515 B .55 C .552 D .10515.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( ) A .1030 B .21 C .1530 D .101516.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715B .21C .178 D .2317.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 18.(本小题12分)如图:四棱锥P —ABCD 中,底面ABCD是矩形,PA ⊥底面ABCD ,PA=AB=1,AD=3,点F 是PB 的中点,点E 在边BC 上移动. (1)证明:无论点E 在BC 边的何处,都有PE ⊥AF;(2)当BE 等于何值时,PA 与平面PDE 所成角的大小为45°. 19.(14分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,M 、AA 1DCB B 1C 1 图N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M.20.(12分)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:PA ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量={x 1,y 1,z 1},={x 2,y 2,z 2},={x 3,y 3,z 3},定义一种运算: (×)·=x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义..21.(12分)若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直. 22.(12分)如图在空间直角坐标系中BC=2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC=90°,∠DCB=30°. (1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值23.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且|'|3|'|A N NC =,试求MN 的长.24.如图,在四棱锥PABCD -中,平面PAD ⊥平面ABCD ,//AB DC ,PAD ∆是等边三角形,已知28,2BD AD AB DC ====(1)设M 是PC 上的一点,证明:平面PAD ⊥平面MBD ; (2)求二面角A PB D --的余弦值.25.如图所示,正方形D D AA11与矩形ABCD 所在平面互相垂直,22==AD AB ,点E 为AB 的中点.(1)求证:1BD ∥平面DE A 1; (2)求证:E D 1⊥D A 1;(3)在线段AB 上是否存在点M ,使二面角D MC D --1的大小为6π?若存在,求出AM 的长;若不存在,请说明理由.26.已知在四棱锥P ABCD -中,底面A B C D 是矩形,PA ⊥平面A B C D ,1PA AD ==,2AB =,,E F 分别是AB PD 、的中点.(1)求证://AF 平面PEC ;(2)求二面角P EC D --的余弦值.27.已知直角梯形PBCD ,A 是PD 边上的中点(如图甲),=2D C π∠∠=,2BC CD ==,4PD =,将PAB ∆沿AB 折到SAB ∆的位置,使SB BC ⊥,点E 在SD 上,且13SE SD =(如图乙)(Ⅰ)求证:SA ⊥平面ABCD. (Ⅱ)求二面角E −AC −D 的余弦值28.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,,E F 分别是,AB PB 的中点.(1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论; (3)求DB 与平面DEF 所成角的正弦值.29.如图,正三棱柱111ABC A B C -中,点D 是BC 的中点.A EB PCDF(Ⅰ)求证: AD ⊥平面11BCC B ; (Ⅱ)求证: 1AC 平面1AB D .30.已知斜三棱柱111ABC A B C -的底面是直角三角形, 90ACB ∠=,侧棱与底面所成角为θ,点1B 在底面上的射影D 落在BC 上.(1)求证:AC ⊥平面11B B C C ;(2)若1cos 3θ=,且当13AC BC AA ===时,求二面角1C AB C --的大小. 31.如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AB 上移动.(Ⅰ)证明:11D E A D ⊥;(Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离; (Ⅲ)AE 等于何值时,二面角1D EC D --的大小为4π. 32.在底面边长为2,高为1的正四棱柱1111ABCD A BC D -中,E 、F 分别为BC 、11C D 的中点.ABC DA 1B 1C 1(1)求异面直线1A E 、CF 所成的角; (2)求平面1A EF 与平面11ADD A 所成锐二面角的余弦值.33.如图,四棱锥P —ABCD 中,PAB ∆为边长为2的正三角形,底面ABCD 为菱形,且平面PAB ⊥平面ABCD ,AB PC ⊥,E 为PD 点上一点,满足ED PE 21=(1)证明:平面ACE ⊥平面ABCD ;(2)求直线PD 与平面ACE 所成角正弦值的大小.34.如图(1),等腰直角三角形ABC 的底边4AB =,点D 在线段AC 上,DE AB ⊥于E ,现将ADE ∆沿DE 折起到PDE ∆的位置(如图(2)).(Ⅰ)求证:PB DE ⊥;(Ⅱ)若PE BE ⊥,直线PD 与平面PBC 所成的角为030,求PE 长.35.如图,已知长方形ABCD 中,1,2==AD AB ,M 为DC 的中点. 将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(I )求证:BM AD ⊥ ;(II )若点E 是线段DB 的中点,求二面角D AM E --的余弦值.图 (1)图 (2)ABE C DPE BC D36.(14分)如图:正方体ABCD-A 1B 1C 1D 1,过线段BD 1上一点P (P ∉平面ACB 1)作垂直于D 1B 的平面分别交过D 1的三条棱于E 、F 、G .(1)求证:平面EFG ∥平面A CB 1,并判断三角形类型;(2)若正方体棱长为a ,求△EFG 的最大面积,并求此时EF 与B 1C 的距离. 37.(14分)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点,求: (Ⅰ)D 1E 与平面BC 1D 所成角的大小; (Ⅱ)二面角D -BC 1-C 的大小;(Ⅲ)异面直线B 1D 1与BC 1之间的距离. 38.(12分)已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. (1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的BDEF 的距离; (3)求直线A 1D 与平面BDEF 所成的角.39.(12分)在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值. 40.(12分)已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC . 41.(12分)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小42.已知O 是△ABC 的外心,AB = 6,AC = 10,若AC y AB x AO +=,且5102=+y x ,则=∠BAC cos .43.在平面四边形ABCD 中,点,E F 分别是边,AD BC 的中点,且AB =,1EF =,CD =.若15AD BC ⋅=,则AC BD ⋅的值为____ .44.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .45.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 . 46.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G在线段MN 上,且GN MG 2=,现用基组{},,表示向量OG ,有=x z y ++,则x 、y 、z 的值分别为 .47.若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 .48.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .49. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .50.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 .参考答案1.C 【解析】试题分析:由已知(1,21,0)b a t t -=+-,||(1b a t -=+=||-的最小值为553,故选C 。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )A .30°B .150°C .30°或150°D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为⎝⎛⎦⎥⎤0,π2.应选A.【答案】 A2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( )A.52266 B .-52266 C.52222D .-52222【解析】 AB→=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266,∴直线AB ,CD 所成角的余弦值为52266. 【答案】 A3.正方形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,若P A =AB ,则平面P AB 与平面PCD 的夹角为( )A .30°B .45°C .60°D .90°【解析】 如图所示,建立空间直角坐标系,设P A =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD→=(0,1,0).取PD 中点为E ,则E ⎝ ⎛⎭⎪⎫0,12,12,∴AE →=⎝ ⎛⎭⎪⎫0,12,12,易知AD →是平面P AB 的法向量,AE →是平面PCD 的法向量,∴cos AD→,AE →=22,∴平面P AB 与平面PCD 的夹角为45°. 【答案】 B4.如图3-2-28,在空间直角坐标系Dxyz 中,四棱柱ABCD -A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E ,F 分别为C 1D 1,A 1B 的中点,则二面角B 1A 1B E 的余弦值为( ) 【导学号:18490121】图3-2-28A .-33 B .-32 C. 33D. 32【解析】 设AD =1,则A 1(1,0,2),B (1,2,0),因为E ,F 分别为C 1D 1,A 1B 的中点,所以E (0,1,2),F (1,1,1),所以A 1E →=(-1,1,0),A 1B →=(0,2,-2),设m =(x ,y ,z )是平面A 1BE 的法向量,则⎩⎨⎧A 1E →·m =0,A 1B →·m =0,所以⎩⎪⎨⎪⎧-x +y =0,2y -2z =0,所以⎩⎪⎨⎪⎧y =x ,y =z ,取x =1,则y =z=1,所以平面A 1BE 的一个法向量为m =(1,1,1),又DA ⊥平面A 1B 1B ,所以DA →=(1,0,0)是平面A 1B 1B 的一个法向量,所以cos 〈m ,DA →〉=m ·DA →|m ||DA →|=13=33,又二面角B 1A 1B E 为锐二面角,所以二面角B 1A 1B E 的余弦值为33,故选C.【答案】 C5.如图3-2-29,空间正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是CD ,CC 1的中点,则异面直线A 1M 与DN 所成角的大小是( )图3-2-29A.π6B.π4C.π3D.π2【解析】 以D 为原点,DA ,DC ,DD 1所在直线为坐标轴建系,则A 1M →=⎝⎛⎭⎪⎫-1,12,-1,DN →=⎝⎛⎭⎪⎫0,1,12,cos 〈A 1M →,DN →〉=A 1M →·DN →|A 1M →||DN →|=0.∴〈A 1M →,DN →〉=π2. 【答案】 D 二、填空题6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为A 1B 1,BB 1的中点,则异面直线AM 与CN 所成角的余弦值是________.【解析】 依题意,建立如图所示的坐标系,则A (1,0,0),M ⎝ ⎛⎭⎪⎫1,12,1,C (0,1,0),N ⎝ ⎛⎭⎪⎫1,1,12,∴AM →=⎝⎛⎭⎪⎫0,12,1,CN →=⎝⎛⎭⎪⎫1,0,12,∴cos 〈AM→,CN →〉=1252·52=25, 故异面直线AM 与CN 所成角的余弦值为25. 【答案】 257.在空间直角坐标系Oxyz 中,已知A (1,-2,0),B (2,1,6),则向量AB→与平面xOz 的法向量的夹角的正弦值为________. 【解析】 设平面xOz 的法向量为n =(0,t ,0)(t ≠0),AB →=(1,3, 6),所以cos 〈n ,AB →〉=n ·AB →|n |·|AB →|=3t 4|t |,因为〈n ,AB→〉∈[0,π],所以sin 〈n ,AB→〉=1-⎝ ⎛⎭⎪⎫3t 4|t |2=74. 【答案】 748.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.【解析】 如图,建立空间直角坐标系.设正方体的棱长为1,平面ABC 的法向量为n 1=(0,0,1),平面AEF 的法向量为n 2=(x ,y ,z ).所以A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,所以AE →=⎝⎛⎭⎪⎫0,1,13,EF →=⎝⎛⎭⎪⎫-1,0,13,则⎩⎨⎧n 2·AE→=0,n 2·EF →=0,即⎩⎪⎨⎪⎧y +13z =0,-x +13z =0.取x =1,则y =-1,z =3.故n 2=(1,-1,3). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=31111.所以平面AEF 与平面ABC 所成的二面角的平面角α满足cos α=31111,sin α=2211,所以tan α=23.【答案】 23 三、解答题9.如图3-2-30所示,在四面体ABCD 中,O ,E 分别是BD ,BC 的中点,CA =CB =CD =BD =2,AB =AD = 2. 【导学号:18490119】图3-2-30(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值. 【解】 (1)证明:连接OC ,由题意知BO =DO ,AB =AD , ∴AO ⊥BD .又BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由已知可得AO =1,CO =3, 又AC =2,∴AO 2+CO 2=AC 2, ∴∠AOC =90°,即AO ⊥OC . ∵BD ∩OC =O ,∴AO ⊥平面BCD . (2)以O 为坐标原点建立空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0, 3,0),A (0,0,1),E ⎝ ⎛⎭⎪⎫12,32,0,∴BA→=(-1,0,1),CD →=(-1,-3,0), ∴cos 〈BA →,CD →〉=BA →·CD →|BA →|·|CD →|=24.∴异面直线AB 与CD 所成角的余弦值为24.10.四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.【解】 如图,以D 为原点建立空间直角坐标系Dxyz ,设AB =a ,PD =h ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),D (0,0,0),P (0,0,h ), (1)∵AC→=(-a ,a ,0),DP →=(0,0,h ),DB →=(a ,a ,0), ∴AC→·DP →=0,AC →·DB →=0, ∴AC ⊥DP ,AC ⊥DB ,又DP ∩DB =D , ∴AC ⊥平面PDB ,又AC ⊂平面AEC ,∴平面AEC ⊥平面PDB .(2)当PD =2AB 且E 为PB 的中点时,P (0,0,2a ),E ⎝ ⎛⎭⎪⎫12a ,12a ,22a ,设AC ∩BD =O ,O ⎝ ⎛⎭⎪⎫a 2,a 2,0,连接OE ,由(1)知AC ⊥平面PDB于O ,∴∠AEO 为AE 与平面PDB 所成的角,∵EA →=⎝ ⎛⎭⎪⎫12a ,-12a ,-22a ,EO →=⎝⎛⎭⎪⎫0,0,-22a ,∴cos ∠AEO =EA →·EO →|EA →|·|EO →|=22,∴∠AEO =45°,即AE 与平面PDB 所成的角的大小为45°.[能力提升]1.已知在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不对【解析】 以点D 为原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.由题意知,A 1(1,0,2),E (1,1,1),D 1(0,0,2),A (1,0,0),所以A 1E →=(0,1,-1),D 1E →=(1,1,-1),EA →=(0,-1,-1).设平面A 1ED 1的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·A 1E →=0,n ·D 1E →=0,得⎩⎪⎨⎪⎧y -z =0,x +y -z =0. 令z =1,得y =1,x =0,所以n =(0,1,1),cos 〈n ,EA →〉=n ·EA →|n ||EA →|=-22·2=-1. 所以〈n ,EA→〉=180°. 所以直线AE 与平面A 1ED 1所成的角为90°. 【答案】 B2.在三棱柱ABC -A 1B 1C 1中,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )图3-2-31A.55 B.53 C.255D.35【解析】 不妨设CA =CC 1=2CB =2, 则AB 1→=(-2,2,1),C 1B →=(0,-2,1), 所以cos 〈AB 1→,C 1B →〉=AB 1→·C 1B →|AB 1→||C 1B →|=(-2)×0+2×(-2)+1×19×5=-55.因为直线BC 1与直线AB 1的夹角为锐角,所以所求角的余弦值为55.【答案】 A3.在空间中,已知平面α过(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.【解析】 平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0,即3x =4y =az ,取z =1,则u =⎝ ⎛⎭⎪⎫a 3,a 4,1. 而cos 〈n ,u 〉=1a 29+a216+1=22, 又∵a >0,∴a =125.【答案】 1254.如图3-2-32,在直三棱柱A 1B 1C 1ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.图3-2-32(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.【导学号:18490120】【解】 (1)以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4) ,C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010, 所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD→=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=29×1=23, 得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
3.1.4空间向量的正交分解及其坐标表示课时过关·能力提升基础巩固1下列说法正确的是()A.任何三个不共线的向量可构成空间向量的一个基底B.空间的基底有且仅有一个C.两两垂直的三个非零向量可构成空间的一个基底D.基底{a,b,c}中基向量与基底{e,f,g}中基向量对应相等项中应是不共面的三个向量构成空间向量的基底;B项,空间基底有无数个;D项中因为基底不唯一,所以D错.故选C.2已知点A在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则点A在基底{i,j,k}下的坐标是()A.(12,14,10)B.(10,12,14)C.(14,12,10)D.(4,3,2)=8a+6b+4c=8(i+j)+6(j+k)+4(k+i)=12i+14j+10k.3在空间直角坐标系Oxyz中,下列说法正确的是()⃗⃗⃗⃗⃗ 与点B的坐标相同A.向量AB⃗⃗⃗⃗⃗ 与点A的坐标相同B.向量ABC.向量AB⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ 的坐标相同 D.向量AB ⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ 的坐标相同4点A (-1,2,1)在x 轴上的投影点和在xOy 平面上的投影点的坐标分别为( ) A.(-1,0,1),(-1,2,0)B.(-1,0,0),(-1,2,0)C.(-1,0,0),(-1,0,0)D.(-1,2,0),(-1,2,0)A 在x 轴投影知y=0,z=0,由点A 在xOy 平面投影知z=0.故选B .5设{i ,j ,k }是空间的一个单位正交基底,a =2i -4j+5k ,b=i+2j-3k ,则向量a ,b 的坐标分别为 , .-4,5) (1,2,-3)6已知{a ,b ,c }是空间的一个基底,下列向量可以与p =2a -b ,q =a +b 构成空间的另一个基底的是 (填序号).①2a ②-b ③c ④a +c7如图,在边长为2的正方体ABCD-A 1B 1C 1D 1中,取点D 为原点建立空间直角坐标系,已知O ,M 分别是AC ,DD 1的中点,写出下列向量的坐标.AM ⃗⃗⃗⃗⃗⃗ = ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ = .-2,0,1) (1,1,2)8如图,在梯形ABCD 中,AB ∥CD ,AB=2CD ,点O 为空间任一点,设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,则向量OD ⃗⃗⃗⃗⃗⃗ 用a ,b ,c 表示为 .-12b +c9如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,建立适当的空间直角坐标系,求BD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.1⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ .以AB ⃗⃗⃗⃗⃗ ,A D ⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ 为单位正交基底,建立空间直角坐标系,如图所示,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1).10已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA=AD=1,如图所示,设DA ⃗⃗⃗⃗⃗ =e 1,AB ⃗⃗⃗⃗⃗ =e 2,AP ⃗⃗⃗⃗⃗ =e 3,以{e 1,e 2,e 3}为单位正交基底建立空间直角坐标系Axyz ,求向量MN ⃗⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的坐标.DC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =e 2. ∵PC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =e 2-e 1-e 3, ∴MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12PC ⃗⃗⃗⃗⃗=-12e 2+e 3+12(e 2-e 1-e 3)=-12e 1+12e 3.∴MN ⃗⃗⃗⃗⃗⃗⃗ =(-12,0,12),DC ⃗⃗⃗⃗⃗ =(0,1,0). 能力提升1有下列叙述:①在空间直角坐标系中,x 轴上的点的坐标一定是(0,b ,c );②在空间直角坐标系中,在yOz 平面上点的坐标一定可写成(0,b ,c ); ③在空间直角坐标系中,在z 轴上的点的坐标可记作(0,0,c ); ④在空间直角坐标系中,在xOz 平面上点的坐标是(a ,0,c ).其中正确的个数是( ) A.1B.2C.3D.4错,x 轴上的点的坐标应是(a ,0,0).②③④正确.2如图,在长方体ABCD-A 1B 1C 1D 1中,AC 与BD 的交点为M ,设A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ,则下列向量中与B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是 ( )A.-12a +12b +cB.12a +12b +cC.12a -12b +cD.-12a -12b +c1M =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=c +12(-a +b )=-12a +12b +c .3设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.4如图,在空间四边形OABC 中,OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,点M 在OA 上,且OM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,N 是BC 的中点,MN ⃗⃗⃗⃗⃗⃗⃗ =x a +y b +z c ,则x ,y ,z 的值为( ) A.12,-23,12B.-23,12,12C.12,12,-23 D.23,23,-125已知向量AB ⃗⃗⃗⃗⃗ =(-4,-3,-1),把AB ⃗⃗⃗⃗⃗ 按向量(2,1,1)平移后所得向量的坐标是 .-4,-3,-1)6设{i ,j ,k }是空间向量的单位正交基底,a =3i+2j-k ,b=-2i+4j+2k ,则向量a ,b 的关系是 .a ·b =-6i 2+8j 2-2k 2=-6+8-2=0,∴a ⊥b .⊥b7已知在空间四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =a-2c ,CD ⃗⃗⃗⃗⃗ =5a+6b-8c ,对角线AC ,BD 的中点分别为E ,F ,则EF⃗⃗⃗⃗⃗ = .EF ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ ,且EF ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ,∴两式相加,得2EF ⃗⃗⃗⃗⃗ =(EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +(BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ).∵E 为AC 的中点,F 为BD 的中点,∴EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =0.∴2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(a-2c )+(5a+6b-8c )=6a+6b-10c .∴EF ⃗⃗⃗⃗⃗ =3a+3b-5c .a+3b-5c8已知向量p 在基底{a ,b ,c }下的坐标是(2,3,-1),求p 在基底{a ,a +b ,a +b +c }下的坐标.p =2a +3b -c .设p =x a +y (a +b )+z (a +b +c )=(x+y+z )a +(y+z )b +z c ,则有{x +y +z =2,y +z =3,z =-1,解得{x =-1,y =4,z =-1,故p 在基底{a ,a +b ,a +b +c }下的坐标为(-1,4,-1).9已知正方体ABCD-A'B'C'D',点E 是上底面A'B'C'D'的中心,求AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA '⃗⃗⃗⃗⃗⃗ 中x ,y ,z 的值.⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +A'E ⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12A 'C '⃗⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12(A 'B '⃗⃗⃗⃗⃗⃗⃗ +A 'D '⃗⃗⃗⃗⃗⃗⃗ ) =AA '⃗⃗⃗⃗⃗⃗ +12A 'B '⃗⃗⃗⃗⃗⃗⃗ +12A 'D '⃗⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +AA '⃗⃗⃗⃗⃗⃗.∵AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA'⃗⃗⃗⃗⃗⃗ ,∴x=12,y=12,z=1.★10如图,在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,把向量EF ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 1和B 1C ⃗⃗⃗⃗⃗⃗⃗ 分别用a ,b ,c 表示出来,证明A F ⃗⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0即可.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,有a ·b =0,a ·c =0,b ·c =0. 则EF ⃗⃗⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =12(BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =12(-a +b +c ),AB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =a +b . ∴EF ⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =12(-a +b +c )·(a +b ) =12(|b |2-|a |2)=0.∴EF ⃗⃗⃗⃗⃗ ⊥AB 1⃗⃗⃗⃗⃗⃗⃗ ,即EF ⊥AB 1. 同理EF ⊥B 1C.∵AB 1∩B 1C=B 1,∴EF ⊥平面B 1AC.。
高二选修(2—1)第三章3.1空间向量及其运算测试题一、选择题1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( )A .(16,0,4)B .(8,-16,4)C .(8,16,4)D .(8,0,4)2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →= ( )A .a +b -cB .a -b +cC .-a +b +cD .-a +b -c3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为12的是 ( ) A. ⋅ B. BD AB ⋅ C.DA AB ⋅ D.⋅ 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A.OM →=2OA →-OB →-OC →B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=05.若向量{,,}是空间的一个基底,向量-=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( )A .aB .bC .cD .2a6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是 ( )A .①②B .②③C .③④D .①④7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是A .1B .15C .35D .-2098.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( )A .4B .15C .7D .39.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为 ( )A .平行四边形B .梯形C .长方形D .空间四边形10.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A.⎝⎛⎭⎫14,14,14B.⎝⎛⎭⎫34,34,34C.⎝⎛⎭⎫13,13,13D.⎝⎛⎭⎫23,23,23 11. 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a , AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +c 12.给出命题:①若a 与b 共线,则a 与b 所在的直线平行;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM →=13OA → +13OB →+13OC ,则点M 一定在平面ABC 上,且在△ABC 的内部.上述命题中的真命 题的个数为( )A .0B .1C .2D .3二、填空题13.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填“共面”或“不共面”).14.已知向量a =(-1,2,3),b =(1,1,1),则向量a 在b 方向上的投影为________.15.已知G 是△ABC 的重心,O 是空间与G 不重合的任一点,若OA →+OB →+OC →=λOG →,则λ=________.16.如果三点A (1,5,-2),B (2,4,1),C (a,3,b +2)共线,那么a -b =________.三、解答题17. 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E 、F 分别是AB 、AD 的中点,计算: (1)EF →·BA →; (2)EF →·BD →; (3)EF →·DC →.18.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC = 45°,∠OAB =60°,求OA 与BC 夹角的余弦值.19.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以向量AB →,AC →为一组邻边的平行四边形的面积S ;(2)若向量a 分别与向量AB →,AC →垂直,且|a |=3,求向量a 的坐标.21. 已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.22.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.解析:建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1) C 1E →=(0,-2,-2),CF →=(3,-1,2),C 1E →·CF →=0+2-2=0, 所以CF ⊥C 1E .(2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ),由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧ m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0.可取m =(0,2,1). 设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32), 可取n =(1,3,0).设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m|·|n |=63×2=22,所以θ=45°, 即所求二面角E -CF -C 1的大小为45°.1.D 提示:4a +2b =4(3,-2,1)+2(-2,4,0)=(12,-8,4)+(-4,8,0)=(8,0,4).2. D 提示: A 1B →=A 1A →+AB →=-c +(b -a )=-a +b -c .3\ D 提示:向量的夹角是两个向量始点放在一起时所成的角,经检验只有⋅=12. 4. C 提示:MA →+MB →+MC →=0,即MA →=-(MB →+MC →),所以M 与A 、B 、C 共面.5\ 解析 C ∵a +b ,a -b 分别与a 、b 、2a 共面,∴它们分别与a +b ,a -b 均不 能构成一组基底.6. A 提示:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD →1;②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→= BD 1→;③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→,故选A.7. D 提示:∵k a -b =(k +1,-k -2,k -1),a -3b =(4,-7,-2),(k a -b )⊥(a -3b ),∴4(k +1)-7(-k -2)-2(k -1)=0,∴k =-209. 8\解析 D ∵b +c =(2,2,5),∴a ·(b +c )=(2,-3,1)·(2,2,5)=3.9解析 D 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边 形的外角和是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.10.解析 A OG 1→=OA →+AG 1→=OA →+23×12(AB →+AC →)=OA →+13[(OB →-OA →)+(OC →-OA →)] =13(OA →+OB →+OC →),由OG =3GG 1知,OG →=34OG 1→=14(OA →+OB →+OC →), ∴(x ,y ,z )=⎝⎛⎭⎫14,14,14.11 A 解析 由图形知:BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=-12a +12b +c . 12. B 解析 ①中a 与b 所在的直线也有可能重合,故①是假命题;②中当a =0,b ≠0 时,找不到实数λ,使b =λa ,故②是假命题;可以证明③中A ,B ,C ,M 四点共面,因为13OA →+13OB →+13OC →=OM →,等式两边同时加上MO →,则13(MO →+OA →)+13(MO →+ OB →)+13(MO →+OC →)=0,即MA →+MB →+MC →=0,MA →=-MB →-MC →,则MA →与MB →,MC → 共面,又M 是三个有向线段的公共点,故A ,B ,C ,M 四点共面,所以M 是△ABC 的重心,所以点M 在平面ABC 上,且在△ABC 的内部,故③是真命题.13. 解析 AB →=(3,4,5),AC →=(1,2,2),AD →=(9,14,16),设AD →=xAB →+yAC →.即(9,14,16)=(3x +y,4x +2y,5x +2y ),∴⎩⎪⎨⎪⎧x =2,y =3,从而A 、B 、C 、D 四点共面. 14. 433 解析 向量a 在b 方向上的投影为:|a |·cos a ,b =14×-1+2+314×3=433. 15. 3 解析 因为OA →+AG →=OG →,OB →+BG →=OG →,OC →+CG →=OG →,且AG →+BG →+CG →=0,所以OA →+OB →+OC →=3OG →.16. 1 解析:AB →=(1,-1,3),BC →=(a -2,-1,b +1),若使A 、B 、C 三点共线,须满 足BC →=λAB →,即(a -2,-1,b +1)=λ(1,-1,3),所以⎩⎪⎨⎪⎧a -2=λ,-1=-λ,b +1=3λ,解得a =3,b =2,所以a -b =1.17. 解析 (1)EF →·BA →=12BD →·BA → =12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=14.(2)EF →·BD →=12BD →·BD →=12cos 0°=12. (3)EF →·DC →=12BD →·DC →=12|BD →||DC →|cos 〈BD →,DC →〉=12cos 120°=-14. 18. 解析 ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225. ∴OA 与BC 夹角的余弦值为3-225. 19.解析 (1)∵AB →=(-2,-1,3),AC →=(1,-3,2),∴cos ∠BAC =AB →·AC →|AB →||AC →|=714×14=12, ∴∠BAC =60°∴S =|AB →||AC →|sin 60°=7 3.(2)设a =(x ,y ,z ),则a ⊥AB →⇒-2x -y +3z =0,a ⊥AC →⇒x -3y +2z =0,|a |=3⇒x 2+y 2+z 2=3,解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).21.解析∵A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →,∴a =(1,1,0),b =(-1,0,2).(1) cos θ=a·b |a||b|=-1+0+02×5=-1010, ∴a 与b 的夹角θ的余弦值为-1010. (2) ∵k a +b =k (1,1,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,则k =-52或k =2.。
3.1.3 空间向量的数量积运算一、选择题1.已知向量a 、b 是平面α的两个不相等的非零向量,非零向量c 是直线l 的一个方向向量,则c·a =0且c·b =0是l ⊥α的( )A .充分不必要条件B .必要不充分条件C. 充要条件 D .既不充分也不必要条件2.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |( ) A.7 B.10 C.13 D .43.已知正方体ABCD -A ′B ′C ′D ′的棱长为 a ,设AB →=a ,AD →=b ,AA ′→=c ,则〈A ′B →,B ′D ′→〉=( )A .30°B .60°C .90°D .120°4.已知P A ⊥平面ABC ,垂足为A ,∠ABC =120°,P A =AB =BC =6,则PC 等于( )A .62B .6C .12D .1445.已知a 、b 、c 是两两垂直的单位向量,则|a -2b +3c |=( )A .14 B.14 C .4 D .26.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |等于( )A .97B .97C .61D .617.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉等于( ) A .12 B .22 C .-12 D .08.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定二、填空题9.已知|a |=22,|b |=22,a ·b =-2,则〈a ,b 〉=________.10.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,设AB →=a ,AD →=b ,AA ′→=c ,则(1)AC ′→·DB ′→=________;〈AC ′→,DB ′→〉=________;(2)BD ′→·AD →=________.11.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,则A 1B →·B 1C →=________.12.已知在空间四边形OABC 中,OA ⊥BC ,OB ⊥AC ,则AB →·OC →=________.三、解答题13.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,求〈a ,b 〉.14.对于任意空间四边形,试证明它的一组对边中点的连线段与另一组对边可平行于同一平面.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,求异面直线A 1B 与AC 1所成的角.参考答案一、选择题1.[答案] B[解析] 当a 与b 不共线...时,由c ·a =0,c ·b =0,可推出l ⊥α;当a 与b 为共线向量时,由c·a =0,c·b =0,不能够推出l ⊥α;l ⊥α一定有c ·a =0且c ·b =0,故选B. 2.[答案] C[解析] |a +3b |2=(a +3b )2=a 2+6a·b +9b 2=|a |2+6|a ||b |cos<a ,b >+9|b |2,∵|a |=|b |=1,〈a ,b 〉=60°, ∴|a +3b |2=13,∴|a +3b |=13.3.[答案] D[解析] B ′D ′→=BD →,∵△A ′BD 为正三角形,∴〈A ′B →,BD →〉=120°.4.[答案] C[解析] ∵PC →=P A →+AB →+BC →,∴PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos60°=144. ∴|PC →|=12.5.[答案] B[解析] |a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14,∴选B. 6.[答案] C[解析] |2a -3b |2=4a 2+9b 2-12a·b =4×4+9×9-12×|a ||b |cos60°=97-12×2×3×12=61.7.[答案] D[解析] cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=OA →·(OC →-OB →)|OA →||BC →|=OA →·OC →-OA →·OB →|OA →||BC →|=|OA →||OC →|cos ∠AOC -|OA →||OB →|cos ∠AOB |OA →||BC →|. 因为|OB →|=|OC →|,∠AOC =∠AOB =π3, 所以cos 〈OA →,BC →〉=0.8.[答案] B[解析] BD →=AD →-AB →,BC →=AC →-AB →,BD →·BC →=(AD →-AB →)·(AC →-AB →)=AD →·AC →-AD →·AB →-AB →·AC →+|AB →|2=|AB →|2>0,∴cos ∠CBD =cos 〈BC →,BD →〉=BC →·BD →|BC →|·|BD →|>0, ∴∠CBD 为锐角,同理,∠BCD 与∠BDC 均为锐角,∴△BCD 为锐角三角形.二、填空题9.[答案] 3π4[解析] cos 〈a ,b 〉=a ·b |a |·|b |=-22, ∴〈a ,b 〉=3π4. 10.[答案] (1)1,arccos 13(2)1 [解析] (1)AC ′→·DB ′→=(a +b +c )·(a -b +c )=a 2+c 2+2a ·c -b 2=1,|AC ′→|2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c =3,∴|AC ′→|=3,|DB ′→|2=(a -b +c )2=a 2+b 2+c 2-2a ·b +2a ·c -2b ·c =3,∴|DB ′→|=3,∴cos 〈AC ′→,DB ′→〉=AC ′→·DB ′→|AC ′→|·|DB ′→|=13, ∴〈AC ′→,DB ′→〉=arccos 13. (2)BD ′→·AD →=(b +c -a )·b =|b |2+b ·c -b ·a =1.11.[答案] a 2[解析] A 1B →·B 1C →=A 1B →·A 1D →=|A 1B →|·|A 1D →|·cos 〈A 1B →,A 1D →〉 =2a ×2a ×cos60°=a 2.12.[答案] 0[解析] AB →·OC →=(OB →-OA →)·(OA →+AC →)=OB →·OA →+OB →·AC →-|OA →|2-OA →·AC →=OB →·OA →-|OA →|2-OA →·AC →=OA →·AB →-OA →·AC →=OA →·CB →=0.三、解答题13.[解析] (a +3b )·(7a -5b )=7|a |2-15|b |2+16a ·b =0,(a -4b )(7a -2b )=7|a |2+8|b |2-30a ·b =0,解之得,|b |2=2a ·b =|a |2,∴cos 〈a ,b 〉=a ·b |a |·|b |=12,∴〈a ,b 〉=60°. 14.[证明] 如图所示,空间四边形ABCD ,E 、F 分别为AB 、CD 的中点,利用多边形加法法则可得,EF →=EA →+AD →+DF →,EF →=EB →+BC →+CF →.①又E 、F 分别是AB 、CD 的中点,故有EA →=-EB →,DF →=-CF →.②将②代入①后,两式相加得,2EF →=AD →+BC →,∴EF →=12AD →+12BC →. 即EF →与BC →、AD →共面,∴EF 与AD 、BC 可平行于同一平面.15.[解析] 不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,a·b =b·c =c·a =0,A 1B →=a -c ,AC 1→=a +b +c .∴A 1B →·AC →=(a -c )·(a +b +c )=(a -c )(a +c )+b (a -c )=0∴<A 1B →,AC 1→>=90°.因此,异面直线A 1B 与AC 所成的角为90°.[说明] 求异面直线所成的角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须把所求向量用空间的一组基向量来表示.。
高二数学选修空间向量试卷及答案Last revised by LE LE in 2021A A 1 DCB B 1C 1 图高二数学(选修2-1)空间向量试题宝鸡铁一中 司婷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D是侧棱1CC 的中点.点1C 到平面1AB D 的距离( ) A .a 42B .a 82 图图C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66 B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线;②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。
空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=. 9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OC OB OA OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1①正方体 ②圆锥 ③三棱台 ④正四棱锥俯视图 正(主)视图 侧(左)视图2 3 2 2D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A.6 B.552 C.15 D.10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52 二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为. 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面PAD的距离为.三、解答题(共80分)15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG.. 17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证:2262GF C'B'D'MP DC BA俯视图正视图121121ED C BA P (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D CB A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积; (2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E AF C --的余弦值. 参考答案 一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A. 2.1),,(=++∈++=⇔z y x R z y x OC z OB y OA x OM C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在MC MB MA MC y MB x MA y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,cos 21210-=⨯⨯⨯>=<⋅=⋅=⋅∴DC BD DC BD DC BD DC EF 故选B.4.B5.B6.D7.D8.D9.D10.由于4,cos =⋅=><⋅=ACAC AB AC AB AB AD ,所以522=-=AD AB BD ,故选A PBECD FAD 'C 'B'A'PD C BA二、填空题 11.912.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则DB CD AC AB ++=∵θθcos 6)180cos(,0,0,2,5,30-=-⋅=⋅=⋅=⋅===DB AC DB AC DB CD CD AC DB CD AC00222222222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=∴θθθθ由于AC DB DB CD CD AC DB CD AC DB CD AC AB14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离1655B A m d m⋅==. 三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG ,ABC DE FGA 'B 'C 'D '所以BC '∥面EFG . 17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面ACD ,EF ⊄面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵BD ⊂面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m = 解得m=21DH ⎛⎫= ⎪ ⎪⎝⎭. (1)因为0011cos 2DH CC +⨯'<>==,, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,. 因为01101cos 2DH DC ++⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EBzyxEDC BAP∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==23=BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan 2AE EHA AH AH ∠===,因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角, 在Rt AOE △中,3sin 302EO AE ==,3cos302AO AE ==, 又F 是PC 的中点,在Rt ASO △中,32sin 454SO AO ==,又SE ===Rt ESO △中,cos SO ESO SE ∠===, 即所求二面角的余弦值为5. 解法二:由(1)知AE AD AP ,,两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC ,的中点,所以(000)10)0)(020)A B C D -,,,,,,,,,,1(002)0)12P E F ⎫⎪⎪⎝⎭,,,,,,,, 所以31(300)122AE AF ⎛⎫== ⎪ ⎪⎝⎭,,,,,. 设平面AEF 的一法向量为111()x y z =,,m ,则00AE AF ⎧=⎪⎨=⎪⎩,,m m 因此111101022x y z =++=⎪⎩,. 取11z =-,则(021)=-,,m , 因为BD AC ⊥,BD PA ⊥,PA AC A =,所以BD ⊥平面AFC ,故BD 为平面AFC 的一法向量.B又(0)BD =-,,所以cos 5BD BD BD<>===,m m m . 因为二面角E AF C --为锐角,所以所求二面角的余弦值为5. 空间向量与立体几何2一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b a λ,且a 与b 的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是()A .21B .22C .-21D .07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//n C .α⊥m ,β//m , 则βα⊥D .n //m ,α⊥m , 则 α⊥n 8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ).ABDA.3 B.362C.2D.229、如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行 B.相交且垂直C.异面 D.相交成60°10、点P在平面ABC外,若PA=PB=PC,则点P在平面ABC上的射影是△ABC的()A.外心 B.重心 C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12(C)22+(D)112、已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=ba,则(23)(2)a b a b-+=__________________。
第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)x第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别为()A.15,12B.5,2C.-15,-12D.-5,-2解析:选A.a∥b,则存在m∈R,使得a=mb,又a=(λ+1,0,2λ),b=(6,2μ-1,2),则有λ+1=6m,0=-,2λ=2m,可得λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC是() A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形解析:选A.AB→=(3,4,-8),BC→=(2,-3,1),CA→=(-5,-1,7),∴BC→•CA→=-10+3+7=0.∴BC⊥CA.∴△ABC是直角三角形.3.已知在空间四边形OABC中,OA→=a,OB→=b,OC→=c,点M 在OA上,且OM=2MA,N为BC中点,则MN→等于()A.12a-23b+12cB.-23a+12b+12cC.12a+12b-12cD.23a+23b-12c解析:选B.因MN→=ON→-OM→=12(OB→+OC→)-23OA→=12b +12c-23a.4.已知a=(1,0,1),b=(-2,-1,1),c=(3,1,0),则|a-b+2c|等于() A.310B.210C.10D.5解析:选A.|a-b+2c|=-b+,∵a-b+2c=(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0),∴|a-b+2c|=92+32+0=310.5.给出下列命题:①已知a⊥b,则a•(b+c)+c•(b-a)=b•c;②A、B、M、N为空间四点,若BA→、BM→、BN→不能构成空间的一个基底,则A、B、M、N四点共面;③已知a⊥b,则a,b与任何向量都不能构成空间的一个基底;④已知{a,b,c}是空间的一个基底,则基向量a,b可以与向量m=a +c构成空间另一个基底.其中正确命题的个数是()A.1B.2C.3D.4解析:选C.当a⊥b时,a•b=0,a•(b+c)+c•(b-a)=a•b+a•c+c•b -c•a=c•b=b•c,故①正确;当向量BA→、BM→、BN→不能构成空间的一个基底时,BA→、BM→、BN→共面,从而A、B、M、N四点共面,故②正确;当a⊥b时,a,b不共线,任意一个与a,b不共面的向量都可以与a,b构成空间的一个基底,故③错误;当{a,b,c}是空间的一个基底时,a,b,c不共面,所以a,b,m也不共面,故a,b,m可构成空间的另一个基底,故④正确.6.在下列条件中,使M与A、B、C一定共面的是()A.OM→=2OA→-OB→-OC→B.OM→=15OA→+13OB→+12OC→C.MA→+MB→+MC→=0D.OM→+OA→+OB→+OC→=0解析:选C.空间的四点M、A、B、C共面只需满足OM→=xOA→+yOB→+zOC→,且x+y+z=1,或存在实数x,y使得MC→=xMA→+yMB→. 7.在空间直角坐标系Oxyz中,i,j,k分别是x轴、y轴、z轴的方向向量,设a为非零向量,且〈a,i〉=45°,〈a,j〉=60°,则〈a,k〉=()A.30°B.45°C.60°D.90°解析:选C.如图所示,设|a|=m(m>0),a=OP→,PA⊥平面xOy,则在Rt△PBO中,|PB|=|OP→|•cos〈a,i〉=22m,在Rt△PCO中,|OC|=|OP→|•cos〈a,j〉=m2,∴|AB|=m2,在Rt△PAB中,|PA|=|PB|2-|AB|2=24m2-m24=m2,∴|OD|=m2,在Rt△PDO中,cos〈a,k〉=|OD||OP|=12,又0°≤〈a,k〉≤180°,∴〈a,k〉=60°.8.已知点A(-3,4,3),O为坐标原点,则OA与坐标平面yOz所成角的正切值为()A.34B.35C.53D.1解析:选B.A点在面yOz上的射影为B(0,4,3)且|OB|=5,所以OA与平面yOz所成角θ满足tanθ=|AB||OB|=35.9.如图所示,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中能作为平面AEF的法向量的是()A.(1,-2,4)B.(-4,1,-2)C.(2,-2,1)D.(1,2,-2)解析:选B.设平面AEF的法向量为n=(x,y,z),正方体ABCD-A1B1C1D1的棱长为1,则A(1,0,0),E(1,1,12),F(12,0,1).故AE→=(0,1,12),AF→=(-12,0,1).由AE→•n=0,AF→•n=0,即y+12z=0,-12x+z=0,所以y=-12z,x=2z.当z=-2时,n=(-4,1,-2),故选B.10.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小为() A.90°B.60°C.120°D.45°解析:选C.如图,以C为原点建立空间直角坐标系Cxyz,设正方体的边长为a,则A(a,a,0),B(a,0,0),D1(0,a,a),B1(a,0,a),于是BA→=(0,a,0),BD1→=(-a,a,a),BB1→=(0,0,a).设平面ABD1的法向量为n=(x,y,z),则n•BA→=(x,y,z)•(0,a,0)=ay=0,n•BD1→=(x,y,z)•(-a,a,a)=-ax+ay+az=0.∵a≠0,∴y=0,x=z.令x=z=1,则n=(1,0,1),同理,平面B1BD1的法向量m=(-1,-1,0).由于cos〈n,m〉=n•m|n||m|=-12,而二面角A-BD1-B1为钝角,故为120°.二、填空题(本大题共5小题,把答案填在题中横线上)11.已知a=(2,-1,0),b=(k,0,1),若〈a,b〉=120°,则k=________. 解析:∵cos〈a,b〉=a•b|a||b|=2k5•k2+1=-12<0,∴k<0,且k2=511.∴k=-5511.答案:-551112.若a=(2,3,-1),b=(-2,1,3),则以a,b为邻边的平行四边形的面积为________.解析:cos〈a,b〉=a•b|a||b|=-27,得sin〈a,b〉=357,由公式S=|a||b|sin〈a,b〉可得结果.答案:6513.如图,空间四边形OABC,点M,N分别为OA,BC的中点,且OA→=a,OB→=b,OC→=c,用a,b,c表示MN→,则MN→=________. 解析:MN→=ON→-OM→=12(OB→+OC→)-12OA→=-12a+12b+12c.答案:-12a+12b+12c14.点P是棱长为1的正方体ABCD-A1B1C1D1内一点,且满足AP→=34AB→+12AD→+23AA1→,则点P到棱AB的距离为__________.解析:如图所示,过P作PQ⊥平面ABCD于Q,过Q作QE⊥AB于E,连接PE.∵AP→=34AB→+12AD→+23AA1→,∴PQ=23,EQ=12,∴点P到棱AB的距离为PE=PQ2+EQ2=56.答案:5615.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成的角的余弦值是________.解析:如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),AC→=(-4,4,0),D1E→=(0,4,-2).cos〈AC→,D1E→〉=1632×20=105.∴异面直线D1E与AC所成角的余弦值为105.答案:105三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)16.如图,在平行六面体ABCD-A1B1C1D1中,CM=2MA,A1N=2ND,且AB→=a,AD→=b,AA1→=c,试用a,b,c表示向量MN→.解:∵MN→=MA→+AA1→+A1N→=-13AC→+AA1→+23A1D→=-13(AB→+AD→)+AA1→+23(A1A→+A1D1→)=-13AB→-13AD→+13AA1→+23AD→=-13a+13b+13c,∴MN→=-13a+13b+13c.17.在正方体ABCD-A1B1C1D1中,P为DD1的中点,M为四边形ABCD 的中心.求证:对A1B1上任一点N,都有MN⊥AP.证明:建立如图所示的空间直角坐标系Dxyz,设正方体的棱长为1,则A(1,0,0),P0,0,12,M12,12,0,N(1,y,1).∴AP→=-1,0,12,MN→=12,y-12,1.∴AP→•MN→=(-1)×12+0×y-12+12×1=0,∴AP→⊥MN→,即A1B1上任意一点N都有MN⊥AP.18.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成角的余弦值.解:(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.∵AB⊥AD,AD∩PA=A,∴AB⊥平面PAD.∵PD⊂平面PAD,∴AB⊥PD,又∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵AM⊥PD,PA=AD,∴M为PD的中点,∴M的坐标为(0,1,1).∴AC→=(1,2,0),AM→=(0,1,1),CD→=(-1,0,0).设平面ACM的一个法向量为n=(x,y,z),由n⊥AC→,n⊥AM→可得x+2y=0y+z=0,令z=1,得x=2,y=-1.∴n=(2,-1,1).设直线CD与平面ACM所成的角为α,则sinα=|CD→•n||CD→|•|n|=63.∴cosα=33,即直线CD与平面ACM所成角的余弦值为33.19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又因为PD⊥底面ABCD,可得BD⊥PD.又因为AD∩PD=D,所以BD⊥平面PAD,故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1),AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则n•AB→=0,n•PB→=0,即-x+3y=0,3y-z=0,因此可取n=(3,1,3).设平面PBC的法向量为m,则m•PB→=0,m•BC→=0,可取m=(0,-1,-3),〈m,n〉等于二面角A-PB-C的平面角,cos 〈m,n〉=-427=-277.故二面角A-PB-C的余弦值为-277.20.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离.解:(1)证明:如图所示,以O为坐标原点,OC→、OD→、OP→的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以OP→=(0,0,1),AD→=(0,2,0),OP→•AD→=0,所以,PO⊥AD,又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)CD→=(-1,1,0),PB→=(1,-1,-1),所以cos〈PB→,CD→〉=PB→•CD→|PB→||CD→|=-1-13×2=-63,所以异面直线PB与CD 所成的角的余弦值为63.(3)设平面PCD的法向量为n=(x0,y0,z0),CP→=(-1,0,1),CD→=(-1,1,0),由n•CP→=0n•CD→=0,得-x0+z0=0-x0+y0=0,即x0=y0=z0,取x0=1,得平面PCD的一个法向量为n=(1,1,1).又AC→=(1,1,0),从而点A到平面PCD的距离d=|AC→•n||n|=23=233.。
第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。
A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。
§3.1.2 空间向量的数乘运算(二)一、选择题1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ).A .0 B.1 C. 2 D. 32.如图所示,已知A ,B ,C 三点不共线,P 为一定点,O 为平面ABC 外任一点,则下列能表示向量OP →的为( )A.OA →+2AB →+2AC →B.OA →-3AB →-2AC →C.OA →+3AB →-2AC →D.OA →+2AB →-3AC →3.i 、 j 不共线,则存在两个非零常数m ,n ,使k =m i +n j 是i ,j ,k 共面的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件4.对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A.OP →=OA →+OB →+OC →B.OP →=13OA →+13OB →+13OC → C.OP →=-OA →+12OB →+12OC → D .以上皆错 5.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c, 点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →等于( )A .12a -23b +12c B .-23 a +12b +12c C .12a +12 b -23cD .23a +23b -12c6.有下列命题:①当λ∈R ,且a 1+a 2+…+a n =0时,λa 1+λa 2+…+λa n =0;②当λ1,λ2,…,λn ∈R ,且λ1+λ2+…+λn =0时,λ1a +λ2a +…+λn a =0;③当λ1,λ2,…,λn ∈R ,且λ1+λ2+…+λn =0时,a 1,a 2,…,a n 是n 个向量, 且a 1+a 2+…,a n =0,则λ1a 1+λ2a 2+…+λn a n =0.其中真命题有( )A .0个B .1个C .2个D .3个二、填空题7.如图所示,已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且PM ∶MC =2∶1,N 为PD 中点,则满足MN →=xAB →+yAD →+zAP →的实数x =________,y =________,z =________.8.在平行六面体ABCD —A 1B 1C 1D 1中,若AC 1→=x ·AB →+2y ·BC →+3z ·C 1C →,则x +y +z =________.三、解答题9.如图,已知平行六面体ABCD -A ′B ′C ′D ′,点E 在AC ′上,且AE ∶EC ′=1∶2,点F ,G 分别是B ′D ′和BD ′的中点,求下列各式中的x ,y ,z 的值.(1)AE →=xAA ′→+yAB →+zAD →;(2)BF →=xBB ′→+yBA →+zBC →;(3)GF →=xBB ′→+yBA →+zBC →.10.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,向量p ,q ,r 是否共面?参考答案一、选择题1. [答案]A2.[答案] C[解析] 根据A ,B ,C ,P 四点共面的条件即可求得AP →=xAB →+yAC →.即OP →=OA →+xAB →+yAC →,由图知x =3,y =-23.[答案] A[解析] 本题考查空间三个向量共面的条件.若i 不平行j ,则k 与i ,j 共面⇔存在惟一的一对实数x ,y 使k =x i +y j .故选A.4.[答案] B[解析] 解法一:∵13+13+13=1,∴选B. 解法二:∵OP →=13OA →+13OB →+13OC →, ∴3OP →=OA →+OB →+OC →,∴OP →-OA →=(OB →-OP →)+(OC →-OP →),∴AP →=PB →+PC →,∴P A →=-PB →-PC →,∴P 、A 、B 、C 共面.5.[答案] B[解析] MN →=ON →-OM →=12(OB →+OC →)-23OA → =12(b +c )-23a =-23a +12b +12c .∴应选B. 6.[答案] C[解析] 由于λa 1+λa 2+…+λa n =λ(a 1+a 2+…+a n )=λ0=0, 故命题①为真命题.由于λ1a +λ2a +…+λn a =(λ1+λ2+…+λn )a =0×a =0,故命题②也为真命题.命题③为假命题,例如当n =2时,取λ1=1,λ2=-1,a 1=a (a ≠0),a 2=-a , 则λ1a 1+λ2a 2=a +(-1)(-a )=2a ≠0,但此时有λ1+λ2=0,a 1+a 2=0,命题③不成立.二、填空题7.[答案] -23 -16 16[解析] 在PD 上取一点F ,使PF ∶FD =2∶1,连结MF ,则MN →=MF →+FN →∵FN →=DN →-DF →=12DP →-13DP → =16DP →=16(AP →-AD →) MF →=23CD →=23BA →=-23AB → ∴MN →=-23AB →-16AD →+16AP → ∴x =-23 y =-16 z =168.[答案] 76[解析] 在进行空间向量的线性表示时,一定要与所求一致,才不至于犯错.如图所示,有AC 1→=AB →+BC →+CC 1→=AB →+BC →+(-1)·C 1C →.又∵AC 1→=x ·AB →+2y ·BC →+3z ·C 1C →,∴x ·AB →+2y ·BC →+3z ·C 1C →=AB →+BC →+(-1)·C 1C →,有⎩⎪⎨⎪⎧ x =1,2y =1,3z =-1,解得⎩⎪⎨⎪⎧ x =1,y =12,z =-13,∴x +y +z =1+12-13=76. 三、解答题9.[解析] (1)∵AE ∶EC ′=1∶2,∴AE →=13AC →=13(AB →+BC →+CC ′→)=13(AB →+AD →+AA ′→) =13AA ′→+13AB →+13AD →, ∴x =13,y =13,z =13. (2)∵F 为B ′D ′的中点,∴BF →=12(BB ′→+BD ′→)=12(BB ′→+BA →+AA ′→+A ′D ′→) =12(2BB ′→+BA →+BC →)=BB ′→+12BA →+12BC →, ∴x =1,y =12,z =12. (3)∵G 、F 分别为BD ′、B ′D ′的中点,∴GF →=12BB ′→,∴x =12,y =0,z =0. 10.[解析] 假设存在实数λ,μ,使p =λq +μr ,则a +b -c =(2λ-7μ)a +(-3λ+18μ)b +(-5λ+22μ)c ,∵a ,b ,c 不共面,∴⎩⎪⎨⎪⎧ 2λ-7μ=1-3λ+18μ=1-5λ+22μ=-1,∴⎩⎨⎧ λ=53μ=13, 即存在实数λ=53,μ=13, 使p =λq +μr ,故p 、q 、r 共面.。
第三章 空间向量与立体几何(时间:120分钟,满分:150分)第I 卷(选择题)班别 姓名 成绩一、选择题(本大题共12小题,每小题5分,共60分)A.15,12 B .5,2 C .-15,-12 D .-5,-2 解析:选A.a ∥b ,则存在m ∈R ,使得a =m b ,又a =(λ+1,0,2λ),b =(6,2μ-1,2),则有 ⎩⎪⎨⎪⎧ λ+1=6m ,0=m (2μ-1),2λ=2m ,可得⎩⎨⎧λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰三角形解析:选A .AB →=(3,4,-8),BC →=(2,-3,1),CA →=(-5,-1,7), ∴BC →·CA →=-10+3+7=0. ∴BC ⊥CA. ∴△ABC 是直角三角形.3.已知向量(1,1,0)a =,(1,0,2)b =-,且ka b +与2a b -互相垂直,则k 的值是( ) A .1 B .15 C .35 D .75【答案】D 试题分析:依题意可得(1,,2),2(3,2,2)ka b k k a b +=--=-,由()(2)ka b a b +⊥-可得()(2)0ka b a b +⋅-=,所以3(1)240k k -+-=,解得75k =,选D. 4.已知a =(1,0,1),b =(-2,-1,1),c =(3,1,0),则|a -b +2c |等于( )A .310B .210 C.10 D .5 解析:选A.|a -b +2c |=(a -b +2c )2,∵a -b +2c =(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0),∴|a -b +2c |=92+32+0=310. 5.给出下列命题: ①已知a ⊥b ,则a ·(b +c )+c ·(b -a )=b ·c ;②A 、B 、M 、N 为空间四点,若BA →、BM →、BN →不能构成空间的一个基底,则A 、B 、M 、N 四点共面; ③已知a ⊥b ,则a ,b 与任何向量都不能构成空间的一个基底;④已知{a ,b ,c }是空间的一个基底,则基向量a ,b 可以与向量m =a +c 构成空间另一个基底. 其中正确命题的个数是( ) A .1 B .2 C .3 D .4 解析:选C.当a ⊥b 时,a ·b =0,a ·(b +c )+c ·(b -a )=a ·b +a ·c +c ·b -c ·a =c ·b =b ·c ,故①正确;当向量BA →、BM →、BN →不能构成空间的一个基底时,BA →、BM →、BN →共面,从而A 、B 、M 、N 四点共面,故②正确;当a ⊥b 时,a ,b 不共线,任意一个与a ,b 不共面的向量都可以与a ,b 构成空间的一个基底,故③错误;当{a ,b ,c }是空间的一个基底时,a ,b ,c 不共面,所以a ,b ,m 也不共面,故a ,b ,m 可构成空间的另一个基底,故④正确.6.已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则与的夹角θ的大小是( )(A) (B)π (C) (D)π 【答案】B 【解析】由题意知=(-2,-1,3),=(-1,3,-2),故cos θ===-, 所以θ=π.7.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)解析:选A.逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.8.已知在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC中点,则MN →等于( )A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D.23a +23b -12c 解析:选B.因MN →=ON →-OM →=12(OB →+OC →)-23OA →=12b +12c -23a .考点:1.空间向量的坐标运算;2.空间向量垂直的条件;3.空间向量的数量积.9.已知非零向量a,b 及平面α,若向量a 是平面α的法向量,则a ·b=0是向量b 所在直线平行于平面α或在平面α内的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件 【答案】C【解析】∵a,b 是非零向量,且a 是平面α的法向量,∴当a ·b=0时,向量b 所在的直线平行于平面α或在平面α内,反之也成立.10.已知(2,2,5)u =-,(6,4,4)v =-,u ,v 分别是平面α,β的法向量,则平面α,β的位置关系式 A .平行 B .垂直 C .所成的二面角为锐角 D .所成的二面角为钝角 【答案】B试题分析:由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,而u ,v 分别是平面α,β的法向量,所以αβ⊥,选B.考点:空间向量在解决空间垂直中的应用.11.在正方体ABCD-A 1B 1C 1D 1中,M 为DD 1的中点,O 为底面ABCD 的中心,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角是( )(A) (B) (C) (D) 【答案】D【解析】结合图形建立空间直角坐标系,通过向量的坐标运算可知AM ⊥OP 恒成立,即AM 与OP 所成的角为. 12.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G 分别是线段AE,BC 的中点,则AD 与GF 所成的角的余弦值为( )(A) (B)- (C) (D)-【答案】A【解析】如图, 正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G 分别是线段AE,BC 的中点.以C 为原点建立空间直角坐标系Cxyz,A(0,2,0),B(2,0,0),D(0,0,2),G(1,0,0),F(0,2,1), =(0,-2,2),=(-1,2,1),∴||=2,||=,·=-2, ∴cos<,>==-.∴直线AD 与GF 所成角的余弦值为. 【误区警示】本题容易忽视异面直线所成角的范围而误选B.第II 卷(非选择题)二.填空题(每题5分,总20分)13.已知向量a =(2,-1),b =(-1,m),c =(-1,2),若(a +b )∥c ,则m =________. 【答案】-1【解析】∵a =(2,-1),b =(-1,m),∴a +b =(1,m -1),∵(a +b)∥c ,c =(-1,2),∴1×2-(-1)(m -1)=0,∴m =-114.在空间直角坐标系O xyz -中,设点M 是点(2,3,5)N -关于坐标平面xoy 的对称点,则线段MN 的长度等于 .【答案】10 【解析】试题分析:点(2,3,5)N -关于坐标平面xOy 的对称点()2,3,5M --,故线段10MN =. 考点:空间中的距离.15.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,点E 是棱CC 1的中点,则异面直线D 1E 与AC 所成的角的余弦值是________.16.若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 . 【答案】56;试题分析:计算||a =||b =1472||||,cos -=>=<b a ,得753,sin >=<,所以,为邻边的平行四边形的面积为||a ||b sin ,14a b <>== 三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)17.如图,在平行六面体ABCD -A 1B 1C 1D 1中,CM =2MA ,A 1N =2ND ,且AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示向量MN →.解:∵MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(AB →+AD →)+AA 1→+23(A 1A →+A 1D 1→)=-13AB →-13AD →+13AA 1→+23AD →=-13a +13b +13c ,∴MN →=-13a +13b +13c .18.在正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,M 为四边形ABCD 的中心.求证:对A 1B 1上任一点N ,都有MN ⊥AP.证明:建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则A(1,0,0),P ⎝⎛⎭⎫0,0,12, M ⎝⎛⎭⎫12,12,0,N(1,y,1).∴AP →=⎝⎛⎭⎫-1,0,12, MN →=⎝⎛⎭⎫12,y -12,1. ∴AP →·MN →=(-1)×12+0×⎝⎛⎭⎫y -12+12×1=0, ∴AP →⊥MN →, 即A 1B 1上任意一点N 都有MN ⊥AP.19.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且,试求MN 的长.试题分析:解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点距离公式,可得||MN ==.20.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 1和CC 1的中点. (1)求证:EF ∥平面ACD 1;(2)求异面直线EF 与AB 所成的角的余弦值;解:如图,分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz ,由已知得D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、B 1(2,2,2)、E(1,0,2)、F(0,2,1).(1)证明:易知平面ACD 1的一个法向量DB 1→=(2,2,2).∵EF →=(-1,2,-1),∴EF →·DB 1→=-2+4-2=0, ∴EF →⊥DB 1→,而EF ⊄平面ACD 1,∴EF ∥平面ACD 1.(2)∵AB →=(0,2,0), ∴cos 〈EF →,AB →〉=EF →·AB →|EF →||AB →|=426=63,∴异面直线EF 与AB 所成的角的余弦值为63.21、如图所示,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M.(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成角的余弦值.解:(1)证明:∵PA ⊥平面ABCD ,AB ⊂平面ABCD , ∴PA ⊥AB.∵AB ⊥AD ,AD ∩PA =A , ∴AB ⊥平面PAD.∵PD ⊂平面PAD ,∴AB ⊥PD , 又∵BM ⊥PD ,AB ∩BM =B , ∴PD ⊥平面ABM.∵AM ⊂平面ABM ,∴AM ⊥PD.(2) 如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz , 则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0). ∵AM ⊥PD ,PA =AD ,∴M 为PD 的中点,∴M 的坐标为(0,1,1). ∴AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0y +z =0,令z =1,得x =2,y =-1.∴n =(2,-1,1).设直线CD 与平面ACM 所成的角为α,则sin α=|CD →·n ||CD →|·|n |=63.∴cos α=33,即直线CD 与平面ACM 所成角的余弦值为33.22.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD. (1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值. 解:(1)证明:因为∠DAB =60°,AB =2AD , 由余弦定理得BD =3AD , 从而BD 2+AD 2=AB 2,故BD ⊥AD. 又因为PD ⊥底面ABCD ,可得BD ⊥PD. 又因为AD ∩PD =D ,所以BD ⊥平面PAD ,故PA ⊥BD.(2)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系Dxyz ,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +3y =0,3y -z =0,因此可取n =(3,1,3). 设平面PBC 的法向量为m ,则 ⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0, 可取m =(0,-1,-3),〈m ,n 〉等于二面角A -PB -C 的平面角,cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.。