当前位置:文档之家› 隔热耐火制品

隔热耐火制品

隔热耐火制品
隔热耐火制品

隔热耐火制品(thermal insulating refractory products)

气孔率不低于45%的耐火制品。隔热耐火制品的主要特性是,气孔率高,体积密度小,热导率低,热容小,隔热性能好。既保温又耐热,可作为各种热工设备的隔热层,有的也可作为工作层,是构筑各种窑炉的节能材料。以隔热耐火制品替代一般致密耐火制品做筑炉材料,能够减少蓄热和散热损失40%~90%,特别是对不连续性的热工设备更有效。

简史1899年已有用硅藻土作原料加工制造隔热砖的专利。至1920年以后,由于冶金、玻璃、炼焦、陶瓷等大量消耗燃料的工业的发展,才渐渐出现能在更高温度下使用的隔热耐火材料。1922年,英国耐火材料研究协会对隔热耐火材料的性能进行过较系统研究,至1935年,发展了与炉气直接接触的隔热耐火材料的制造技术和使用。在美国,1928~1930年由于隔热耐火砖的优越性引起了工程技术方面的注意,生产得到迅速发展,不少科技人员做过一些有关性质研究试验工作。第二次世界大战期间,进展更快,使用更广。第二次世界大战前,德国已有用于煤气发生炉的硅质隔热耐火砖并制出高气孔率的特种镁砖,可以在炼钢温度下使用;日本也曾试制过二三个品种隔热砖,直至1948年学术振兴会第103委员会才着手研究,1951年完成,同年秋季生产。1930年~1935年期间,苏联隔热耐火材料在工业上开始应用,大量的工作是由乌克兰耐火材料研究所和列宁格勒耐火材料研究所研究出来的。中国于20世纪50年代已有硅藻土隔热砖等保温材料。中国科学院金属研究所曾于1956年对隔热耐火材料进行过研究。1961年抚顺耐火材料厂研制和生产高铝质隔热耐火砖,60年代初,北京耐火材料厂以泡沫法生产Al2O3含量90%~92%的氧化铝隔热耐火砖。这时中国已有

粘土质和硅质隔热耐火砖。70年代初,唐山市保温材料厂以粉煤灰漂珠为原料生产粘土质隔热耐火砖,由于此法工艺简单,易于掌握、资源丰富、产品需求量大,而产量剧增,1992年,中国隔热耐火材料的产量已达到耐火材料总产量的1.5%左右。同时品种也在不断扩大,先后研究和生产特种高铝质隔热耐火砖、氧化铝空心球砖、氧化锆空心球砖、抗热震性隔热耐火砖,硅线石质隔热耐火砖以及镁橄榄石质的隔热耐火砖等。世界上许多国家一直注意隔热耐火材料的应用和发展。其产量在不断增加、英国隔热耐火制品的产量占耐火砖总产量的4%,日本占3.5%~4%,前苏联约占1.5%。70年代以来,经济发达国家的隔热耐火材料产品品种不断增多,生产技术水平迅速提高。

分类隔热耐火制品的种类很多,一般按使用温度、体积密度、材质和制品形状分为4类。

按使用温度分可分为3类:在600℃以上至900℃以下使用的,如硅藻土、石棉等;称为低温隔热制品;在900℃至1200℃下使用的,如粘土质隔热砖漂珠砖等,称为中温隔热制品;使用温度高于1200℃以上的称为高温隔热耐火制品,如高铝质隔热耐火砖、硅质隔热耐火砖、氧化铝隔热耐火砖等。

按体积密度分体积密度大于或等于0.4g/cm3的称为一般隔热耐火砖;小于0.4g/cm3的称为超轻质隔热耐火砖。

按制品材质分可分为硅藻土质、粘土质、硅质、高铝质、镁质、锆质、白云石质等。

按制品形状分一种是定型的隔热耐火砖,包括粘土质、高铝质,硅质以及某些氧化物隔热耐火砖等;另一种是不定型隔热耐火材料,如隔热耐火浇注料等。国际标准化组织制订的国际标准ISO2245中以密度和重烧线变化不大于2%的试验温度分为1100℃,1250℃,1400℃,1500℃,1600℃,1700℃等品种。制造方法隔热耐火制品的制法与一般致密耐火材料有所不同,方法甚多,主要有烧尽加入物法、泡沫法、化学法和多孔材料法等。

烧尽加入物法这是最古老的、但现在仍然最广泛采用的方法。常用的可燃添加物有锯木屑、软木粉、木炭、无烟煤粉、焦炭粉、稻壳、聚苯乙烯、萘等。但有膨胀的可燃添加物会引起坯体开裂,小于0.147mm的可燃添加物会引起制品过大的收缩。锯木屑是最常用的可燃添加物,或与其他可燃物混合使用,或单独加入。锯木屑以横锯硬木屑为最好,最高添加量约为30%~35%(质量比),再多加不但对气孔率增高没有裨益,而且不易成型。加锯木屑的制品强度不大,容易产生扭曲。锯木屑以小于1.5~2mm为好,必须筛去长条纤维状的,而取粒状的锯木屑。可燃或可升华添加物应放入泥料中,均匀混合,然后用挤坯法、半干法或泥浆浇注法成型,干燥后烧成。可燃或可升华添加物在烧成过程中烧掉,留下空孔,成为隔热耐火制品。在烧成时应该充分注意生坯中有大量可燃添加物的特点,控制升温速度和气氛,否则容易产生%26ldquo;黑心%26rdquo;。止火温度和保温时间对制品强度、收缩变形、气孔封闭情况等有关。

为提高烧尽加入物法生产的产品质量,以粘土质隔热耐火砖制砖工艺为例,可采取的措施:(1)粘土的选择应考虑结合性能、可塑性和烧成收缩,并注意有足够

的耐火度。硅质或高铝粘土材料的这些性能各异,可以数种不同性质的粘土混用,取长补短。(2)为提高粘土的结合性和坯料的塑性,可以采用各种方法处理,加以改善。如细磨、风化、困泥、加入电解质或结合剂等。(3)添加塑化剂,如膨润土等无机或有机物质。(4)可燃添加物颗粒不宜太细,不同类型添加物由于其颗粒形状和性质不同,颗粒大小的选取应有不同,可以数种添加物混合使用。泡沫法将泡沫剂(能降低水的表面张力的表面活性物质,加水搅拌可形成泡沫,如松香皂泡沫剂,毛发泡沫剂等)放入打泡机中加水搅拌而制得细小均匀的泡沫,再将泡沫加入泥浆中共同搅拌成泡沫泥浆,注入模型,连同模型一同干燥,脱模,在1320~1380℃(对高铝隔热耐火砖而言)下烧成,经过加工整形即成制品。(见高铝质隔热耐火砖)

化学法在制砖工艺中利用化学反应产生气体而获得一种多孔砖坯的方法。通常利用的化学反应如碳酸盐和酸、金属粉末加酸、苛性碱和铝粉等。可以利用的化学反应必须是气体的发生比较缓慢而能控制,否则在倾注入模时受机械扰动气泡即行消失。如反应太快,可加抑制剂如过氧化氢与二氧化锰。在细粉原料泥浆中混入发生气泡的反应物获得稳定的泡沫泥浆,注入模型,干燥后烧成。此法制造纯氧化物隔热耐火制品,其气孔率可达到55%~75%。

多孔材料法利用膨胀珍珠岩、膨胀蛭石和硅藻土等天然轻质原料;通过人工制造的各种空心球(如氧化铝空心球,氧化锆空心球;热电厂粉煤灰中空心微珠等为原料,加一定的结合剂,通过混合、成型、干燥和烧成等工序而制成隔热耐火制品。

特性随着隔热耐火制品的开发与扩大应用,人们更加需要了解其性能,进而改善其功能。

热导率热导率的大小,直接关系到制品的隔热节能效果,热导率与温度成直线关系,即

%26lambda;T = %26lambda;o + %26alpha;T

式中%26lambda;T为某温度T下的热导率;%26lambda;o为0℃时的热导率;T为温度;%26alpha;=0.1~0.14(根据F.H.Norton的数据)。热导率与体积密度成直线关系,热导率与制品的气孔率成反比,可用下式表示:

%26lambda;V = %26lambda;K ( 1-p),W/(m.K)

式中%26lambda;V为制品的热导率,W/(m%26bull;K),%26lambda;K 为连续相的热导率,W/(m%26bull;K);p为制品的气孔率。热导率还与砖中气孔的多少、形状、大小和连通情况有关。气孔细小则热导率低,当温度升高时,粗气孔材料的热导率大于细气孔材料。连通气孔比封闭气孔的热导率大。

体积密度隔热耐火制品的主要技术指标之一。它与制品热容量的大小和热导率的高低有直接关系,体积密度大的制品,热容量和热导率都大,反之,则小。因此,从隔热节能的角度要求制品的体积密度低些为好。

常温耐压强度对隔热耐火制品的耐压强度要求,如从实际使用情况出发,在砌筑炉墙时,制品的耐压强度要求不小于0.07MPa,砌筑炉顶时,不小于0.35MPa;在搬运输送过程中为保证不破裂不掉边掉角,耐压强度应不小于1.0~1.5MPa。

当制品用于窑炉的工作层时,由于直接接触火焰和受热气流的冲刷,要求制品有较高的强度,可选用密度大、常温耐压强度高的牌号产品。由于某些特殊要求和制造工艺的进步,已研制生产了比一般隔热耐火制品高2~5倍的高强度隔热耐火制品。

重烧线变化制品在烧成(有的不经烧成)过程中物理一化学反应不可能完全,使用时在高温作用下会继续反应,使制品的体积发生不可逆的变化。这将破坏砌筑体的结构而降低窑炉的使用寿命。所以重烧线变化与最高使用温度密切关系。隔热耐火砖最高使用温度的实验室测定,是加热整块砖2h,其线变化率等于1%时的温度。为了对实际使用更有意义,提出二个方法,一是延长加热时间至24h 以至50h,另一是用嵌镶法,即将砖样一端插入炉内加热,一端暴露于空气中,观察收缩,其受热端高于安全使用温度100℃进行加热试验。

抗热震性在间歇式的热工设备中,耐火材料常在温度骤然变化的条件下使用,在连续式操作的设备中也常有温度波动,如加料时炉温变化等。热震性(R),与线膨胀率(%26alpha;),热容(c p)、热导率(%26lambda;)、弹性模量(E)、机械强度(%26sigma;)、体积密度%26rho;的关系如下式:

制品抗热震性还与制品形状和大小以及热流性质有关。对隔热耐火制品的抗热震性有专门的测试方法。

此外,制品的外形及尺寸公差也很重要,应该对其加工整形。

应用隔热耐火砖与致密耐火砖相比,有如下优点:(1)蓄热小、热效率高,能加快间歇作业窑炉的周转,提高生产效率,降低燃料消耗,节约能源。(2)热导率低,可减薄炉墙、炉顶厚度、减轻炉体质量、简化炉窑构造。(3)炉温可以变得均匀,有利于提高产品质量。(4)炉外四周温度低、便利操作,提高劳动效率,改善装窑出窑的劳动条件。隔热耐火制品的缺点是组织疏松,不能直接接触熔渣和液态金属,不能用于炉膛与炉料接触部分,也不宜用于高速炉尘的通路上,不宜用于机械振动大的部位。机械强度小、抗热震性低、透气率大,容易损毁。由于烧成后需要加工整形,价格较贵。

使用隔热耐火制品应注意留适当砌缝,选用气硬性缓凝耐火泥浆。制品工作温度不超过重烧线变化的试验温度,以免砖的重烧收缩大而引起砌缝裂开和砖的损坏。隔热耐火砖的热容量小,用这种砖砌筑的窑炉,升温或冷却速度快,但由于其抗热震性差和强度不大,故这种快速升温和冷却也会使砖破裂。

展望今后隔热耐火材料向高产、优质、多品种、拓宽使用范围、革新生产工艺等方面发展。

(1)隔热耐火材料是隔热节能材料,为了节约能源,减少经济损失,使炉窑轻型化,尽可能用隔热耐火材料替代致密的耐火产品。(2)优质隔热耐火制品应具有组织均匀,使用时收缩小,抗热震性高,强度大,隔热性能好,热容小,透气率低,体积密度小,气孑L率大而气孔小等特点,同时制品尺寸偏差要小及外形规整。提高窑炉使用寿命。(3)品种向着使用温度高、使用环境苛刻、轻质各异,功能独特,轻质复合等高精尖制品和不定形隔热耐火材料方向发展。(4)最初多用于淬火炉、退火炉、箱式电炉、井式电炉等小型热处理炉,以后逐步扩大到隧

道窑、辊道窑、高炉的热风炉及其它大型窑炉。并从用于隔热层扩展到工作层。在冶金、石化、机械、电力、建材、航天、造船等工业部门的热工设备广泛应用。隔热耐火制品与火焰直接接触的表面涂上一耐火涂层,以提高抗侵蚀性和抗冲刷、拓宽使用范围。(5)传统配方加入空心微珠,浇注泥浆加入固化剂、不烧隔热耐火制品、不定形隔热材料发展等诸如此类的变革,能改进生产工艺,降低生产成本,推动行业进步。

耐火砖标准资料

热风炉高铝砖主要性能指标: 高炉高铝砖 热风炉粘土砖主要性能指标:

高炉粘土砖主要性能指标: 烧嘴砖

本产品高温下体积稳定性好,耐磨耐冲刷,抗剥落,用于陶瓷厂辊道窑,隧道窑,梭式窑,等工业窑炉的喷火嘴部分。 特性: 采用优质结合剂,经振动密实成型,热导率好,耐压强度高,高抗热震,耐侵蚀,耐冲刷,使用寿命长。 用途: 各种工业炉窑如梭式窑、隧道窑、辊道窑、玻璃纤维炉口等燃气、燃油烧嘴。 理化指标 名称 / 指标磷酸盐 结合刚玉 磷酸盐结 合莫来石 磷酸盐 结合高铝 耐压强度110 ℃ ×24h MPa35 36 35 1350 ℃ ×3h MPa95 105 85 烧后线变化℃ ×12h1600 1500 1450 % ± 0.5± 0.5± 0.5 最高使用温度℃1550 1500 1450 Al2O3% 90 72 55 高炉冷却壁镶嵌料 、高温电煅烧无烟煤、碳化硅、高铝矾土熟料为原材料,复合树脂或水泥为粘结剂,加入固化剂填充于冷却壁凹槽中或冷却壁与炉衬之间的间隙,常温固

嵌料。高炉冷却壁镶嵌料按理化指标分为LLX-1、LLX-2、LLX-3、LLX-4四种牌号。 却壁镶嵌料的理化指标: 项目单位LLX-2 化学成分 C %≥30 SiC %≥20 Al2O3%≤30 体积密度g/cm3≥2.20 耐压强度MPa ≥50 导热系数(室温)W/(m.k) ≥5 固化时间(25℃)h 6-12 产品是以高温电煅烧无烟煤、石墨为主要原料,加入特殊固化剂填充于冷却壁凹槽中或冷却壁与炉衬之间的间隙,能够常温固化以满足高炉冷却壁工作的

高铝耐火泥 用于高炉、热风炉及其他工业窑炉砌筑市铝砖。 主要技参数: 耐火球 本产品采用最新技术和机械成型手段,生产各类材质、规格的耐火球,产品肯有 较高的体积密度,较低的蠕变率,即有荷重软化点高,耐急冷急热性好,又有良 好的抗侵蚀性,可有效改善冶炼条件,提高热风温度,降低炼铁能耗,使球式热 风炉发展大型化,长寿命成为现实,取得了良好的经济效益。按需供货,保您满 理化指标: 指标\牌号 刚玉 质高铝质改性高铝质 高密度 高铝质 高密度 蠕变质 高密度 镁铝铬质 高密度 铝铬质 高密 度 铝铬 硅质

优质耐火砖的区分及分类

耐火砖具有强度高、抗磨损、抗冲刷能力强及施工后不需要养护可立即投入生产等特点.产品用途:广泛适用比粘土质和高铝质隔热耐火砖复杂,在隔热衬火材转总产量中所占比重很小。耐火砖在其生产过程中,其物理化学变化一般都未达到烧成温度下的平衡状态。也有烧成不充分的耐火砖,因而在回转窑作用中再受高温作用时,为保持炉墙的整体性和稳固性,采取每隔5~8层,在砌砖层高度相同重合的地方,内外墙互相拉固的砌筑法,即将耐火砖的一半插入另一砖层中,或用金属锚固件固定。耐火粘土研磨工业、化工工业陶瓷工业等方面也有重要用途。大多数的耐火砖由于其本身液相的产生及孔隙的填充,发生不可逆的重烧收缩。 因此,高温体积稳定性,在选用烧成带耐火砖时必须予以考虑。回转窑耐火砖的主要作用是保护窑筒体不受高温气体和高温物料的损害,保证生产的正常进行。在工业生产中,烧成带耐火砖的使用寿命很短,往往导致计划外停窑检修,是影响水泥窑优质、高产、低耗和年运转率的关键因素。 高铝质隔热耐火砖,泡沫剂的制备。耐火砖具有冲刷能力强及施工后不需要养护可立即投入生产等特点.产品用途:广泛适用于冶金、化工、电力、垃圾焚烧炉、水泥窑窑口、下料箱、冷却机及循环流化床锅炉的布风板、放渣管、炉膛密相区、炉膛出口、旋风分离器等要求抗磨损、抗热震能力强的热工设备上。 耐火砖按照种类及含铝量的不同可以分为:粘土耐火砖,高铝耐火砖,白云石耐火砖,镁铬耐火砖,抗剥落耐火砖,磷酸盐耐火砖,碳化硅耐火砖,硅莫耐火砖几大类。 1、粘土耐火砖:粘土耐火砖是用途最为广泛的一种砖,他的三氧化二铝含量在30%-60%,主要应用炉窑,锅炉内衬,厨房设备等上面; 2、高铝耐火砖:故名思议,就是Al2O3的含量比较高,耐火度高于粘土耐火砖,三氧化二铝含量在70%以上,抗酸碱侵蚀性好,适宜水泥窑烧成带等处,使用 寿命长但价格高,有很多不重要的炉窑都用粘土耐火砖代替; 3、白云石耐火砖:这种耐火砖比较抗酸碱,挂窑皮性能好,抗侵蚀性好,但有砖中多少有f-CaO,水容易泡化,不利益运输,保存起来也不是很方面,所以,比较少用; 4、镁铬耐火砖:一般在比较震动的炉窑上用途少,多用于烧成带,抗热震性能差,加上正六价Cr有剧毒,对环保不利,这种耐火砖逐渐被

耐火和隔热材料的热导率

现将从样本、合同附件以及书中收集到的热导率数据拟合成回归式,列举于下,供计算时参照使用,总计共311项。 来自<陶瓷纤维耐火材料的施工>,苏启昕译,146页附图,小计共33项。 名 称 重烧收缩率≯2%的温度 体积密度 热 导 率 复相关系数 A1 900℃ <500 kg/m 3 λ=0.0001t+0.0740 R 2=1.0 A2 1000℃ <500 kg/m 3 λ=3*10-9t 2+0.0001t+0.0864 R 2=1.0 A3 1100℃ <500 kg/m 3 λ=-6*10-9t 2+0.0001t+0.0892 R 2=0.9999 A4 1200℃ <550 kg/m 3 λ=1*10-9t 2+0.0001t+0.1041 R 2=0.9999 A5 1300℃ <600 kg/m 3 λ=1*10-9t 2+0.0001t+0.1041 R 2=0.9999 A6 1400℃ <700 kg/m 3 λ=-2*10-8t 2+0.0003t+0.1013 R 2=1.0 A7 1500℃ <750 kg/m 3 λ=-1*10-8t 2+0.0001t+0.1168 R 2=1.0 B1 900℃ <700 kg/m 3 λ=0.0182t 2+0.5566t+0.0327 R 2=0.9998 B2 1000℃ <700 kg/m 3 λ=-2*10-8t 2+0.0002t+0.1156 R 2=1.0 B3 1100℃ <750 kg/m 3 λ=-1*10-8t 2+0.0002t+0.1192 R 2=1.0 B4 1200℃ <800 kg/m 3 λ=6*10-9t 2+0.0002t+0.1440 R 2=1.0 B5 1300℃ <800 kg/m 3 λ=-1*10-9t 2+0.0003t+0.1313 R 2=1.0 B6 1400℃ <900 kg/m 3 λ=2*10-9t 2+0.0003t+0.1447 R 2=1.0 B7 1500℃ <900 kg/m 3 λ=5*10-9t 2+0.0003t+0.1973 R 2=1.0 C1 1300℃ <110 kg/m 3 λ=2*10-10t 2+0.0003t+0.1728 R 2=1.0 C2 1400℃ <120 kg/m 3 λ=6*10-9t 2+0.0003t+0.2695 R 2=1.0 C3 1500℃ <125 kg/m 3 λ=1*10-8t 2+0.0003t+0.3008 R 2=0.9999 高铝砖 60%Al 2O 3 2.25-2.40t/m 3 λ=3*10-7t 2-0.0004t+1.4259 R 2=0.9687 高铝砖 90%Al 2O 3 λ=1*10-6t 2-0.0022t+3.0530 R 2=1 名 称 重烧收缩率≯?%的温度 体积密度 热 导 率 化学成分 1号 1000℃; 2.0% <280 kg/m 3 λ=0.0001t+0.051 kcal/mh ℃ 1号 硬硅钙石系列6CaO.6SiO.H 2O 2号 雪 硅 钙石系 列 5CaO.6SiO.5H 2O 1号 1000℃; 1.5% <200 kg/m 3 λ=0.0001t+0.051 kcal/mh ℃ 2号 650℃; 2.0% <220 kg/m 3 λ=0.0001t+0.046 kcal/mh ℃ 2号 650℃; 2.0% <200 kg/m 3 λ=0.00009t+0.040 kcal/mh ℃ 硅酸钙板 650℃; 2.0% <180 kg/m 3 λ=0.00009t+0.040 kcal/mh ℃ 硅酸钙板 850℃; 1.0% <130 kg/m 3 λ=0.00011t+0.033 kcal/mh ℃ 硅酸钙板 1000℃; 1.5% <300 kg/m 3 λ=0.00009t+0.050 kcal/mh ℃ 硅酸钙板 1000℃; 1.5% <400 kg/m 3 λ=0.00009t+0.056 kcal/mh ℃ 分级温度 体积密度 热 导 率 复相关系数 1260℃ 96 kg/m 3[85-115] λ=4*10-7t 2-3*10-5t+0.065 W/mK R 2=1.0 128 kg/m 3[115-150] λ=4*10-7t 2-6*10-4t+0.069 W/mK R 2=1.0 192 kg/m 3[150-195] λ=4*10-7t 2-9*10-5t+0.073 W/mK R 2=1.0 96 kg/m 3[85-115] λ=3*10-7t 2-1*10-4t+0.054 kcal/mh ℃ R 2=1.0 128 kg/m 3[115-150] λ=3*10-7t 2-6*10-4t+0.062 kcal/mh ℃ R 2=1.0 192 kg/m 3[150-195] λ=3*10-7t 2-7*10-5t+0.061 kcal/mh ℃ R 2=1.0

什么是耐火砖耐火砖规格大全

什么是耐火砖耐火砖规格大全 什么是耐火砖,耐火砖是用耐火黏土或其他耐火原料制成的耐火材料,常见的是淡黄色或者带褐色。耐火砖的用途非常广泛,一般用作建筑窖炉,各种热工设备的高温建筑材料和结构材料。 在水泥工业中,常见的耐火砖类型 直接结合镁铬砖:直接结合镁铬砖系采用优质镁砂和铬精矿为原料制成的烧成制品。该制品杂质含量少、烧成温度高、高温矿物相的直接结合率高,其具有强度高、抗侵蚀能力强、热震稳定性好及优良的高温性能和易于挂窑皮的特性,被广泛用于大型于法水泥回转窑的烧成带。 镁铝铬砖:镁铝铬砖是在镁铝尖晶石砖的生产工艺上,加入一定量的含Cr2O3的合成料研制而成的,主要用于新型干法窖的烧成带及过渡带。产品具有热震稳定性好,抗侵蚀能力强等优点,而又易于挂窖皮,导热系数低,减少铬污染。 普通镁铬砖:普通镁铬砖即硅酸盐结合镁铬砖,自七十年代在我国水泥窖烧成带上使用,因其工艺简单,成本低,至今仍是中小型水泥回转窖烧成带的主要材料。 镁铝尖晶石砖:原料纯,杂质含量少,经高压成型和高温烧成。产品具有良好的耐侵蚀,抗剥落及耐高温等优点,该产品广泛使用与大型干法水泥回转窖的过渡带。 镁锆砖是以高纯电熔镁砂,硅酸锆及其合成砂为主要原料,经高压成型,高温烧成而制得。产品具有良好的热震稳定性、抗碱性和抵抗氧化还原能力,由于高温烧成,使其结构致密,气孔小且分布均匀,因此具有较高的耐压强度,较好的抗渗透性,抗机械应力和耐磨性。适用于水泥回转窖的烧成带,属于环保型耐火材料。 耐火砖又叫火砖,主要应用于工业上的使用。随着国家水泥工业的发展,对耐火材料提出了更高的的要求,顺应时代的发展,创建绿色建设。郑州东创耐材将以丰富的经验以及专业的知识为您解决问题!

耐火砖及规整耐火材料作业指导书

耐火砖及规整耐火材料炉衬施工 技术规程 编制: 审核: 审批: 安全: 北京燕华工程建设有限公司 二零一四年五月 一、目的及适用范围

石油化工工业炉在检维修施工中耐火砖及规整耐火材料炉衬施工,其主要施工部位位于:1、辐射室、燃烧室底板;2、燃烧器、看火门的火嘴砖安装;3、辐射室、燃烧室侧墙体;4、对流室墙体。施工过程中会同建设单位对各部位进行检查,发现炉衬问题及时进行检修。考虑检维修期间时间紧,任务重,为确保工程质量、加快施工进度、合理利用材料和人力,特制定本作业指导书。 二、编制依据 1、《石油化工筑炉工程施工质量验收规范》SH/T3534-2012 2、《石油化工筑炉工程施工技术规程》SH/T3610-2012 3、《隔热耐磨衬里技术规范》(SH3531--2003) 4、《高铝质隔热耐火砖》 (SH/T3995-2006) 5、《工业炉砌筑工程施工及验收规范》GB50211-2004 6、《工业炉砌筑工程质量验收规范》GB50309-2007 7、《定型耐火制品验收抽样检验规则》GB/T10325-2012 8、《粘土质和高铝质致密耐火浇注料》YB/T5083-1997 9、《耐火砖形状尺寸第1部分:通用转》GB/T2992.1-2011 10、《石油化工乙烯装置裂解炉和制氢转化炉施工技术规程》SH/T3511-2007 11、《石油化工建设工程施工安全技术规范》GB50484-2008 12、《建筑施工扣件式钢管脚手架安全技术规程》JGJ130-2011 13、设计文件 三、本专业检维修施工特点和注意事项 炉衬施工时与其它各专业进行交叉作业,多为高空作业,作业空间狭小且,施工作业地点情况复杂,成品保护、人员防护及安全施工尤为重要。 四、检维修施工准备 1、技术准备 (1)施工前,积极组织相关技术人员查看有关图纸和部分竣工资料,了解本次炉子的设计特点使用情况。合理安排好施工顺序,结合具体情况发现问题及时解决。 (2)根据炉衬结构特征和现场实际情况,因地制宜地选择安全有效、经济合理、施工简便的方法。施工方案经审批确定后,要把工程设计意图、要求、特点和施工方案内容,在开工之前向所有参加施工的人员做详细的交底,使所有施工人员在施工前作到心中有数。(3)了解材料厂家的供货情况,充分了解筑炉工程各部位使用的材料、品种、规格,结合具体情况确定施工的方法。 (4)检维修中停炉后,配合车间尽快组织对炉子内部衬里破损情况的检查,确认工程量,制定合理的施工工期。 2、施工机具、材料准备

耐火材料中英文对照

耐火制品 耐火粘土砖 Fire Clay Brick 规格:由买方选择 包装:托盘,约1.2吨 用途:适用于高炉、焦炉、加热炉、盛钢桶、浇钢砖、有色冶金炉、水泥窑、玻璃窑及烟囱等各种窑炉与热工设备。 产地:山东、山西、河北、河南、辽宁、北京、上海、天津等地。

Specifications:At Buyer's Option. Uses:suitable for blast furnace,coke oven,preheating furnace,ladle lining,steel teeming,non- ferrous metallurgical furnace,boiler,cement l\kiln,glass tands,chimney and other kilns or furnaces and heat equipment. Packing:in wooden pallet,about1.2MT each pallet. Place of Origin:Shandong,Shangxi,Hebei,Henan,Liaoning,Shanghai,Tianjin,etc. 高铝砖 High Alumina Brick 规格:由买方选择 包装:托盘 用途:适用于电炉炉顶、高炉、加热炉、盛钢桶、铁水车、水泥窑、玻璃窑及烟囱及其他高温窑炉产地:山西、河南、河北、山东、北京、上海、天津等地。 Specifications:At Buyer's Option. Uses: suitable for roof of electric arc furnace, preheating furnace, ladle lining, torpedo, cement kiln, glass tank, other furnaces and kilns at high temperature. Paking:ln wooden pallet. Place of Origin:Shandong,Shangxi,Hebei,Henan,Liaoning,Shanghai,Tianjin,etc. 铝碳化硅碳砖 规格:由买方选择 用途:鱼雷车内衬、铁水包内衬 Specifications:At Buyer's Option. Uses:Torpedor lining and iron ladle lining.

《钢包用耐火砖形状尺寸》行业标准编制说明

《钢包用耐火砖形状尺寸》行业标准编制说明 1.立项背景 钢包是炼钢生产工艺过程中的重要设备之一。随着冶金技术的发展对钢包工作衬的设计和使用提出了更高的要求,而作为钢包工作衬主要构件之一的耐火砖形状尺寸国内一直没有一个相应的标准出台。这不仅造成钢铁企业与耐火材料行业之间在设计、生产与使用上的沟通困难,影响了企业间正常商贸活动的有效进行,也不利于一些先进技术在整个行业的推广应用,同时影响到企业产品的标准化、规模化生产与流通,对社会资源造成了一定的浪费。因此,武汉钢铁(集团)公司与冶金工业信息标准研究院在前期所掌握国内外钢厂实际使用情况和耐火材料企业实际生产状况的基础上,进行了系统的分析与研究,提出了编制《钢包用耐火砖形状尺寸》行业标准这项工作的建议,并通过全国耐火材料标准化技术委员会上报国家发展和改革委员会申请立项。 2.工作开展 2007年6月14日国家发改委办公厅以发改办工业【2007】1415号文下达关于2007年行业标准项目修订、制定计划的通知和全国耐火材料标准化技术委员会耐标委秘字[2007]11号文的通知,由武汉钢铁(集团)公司、冶金工业信息标准研究院负责《钢包用耐火砖形状尺寸》行业标准的制订工作,应于2008年内完成。接到通知后我们迅速成立了以武钢耐火材料公司莫瑛副经理为负责人的《钢包用耐火砖形状尺寸》行业标准制定项目组,制定《钢包用耐火砖形状尺寸》标准编制意见调查表,于2007年9月上旬发往全国30多家单位进行调查,开始着手标准初稿的编制。截至2007年10月上旬收回有效调查表共计14份,结合我们自己掌握的一些资料进行了归类整理、统计分析和意见与建议的处理工作,结合调查反馈情况对标准初稿进行了完善,形成了讨论稿。2008年4月2日武钢股份公司生产技术部组织了设计、生产、砌筑施工与应用方面的武钢内部专家15人对讨论稿进行了研讨交流,根据与会专家们提出的意见和建议对讨论稿进行了全面细致的修改,至此形成了该标准征求意见稿。 3.编制说明 3.1编制依据 3.1.1调查反馈情况 根据所制定的《钢包用耐火砖形状尺寸》标准编制意见调查表格式,从被调查单位的钢包类型与数量、钢包的钢壳尺寸参数、钢包内衬结构、工作层衬

浙江大学科技成果——结构隔热一体化复合耐火材料技术

浙江大学科技成果——结构隔热一体化复合耐火材料技术成果简介 采用重质/轻质复合制备结构/隔热一体化复合耐火材料,以降低回转窑用耐火材料整体导热系数的方式减少筒体散热而实现节能降耗;采用电熔空心球作为轻质部分骨料,解决普通水泥回转窑烧成带用耐火材料在超高温度下烧结轻质部分易收缩的难题,确保高强度,取得超高温烧结梯度复合材料的重大突破。 技术特点 1、电熔法制备低成本高性能空心球实现系列化; 2、采用振动成型工艺方法实现密度梯度复合耐火材料结构与性能可控; 3、采用耐高温空心球作为轻质结构骨料,实现超高温烧结重质/轻质复合耐火材料。 应用领域 结构/隔热一体化复合砖在直接使用重质砖的回转窑上使用,可降低筒体温度,减少回转窑筒体热辐射损耗2.5-3%,延长耐火内衬使用寿命10-25%;使用重质砖和轻质隔热层的回转窑上,可延长寿命30-40%。采用结构/隔热一体化复合砖可使回转窑整体重量降低15-25%和降低外部温度70-120℃,减少回转窑筒体变形和延长筒体和设备整体寿命。除在回转窑上使用之外,可在电熔炉上使用,节能在5-10%之间,在钢铁冶金炉上使用,节能率在2-8%,应用范围非常广泛。在陶瓷、耐火材料行业上使用,能有效延长设备的使用寿命和降低建

筑费用。整个市场使用量可达120亿元人民币。 主要产品 硅莫结构隔热一体化复合砖、镁铝尖晶石结构隔热一体化复合砖、高铝结构隔热一体化复合砖、镁铁铝结构隔热一体化复合砖等。 结构化一体砖使用过程中稳定性分析 从图上可以看出,复合砖的损耗主要是通过剥落的方式进行,磨损非常少,因此提高产品的抗热震性对延长产品寿命有好处,此外,高铝复合砖重质部分剥落以后,在表面形成一个非常完整的界面层,其界面层由部分致密工作层和轻质隔热层突出部分组成,能抵挡石灰的腐蚀和磨损,并且其抗热震好,可长时间使用,并能保证整体回转窑的正常运转,并可延长使用寿命,得到现场应用证明。因此界面处由重质和轻质复合在一起,在具有耐磨的同时,还具有更高的抗热震特性,不怕剥落损坏。 效益分析 通过在安徽博瑞德钙业有限公司石灰回转窑上应用,节能效果达到16%,表面温度为270-290℃,比原有最高温度390℃低100℃。此外,还在首钢水城钢铁(集团)石灰回转窑上应用,效果显著。 复合砖应用过程中产生的经济效益和社会效益:

耐火砖

中华人民共和国国家标准 GB /T 2992——1998 通用耐火砖形状尺寸 Dimensions of general bricks 1998 – 12 – 14 发布1999 – 08 – 01 实施国家质量技术监督局发布

GB/T 2992——1998 前言 本标准是对GB/T 2992——1982《通用耐火砖形状尺寸》、GB/T 1590——1979《镁砖和镁硅砖形状及尺寸》与GB/T 2074——1980《炼铜炉用镁铬砖形状尺寸》的修订,将其合并为一个标准。 本标准非等效采用国际标准ISO 5019-1:1984《耐火砖-尺寸-第一部分:直形砖》;ISO 5019-2:1984《耐火砖-尺寸-第二部分:楔形砖》;ISO 5019-5:1984《耐火砖-尺寸-第五部分:拱脚砖》。本标准中砖长度除采用国际标准的230mm及345mm外,还保留了我国300mm、380mm及460mm,砖的宽度采用国际标准的114mm及150mm。砖的厚度保留了65mm及75mm。 本标准对上述三个原标准作了下列修订: ——对砖的名称及主要尺寸参数作了文字定义、以附图或公式表示。 ——对砖号做了修改,取消了代号。 ——对原标准附录中的计算方法作了精简、完善,并改写为附录A。 ——增设了75mm等中间尺寸竖厚楔形砖及直形砖。 ——对斜面上为230mm、300mm及460mm拱脚砖的尺寸作了修改,标准倾斜角采取60°/30°及50°/°40。 ——删掉非通用的异型砖。 本标准自实施之日起,代替GB/T 2992——1982、GB/T 1590——1979、GB/T 2074——1980。 本标准的附录A是标准附录。 本标准由原冶金工业部提出。 本标准由全国耐火材料标准化技术委员会归口。 本标准负责起草单位:武汉钢铁(集团)公司。 本标准主要起草人:薛启文、万小平、宫家学、高建平、方正国。

耐火砖技术规格书

干法熄焦节能技改项目 干熄焦耐火砖 订货技术规格书 为满足焦炉干法熄焦节能技改项目配套的干熄焦耐火砖的采购、设计、制造、验收及供货需要,提出以下技术规格书: 1基本定义 1.1本规格书仅提供基本的技术要求,并未对一切技术细节做出规定,也为充分引述有关制造标准及其详细条文,规格书内容、协议条款或设计审查并不免除卖方的技术责任,卖方的产品应在保证本规格书的技术要求和技术接口等相关规定的前提下,保证符合有关规范的规定。 1.2买方保留对其提供的技术资料进行补充和修改的权利,卖方应承诺予以配合。 1.3对于本规格书有关内容,卖方如果有特别推荐的技术及降低成本方案,可作为优化方案进行说明。 1.4为保证设备性能,本规格书未注明而又有必要的元器件,也应在报价范围内。并提供相应的技术参数。 1.5卖方投标时应提供设备清单和分项报价表。外购件应注明生产厂商。 1.6卖方对本厂生产、合作制造、外购件进行设备总装。保证所提供的设备及技术的完整性、先进性和可靠性,对设备的控制性能及技术指标总负责。

2干熄焦工艺概述 干熄焦工艺是利用冷的循环气体在干熄炉中和赤热红焦换热从而冷却红焦;吸收了红焦热量的循环气体将热量传给锅炉产生蒸汽,被冷却的循环气体再由主循环风机经鼓风装置进入干熄炉;锅炉产生的蒸汽用于发电。为了降低循环气体中的粉尘含量,干熄焦工艺设置了一次重力沉降式除尘器和二次多管旋风除尘器。 2.1干熄焦基本工艺参数 干熄炉最高产量设计 t/h 入干熄炉焦炭温度1000±50℃ 出干熄炉循环气体温度800~980℃ 焦炭烧损率≤0.9% 最大工艺粉尘产生率<2% 入干熄炉吨焦气料比1250~1400Nm3/t焦 正常循环风量:154000 Nm3/h 系统最大循环气体总流量178000Nm3/h 干熄炉内焦炭冷却时间2h左右 干熄后焦炭温度≤200℃ 干熄炉操作制度24h连续,345d/a 干熄炉年修时间20d/a 2.2干熄炉及一次除尘器耐材的砌筑特点 干熄炉砌筑属于竖窑式结构,中下部是处于正压状态的圆筒形直立砌体。炉体自上而下可分为预存室、斜道区和冷却室。

不定型耐火材料

不定形耐火材料(unshaped refractories) 由一定级配的骨料、粉料、结合剂和外加剂组成不定形状的不经烧成可供直接使用的耐火材料。不定形耐火材料的耐火度应不低于1500℃,有些隔热不定形耐火材料的耐火度允许低于1500℃。这类材料无固定的外形,呈松散状、浆状或泥膏状,因而也称为散状耐火材料,也可以制成预制块使用或构成无接缝的整体构筑物,也称为整体耐火材料。 不定形耐火材料具有工艺简单,生产周期短、节约能源、使用时整体性好、适应性强、便于机械化施工等特点。 简史不定形耐火材料是以耐火浇注料为基础而拓展的。早在1918年法国已开始销售铝酸盐水泥,一般认为在1925年欧美国家才以铝酸盐水泥作为耐火浇注料的结合剂,在第二次世界大战时期,美国用耐火浇注料和耐火可塑料作为锅炉和石油设备内衬。日本在1955年开始生产不定形耐火材料。到1960年美、日、联邦德国不定形耐火材料分别占耐火材料产量的12.6%、1.6%和1.6%。1966~1975年不定形耐火材料在工业发达国家实现了品种系列化,质量稳步提高、产量显著增长,1980年以前,美、日、联邦德国的不定形耐火材料产量已分别提高至37.1%、31.7%和36.8%,大致占耐火材料产量的三分之一或稍多一些。20世纪80年代以后,工业发达国家耐火材料产量逐步有所下降,而不定形耐火材料产量并无太大变化,因而不定形耐火材料产量比率相应提高,如以日本为例:1976~1985年耐火材料产量从270万t左右降至200万t左右,而其中不定形耐火材料始终维持在90万t左右,其比率从34%提高到44%。美国不定形耐火材料的比率已达到50%,西欧共同体为35%。到90年代初,不

耐火砖形状尺寸第2部术语-钢铁标准网

GB/T 2992.2 《耐火砖形状尺寸第2部分: 术语》 编制说明 标准制定项目组 2012年8月

目录 一、标准立项背景及任务来源 (3) 二、标准制定意义 (3) 三、术语标准的编制原则 (4) 四、有关国内外标准情况 (4) 五、本标准的研究和起草 (6) 1、任务分工 (6) 2、时间进度安排 (7) 3、主要编制过程 (8) 六、标准的主要内容 (8) 1、标准名称 (8) 2、范围 (8) 3、规范性引用文件 (9) 4、术语 (9) 5、附录 (10) 七、与国家和行业有关的现行的方针、政策、法律、法规和强制性标准的关系 (10) 八、对该标准作为强制性标准或推荐性标准的建议 (10) 九、贯彻标准的要求和措施建议 (10)

《耐火砖形状尺寸第2部分:术语》 编制说明 一、标准立项背景及任务来源 为了完善和充实我国耐火砖形状尺寸标准体系,在GB/T2992.1《耐火砖形状尺寸第1部分:通用砖》修订过程中,我们已提出我国耐火砖形状尺寸标准系列,2010年本标准起草单位武汉钢铁(集团)公司与冶金工业信息标准研究院提出制定计划,经由全国耐火材料标准化技术委员上报国家标准化管理委员会进行立项。国家标准化管理委员会2011年12月以国标委综合[2011]66号文《第二批国家标准制修订计划的通知》批准下达了制定任务,计划编号为20110798-T-469。随后全国耐火材料标准化技术委员转发了该标准制定通知。接到通知后武汉钢铁(集团)公司迅速成立了标准制定项目组,由武钢耐火材料公司具体承接,全面开展标准的制定工作。 二、标准制定意义 从发展趋势看,我国已经迈入了钢铁生产和应用的大国行列,作为与之息息相关的耐火材料最基础的砖形状尺寸标准,在设计、科研、贸易、企业的生产检验等领域以及对外交流过程中起着重要的作用。所以,制订出一套规范的、能与国际接轨的标准完全有必要。 《耐火砖形状尺寸》国家标准是耐火材料行业重要的基础标准之

耐火材料标准

耐火材料标准精选(最新) G2273《GB/T 2273-2007 烧结镁砂》 G2608《GB/T 2608-2012 硅砖》 G2992.1《GB/T 2992.1-2011 耐火砖形状尺寸 第1部分:通用砖》 G2992.2《GB/T 2992.2-2014 耐火砖形状尺寸 第2部分:耐火砖砖形及砌体术语》 G2994《GB/T 2994-2008 高铝质耐火泥浆》 G2997〈GB/T2997-2000 致密定形耐火制品体积密度,显气孔率〉 G2998〈GB/T2998-2001 定形隔热耐火制品体积密度和真气孔率试验方法〉 G2999《GB/T2999-2002 耐火材料颗粒体积密度试验方法》 G3000〈GB/T3000-1999 致密定形耐火制品透气度试验方法〉 G3001《GB/T 3001-2007 耐火材料 常温抗折强度试验方法》 G3002《GB/T3002-2004 耐火材料 高温抗折强度试验方法》 G3003《GB/T 3003-2006 耐火材料 陶瓷纤维及制品》 G3007《GB/T 3007-2006 耐火材料 含水量试验方法》 G3994《GB/T 3994-2013 粘土质隔热耐火砖》 G3995《GB/T 3995-2014 高铝质隔热耐火砖》 G3997.1《GB/T3997.-1998 定形隔热耐火制品重烧线变化试验方法》 G3997.2《GB/T3997.2-1998 定形隔热耐火制品常温耐压强度试验方法》 G4513《GB/T4513-2000 不定形耐火材料分类》 G4984《GB/T 4984-2007 含锆耐火材料化学分析方法》 G5069《GB/T 5069-2007 镁铝系耐火材料化学分析方法》 G5070《GB/T 5070-2007 含铬耐火材料化学分析方法》 G5071《GB/T 5071-2013 耐火材料 真密度试验方法》 G5072《GB/T 5072-2008 耐火材料 常温耐压强度试验方法》 G5073《GB/T5073-2005 耐火材料 压蠕变试验方法》 G5988《GB/T 5988-2007 耐火材料 加热永久线变化试验方法》 G5989《GB/T 5989-2008 耐火材料 荷重软化温度试验方法 示差升温法》 G5990《GB/T 5990-2006 耐火材料 导热系数试验方法(热线法)》 G6646《GB/T 6646-2008 温石棉试验方法》 G6900《GB/T 6900-2006 铝硅系耐火材料化学分析方法》 G6901《GB/T 6901-2008 硅质耐火材料化学分析方法》 G6901.10《GB/T6901.10-2004 硅质耐火材料化学分析方法:火焰原子吸收光谱法测定氧化锰量》 G6901.11《GB/T6901.11-2004 硅质耐火材料化学分析方法:钼蓝光度法测定五氧化二磷量》 G7320《GB/T 7320-2008 耐火材料 热膨胀试验方法》 G7321《GB/T7321-2004定形耐火制品试样制备方法》 G7322《GB/T 7322-2007 耐火材料 耐火度试验方法》 G8071《GB/T 8071-2008 温石棉》 G8931《GB/T 8931-2007 耐火材料 抗渣性试验方法》 G10325《GB/T 10325-2012 定形耐火制品验收抽样检验规则》 G10326《GB/T10326-2001 定形耐火制品尺寸、外观及断面的检查方法》

耐火材料的热学性质

耐火材料的热学性质 耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。 3.1 耐火材料的热膨胀 耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。 3.1.1 热膨胀率 热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。测定出热膨胀率,才能计算出热膨胀系数。 线膨胀率=[(L T-L0)/L0]×100% 式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。 3.1.2 热膨胀系数 热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。 热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT 式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。 体热膨胀系数β=ΔV/V0ΔT 式中:V0—为试样在初始温度T0时的体积,(mm3)。 真实热膨胀系数αT=dL/LdT 式中;L—为试样在某温度时的长度,(mm)。 如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。 影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。 ①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。 ②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较

设备技术标准及参数

第五部分设备技术说明 一、厨房设备炉具产品制造要求及材料规格 1.范围 所有不锈钢设备材质必须具有国家级部门颁发的产品材质检验单,并符合国标GB3280-92和GB4239-91。检验能通过西安市或陕西省质检 部门检测达标。 2. 炉类产品用材规范 2.1炒炉类(大、中、小) 2.1.1 产品用材 1)炉面板选用SUS304-4Hδ1.5mm贴胶磨砂板,炒围、尾围选用SUS304-4H δ1.5mm冲压件,并做抛光处理,规格分别为:D432~584mm(17"~23") D381~457mm(15"~18"); 2)炉档板、炉背板选用δ1.0mm贴胶磨砂不锈钢板; 3)衬板、锅围筒体、尾围筒体为SPCCδ2.0mm; 4)炉架体选用热轧等边角钢Q235 L50×50×4mm,并作镀锌防锈处理; 5)气管为201A无缝焊管(国标)40×40×4mm; 6)水管采用GB1528-87拉制铜管,规格为D10mm(3/8"),管件采用日本“葫芦”品牌。 2.1.2 炉具配件的要求及配置 1)燃烧器(炉头),选用香港“三昌”燃气高效节能预混式底进风炉头; 2)供风系统选用香港“三昌”250W(E2)全铸铝、低噪音中压鼓风机,并符合CE-0694标准,采用风气联动装置,配2"行链风掣; 3)燃气系统阀门选用日本“KITZ”或意大利“安奴”1/2气掣;并配置美国BASO牌安全制,支气管为GB1528-87 D 6.5mm拉制铜管; 3)点火装置,每个火眼须安装意大利强排风式电子打火装置; 4)产品配置龙头,给水系统选用GB1528-87拉制铜管D15×0.7mm,Q/TJ

24-2000 3/4"铜闸阀,“埃美柯”品牌;1/2"摇摆式水龙头,“爱华” 品牌; 5)燃烧室选用优质耐火砖,特制耐火烟道、耐火水泥等砌制炉膛燃烧室;6)锅圈选用D47~56mm ,HT200铸铁圈。 2.1.3 技术参数 热效率26%以上 热负荷32千瓦以上 尾气CO含量0.020%以下 尾气氧含量10%以下 噪音≤60分贝 发热量30000Kcal/眼/h 耗气量 2.2-3.5m3/眼/h 燃气压力2000-2500Pa 2.2 大锅炉类 2.2.1 产品用材 1)炉面板选用SUS304-4Hδ1.5mm贴胶磨砂板,蒸围选用 SUS304-4Hδ 1.5mm冲压件,规格为:D600~1000mm(1.8尺~ 2.8尺); 2)炉档板、炉背板选用SUS304-4Hδ1.0mm贴胶磨砂不锈钢板; 3)衬板、锅围筒体为SPCCδ2.0mm; 4)炉架体选用热轧等边角钢Q235 L50×50×4mm,并作镀锌防锈处理;5)气管为201A无缝焊管(国标)40×40×4mm; 6)水管采用GB1528-87拉制铜管,规格为D10mm(3/8");日本“葫芦” 品牌活接。 2.2.2 配件的选用及配置 1)燃烧器(炉头),配置香港“三昌”燃气高效节能预混式沟底进风炉头;2)供风系统配置香港“三昌”250W(E2)全铸铝、低噪音中压鼓风机,并符合CE-0694标准,采用风气联动装置,配2"行链风掣; 3)燃气系统阀门配置日本“KITZ”或意大利“安奴”1/2气掣;并配置美国BASO牌安全制,支气管为GB1528-87 D 6.5mm拉制铜管;

隔热耐火制品

隔热耐火制品(thermal insulating refractory products) 气孔率不低于45%的耐火制品。隔热耐火制品的主要特性是,气孔率高,体积密度小,热导率低,热容小,隔热性能好。既保温又耐热,可作为各种热工设备的隔热层,有的也可作为工作层,是构筑各种窑炉的节能材料。以隔热耐火制品替代一般致密耐火制品做筑炉材料,能够减少蓄热和散热损失40%~90%,特别是对不连续性的热工设备更有效。 简史1899年已有用硅藻土作原料加工制造隔热砖的专利。至1920年以后,由于冶金、玻璃、炼焦、陶瓷等大量消耗燃料的工业的发展,才渐渐出现能在更高温度下使用的隔热耐火材料。1922年,英国耐火材料研究协会对隔热耐火材料的性能进行过较系统研究,至1935年,发展了与炉气直接接触的隔热耐火材料的制造技术和使用。在美国,1928~1930年由于隔热耐火砖的优越性引起了工程技术方面的注意,生产得到迅速发展,不少科技人员做过一些有关性质研究试验工作。第二次世界大战期间,进展更快,使用更广。第二次世界大战前,德国已有用于煤气发生炉的硅质隔热耐火砖并制出高气孔率的特种镁砖,可以在炼钢温度下使用;日本也曾试制过二三个品种隔热砖,直至1948年学术振兴会第103委员会才着手研究,1951年完成,同年秋季生产。1930年~1935年期间,苏联隔热耐火材料在工业上开始应用,大量的工作是由乌克兰耐火材料研究所和列宁格勒耐火材料研究所研究出来的。中国于20世纪50年代已有硅藻土隔热砖等保温材料。中国科学院金属研究所曾于1956年对隔热耐火材料进行过研究。1961年抚顺耐火材料厂研制和生产高铝质隔热耐火砖,60年代初,北京耐火材料厂以泡沫法生产Al2O3含量90%~92%的氧化铝隔热耐火砖。这时中国已有

耐火砖种类及详细资料

常用耐火砖产品说明 耐火砖是服务于高温技术的基础材料,与各种工业窑炉有着极为密切的关系。玻璃窑等各种工业窑炉因用途和使用条件不同,对构成其主体的基本材料——耐火砖的要求也就不同。而不同种类的耐火砖也由于化学矿物组成、显微结构的差异和生产工艺的不同,表现出不同的基本特性。所以,在了解和研究工业窑炉筑炉材料的过程中,有必要对耐火砖的种类加以叙述介绍。 首先介绍硅铝系耐火砖,据悉,其是以AL2O3—SiO2二元系统相图为基本理论,主要包括以下几种。 (一)硅砖,是指含SiO293%以上的耐火砖,是酸性耐火砖的主要品种。它主要用于砌筑焦炉,也用于各种玻璃、陶瓷、炭素煅烧炉、耐火砖的热工窑炉的拱顶和其他承重部位,在热风炉的高温承重部位也用,但是不宜在600℃以下且温度波动大的热工设备中使用。 (二)粘土砖,粘土砖主要由莫来石(25%~50%)、玻璃相(25%~60%)和方石英及石英(最高可达30%)所组成。通常以硬质粘土为原料,预先煅烧成熟料,然后配以软质粘土,以半干法或可塑法成型,温度在1300~1400 C烧成粘土砖制品。也可以加少量的水玻璃、水泥等结合剂制成不烧制品和不定形材料。它是高炉、热风炉、加热炉、动力锅炉、石灰窑、回转窑、玻璃窑、陶瓷和耐火砖烧成窑中常用的耐火砖。 (三)高铝砖,高铝砖的矿物组成为刚玉、莫来石和玻璃相,其含量取决于AL2O3/ SiO2比以及杂质的种类和数量,可按AL2O3含量进行耐火砖的等级划分。原料为高铝矾土和硅线石类天然矿石,也有掺加电熔刚玉、烧结氧化铝、合成莫来石的,以及用氧化铝与粘土按不同比例煅烧的熟料。它多用烧结法生产。但产品还有熔铸砖、熔粒砖、不烧砖和不定形耐火砖。高铝砖广泛用于钢铁工业、有色金属工业和其他工业。 (四)刚玉砖,刚玉砖是指AL2O3含量不小于90%,以刚玉为主要物相的的一种耐火砖,可分为烧结型刚玉砖和电熔型刚玉砖。 耐火砖字母编号规则 耐火砖编号规则: 据【金石耐材公司】介绍,通用耐火砖的砖号由于“T”字开头,即“通”字汉语拼音的第二个字母,通用砖的砖号是: T-1,T-2,T-3……..T-105。T字后的Z、C、S、K及J分别为直形砖,侧楔形砖,宽楔形砖及拱脚砖的"直","侧","竖","宽"及"脚"字汉语拼音的第一个小写字母.短横线后来顺序号. 代号中Z、C、S、K及J分别为直形砖、侧楔形砖及拱脚形砖的"直","竖","宽"及"脚"字的汉语拼音的第一个大写字母.直形砖之了母后为砖长a的百位及十位数字,接着为砖厚C的十位数字.楔形砖字母后为大小头之间距离b的百位及十位数字.接着为砖厚C的十位数字.楔形砖字母后为大小头之间距离b的百位及十位数字,接着为大头尺寸a及小头尺寸a1的十位以上的数字.数字末的K为错缝宽砖"宽"字汉语拼音的第一个小写字母.拱脚砖字母后为斜面长L的百位及十位数字.接着为倾斜角a的十位数字. 通用砖由于其通用性,所以它包括的内容面比较广,大致有以下两个方面. 1、包括标准砖、普型制品 T-3,T-6,T-19,T-22,T-38,T-41为标准砖。除标准以外的砖号,分别划为普型制品、异型制品、特型制品。 2、包括不同材质的制品 同一种砖号包括有粘土砖,半硅砖,硅砖,轻质粘土砖(LZ)-65, (LZ)-55, (LZ)-48等几种不同材质。需要说明的是:并非所有的砖号都有这几种材质,有一些砖号没有轻质粘土砖。

高铝质隔热耐火砖国家标准编制说明

《高铝质隔热耐火砖》国家标准编制说明 1、任务来源 根据国家标准化管理委员会国标委计划[2003]37号文的要求,由北方耐火厂等负责GB/T3995-1983《高铝质隔热耐火砖》国家标准(项目编号20031430-T-605)的修订工作,后又将“高温莫来石质隔热耐火材料”国家标准编制计划并入该项目。因此,由我们负责组织、起草了GB/T3995-200X《高铝质隔热耐火砖》国家标准。 2、市场调查 根据工作计划,我们成立了标准起草、制修订小组,并适时成立了市场调查工作组,对高铝质、高铝莫来石质隔热耐火砖的市场需求及技术发展情况进行了调查. 调查的主要企业有: 1.石油化工公司 2.东北特钢集团特殊钢股份公司 3.新抚钢有限责任公司 4.钢铁有限责任公司 5.北营钢铁(集团) 6.油田化工 7.炭素股份 8.化工 9.攀钢集团有限责任公司 10.钢铁有限责任公司 通过一般性对比和分析,我们取得了较为一致的意见,认为:近20年来,高铝质隔热耐火砖市场已经发生了根本性的变化,随着我国对外开放程度的不断提高和对节能意识的不断增强,各企业对高铝质隔热耐火材料的需求不断增

大,就产品的材质而言越来越向高纯度.低铁新品种发展;国外产品的大量涌入使国高铝质隔热耐火砖使用标准、牌号比较混乱,尤其是莫来石质隔热耐火砖,同一产品有些技术指标基本雷同,但是,使用的标准却有很大不同;牌号也很混乱,不仅有美国的,也有日本的还有欧州标准等。在我国莫来石质隔热耐火砖从无到有的发展起来,而使用温度也愈向高温---直接接触火焰的方向发展。因此原GB/T3995-1983《高铝质隔热耐火砖》的国家标准,已经不能适应目前市场发展的情况,但是,由于该标准已使用多年,设计、生产与使用部门已经熟知,且运用较为方便,大部分指标并不落后。只要把目前市场需要的莫来石质隔热耐火砖的标准加入其中,就可以使其更加完善。因此既要保持原有《高铝质隔热耐火砖》国家标准的连续性,又要有适应莫来石质隔热耐火砖发展方向的标准,使我国高铝、高铝莫来石质隔热耐火砖健康发展。使高铝质隔热耐火材料市场有序,并规市场交易行为,因此就要有一个适应这个市场的新国家标准出台。 3、编制原则 本次《高铝质隔热耐火砖》标准的修订,是原GB/T3995-1983国家标准的补充和延伸,《高铝隔热耐火砖》国家标准考虑多年使用,并较为规的基础上,仍采用密度分类法,即以LG作为高铝质隔热耐火砖的牌号,无论生产,设计和使用都较方便、实用。高铝莫来石质在原高铝质隔热耐火砖代号LG的基础上加M以代表莫来石质,即LGM代表高铝莫来石质。 高铝质隔热耐火砖从市场需求考虑,增加了:LG140-1.2牌号,删除了:LG-0.9、LG-0.4牌号。修定后形成了LG140-1.2、 LG140-1.0、LG140-0.8、LG135-0.7、LG135-0.6、LG125-0.5六个牌号. 莫来石质隔热耐火砖,原无标准,实际各生产企业一般采用JIS标准和ASTM

相关主题
文本预览
相关文档 最新文档