第七章答案
- 格式:doc
- 大小:812.00 KB
- 文档页数:17
第七章课后思考题参考答案1、在对未来理想社会的认识上,马克思主义经典作家与空想社会主义者有何本质区别?在展望未来社会的问题上,马克思主义与空想社会主义的根本区别就在于:马克思恩格斯站在科学的立场上,提出并自觉运用了预见未来社会的科学方法。
(一)在揭示人类社会开展一般规律根底上指明社会开展的方向空想社会主义者曾详尽地描绘过理想社会的图景。
但在马克思主义产生以前,人们对未来社会的预见。
往往带有浓厚的空想性质和梦想色彩,因为他们还没有掌握预见未来的科学方法论,也不懂得人类社会开展的客观规律。
马克思恩格斯站在无产阶级立场上,运用科学的方法,致力于研究人类社会特别是资本主义社会,第一次揭示了人类社会开展的一般规律和资本主义社会开展的特别规律,从而对共产主义社会做出了科学的展望。
马克思恩格斯认为,人类社会同自然界的开展一样,具有自己的开展规律,揭示这些规律,就能为正确理解过去、把握现在和展望未来提供向导。
可见,马克思恩格斯关于未来社会理论是建立在对历史开展规律把握的根底上的。
(二)在剖析资本主义社会旧世界中阐发未来新世界的特点马克思恩格斯关于未来社会的理论主要是在运用辩证唯物主义和历史唯物主义分析资本主义现实的根底上提出的。
通过探究整个人类社会和资本主义社会开展的规律预测历史未来前景,是马克思恩格斯关于未来社会理论的一个重要特点。
而掌握社会规律,离不开唯物主义特别是历史唯物主义理论和唯物辩证的方法的指导,这个理论与空想社会主义的根本区别在于,它不是从绝对真理、理性、正义这些抽象的观念出发描绘未来社会美景,而是在批判旧世界中发觉新世界,即通过深刻剖析资本主义社会形态特别是经济形态来获得对未来社会的认识。
他们以此法勾画出的社会主义,是资本主义的对立物、替代物。
未来社会的根本特征是与资本主义社会特征相对立的,同时,二者也有同一性,后者不仅是前者的对立物,而且也是继承者,应当汲取资本主义社会的文明成果。
空想社会主义者揭露了资本主义社会中存在的剥削和压迫,但对资本主义的认识仅停留在现象上,并未揭示其实质和根源。
习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
第七章沉淀反应参考答案P 142【综合性思考题】:给定体系0.02mol/LMnCl 2溶液(含杂质Fe 3+),经下列实验操作解答问题。
(已知K θSPMn(OH)2=2.0×10-13,K θSPMnS =2.5×10-13,K θbNH3=1.8×10-5,K θaHAc =1.8×10-5①与0.20mol/L 的NH 3.H 2O 等体积混合,是否产生Mn(OH)2沉淀?解:等体积混合后浓度减半,[Mn 2+]=0.01mol/L ,c b =[NH 3.H 2O]=0.10mol/L∵是一元弱碱体系,且c b /K b θ>500∴10.0108.1][5⨯⨯=⋅=--b b c K OH θ又∵ 622108.101.0][][--+⨯⨯=⋅=OH Mn Q c=1.8×10-8> K θSPMn(OH)2=2.0×10-13∴ 产生Mn(OH)2沉淀。
②与含0.20mol/L 的NH 3.H 2O 和0.2mol/LNH 4Cl 的溶液等体积混合,是否产生Mn(OH)2沉淀? 解:混合后属于NH 3.H 2O~NH 4Cl 的碱型缓冲液体系此时浓度减半:c b =[NH 3.H 2O]=0.2V/2V=0.1(mol.L -1)c S= [NH 4+]=0.2V/2V=0.1(mol.L -1)[Mn 2+]=0.02V/2V=0.01(mol.L -1)A 、求[OH -] 用碱型缓冲液计算式求算:s b b c c K OH ⋅=-θ][ 55108.11.01.0108.1--⨯=⨯⨯= B 、求Qc 22][][-+⋅=OH Mn Q c=0.01×[1.8×10-5]2=3.24×10-12C 、比较θ2)(,OH Mn SP K ∵13)(,100.22-⨯=>θOH Mn SP C K Q故有Mn(OH)2沉淀产生。
第七章动态电路的时域分析习题一、选择题1. 一阶电路的时间常数取决于: C(A) 电路的结构(B) 外施激励(C) 电路的结构和参数(D) 电路的参数2. 图示电路中I S = 5 A恒定,电路原已稳定,t = 0时开关S打开。
在求解过渡过程中,下列式子中正确的是: D(A) u(∞) = 125 V (B) τ = 0.4 s (C) u(0+) = 100 V (D) i(∞) = 5AL3.在电路换路后的最初瞬间( t = 0+ ),根据换路定律,电路元件可作如下等效: C(A) 无储能的电容可看做开路(B) 无储能的电感可看做短路(C) 电容可看作具有其初值电压的电压源(D) 电压源可看作短路,电流源可看作开路(0+)的值为:D4. 图示电路在开关S合上前电感L中无电流,合上开关的瞬间uL(A) 0 V (B) 63.2 V (C) ∞(D) 100 V5. 图示电路中电压源电压恒定,且电路原已稳定。
在开关S闭合瞬间,i(0+)的值为:C(A) 0.2 A (B) 0.6 A (C) 0 A (D) 0.3 A6. 表征一阶动态电路的电压、电流随时间变化快慢的参数是:D(A) 电感L(B) 电容C(C) 初始值(D) 时间常数τ7. 图示正弦脉冲信号的数学表达式为:B (A) sin ω t ⋅ ε (t ) + sin ω ( t - T ) ⋅ ε ( t - T ) (B) sin ω t ⋅ ε (t ) - sin ω t ⋅ ε ( t - T ) (C) sin ω t ⋅ ε (t ) - sin ω ( t - T ) ⋅ ε ( t - T ) (D) sin ω t ⋅ ε (t ) + sin ω t ⋅ ε ( t - T )8. 图示电路中,原已达稳态, t = 0开关 S 打开,电路的时间常数为:D (A)s 41 (B) s 61(C) s 4 (D)s 69. 示电路中,t = 0 时开关打开,则 u (0+)为:C(A) 0V (B) 3.75V (C) – 6V (D) 6V10.图示电路中,开关打开已久,在 t = 0 时开关闭合,i (0+) 为:D(A) 0A (B) 0.8A(C) 2A (D)1A11.R 、C 串联电路,已知全响应()()10C 83V,0t u t e t -=-≥,其零状态响应为:(A )(A) 1088V te-- (B) 1083V t e -- (C) 103V t e -- (D) 105V t e -12. .一阶电路的全响应()()10C 106V,0tu t et -=-≥若初始状态不变而输入增加一倍,则全响应u C (t)为 ( D ) (A) 20-12e -10t ; (B) 20-6e -10t ; (C) 10-12e -10t ; (D) 20-16 e -10t 。
第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。
分析化学》第七章习题答案(华中师范大学、东北师范大学、陕西师范大学、北京师范大学)(共13页)-本页仅作为预览文档封面,使用时请删除本页-第七章氧化还原滴定1.条件电位和标准电位有什么不同影响电位的外界因素有哪些答:标准电极电位E′是指在一定温度条件下(通常为25℃)半反应中各物质都处于标准状态,即离子、分子的浓度(严格讲应该是活度)都是1mol/l(或其比值为1)(如反应中有气体物质,则其分压等于×105Pa,固体物质的活度为1)时相对于标准氢电极的电极电位。
电对的条件电极电位(E0f)是当半反应中氧化型和还原型的浓度都为1或浓度比为,并且溶液中其它组分的浓度都已确知时,该电对相对于标准氢电极电位(且校正了各种外界因素影响后的实际电极电位,它在条件不变时为一常数)。
由上可知,显然条件电位是考虑了外界的各种影响,进行了校正。
而标准电极电位则没有校正外界的各种外界的各种因素。
影响条件电位的外界因素有以下3个方面;(1)配位效应;(2)沉淀效应;(3)酸浓度。
2.是否平衡常数大的氧化还原反应就能应用于氧化还原滴定中为什么答:一般讲,两电对的标准电位大于(K>106),这样的氧化还原反应,可以用于滴定分析。
实际上,当外界条件(例如介质浓度变化、酸度等)改变时,电对的标准电位是要改变的,因此,只要能创造一个适当的外界条件,使两电对的电极电位超过,那么这样的氧化还原反应也能应用于滴定分析。
但是并不是平衡常数大的氧化还原反应都能应用于氧化还原滴定中。
因为有的反应K虽然很大,但反应速度太慢,亦不符合滴定分析的要求。
3.影响氧化还原反应速率的主要因素有哪些?答:影响氧化还原反应速度的主要因素有以下几个方面:1)反应物的浓度;2)温度;3)催化反应和诱导反应。
4.常用氧化还原滴定法有哪几类这些方法的基本反应是什么答:1)高锰酸钾法.2MnO4+5H2O2+6H+==2Mn2++5O2↑+8H2O.MnO2+H2C2O4+2H+==Mn2++2CO2+2H2O2) 重铬酸甲法. Cr2O72-+14H++Fe2+===2Cr3++Fe3++7H2OCH3OH+Cr2O72-+8H+===CO2↑+2Cr3++6H2O3)碘量法 3I2+6HO-===IO3-+3H2O,2S2O32-+I2===2I-+S4O62Cr2O72-+6I-+14H+===3I2+3Cr3++7H2O5.应用于氧化还原滴定法的反应具备什么条件?答:应用于氧化还原滴定法的反应,必须具备以下几个主要条件:(1)反应平衡常数必须大于106,即△E>。
中国近代史纲要课后习题答案第七章第七章为新中国而奋斗一、抗日战争胜利后,国民党政府为什么会陷入全民的包围中并迅速走向崩溃?答:⑴经过人民解放军一年的作战,战争形势发生重大变化。
由于战线延长,国民党大部分兵力用于守备,战略性的机动兵力大为减少,而且士气低落。
为了彻底粉碎国民党,中国共产党将战争引向国民党区域,迫使国民党处于被动地位。
⑵土地制度改革的实施。
中国最主要的人民群众——农民进一步认识到中国共产党是自身利益的坚决维护者,自觉地在党的周围团结起来,为国民政府的崩溃奠定了深厚的群众基础。
⑶国民党政府由于他的专制独裁统治和官员们的贪污腐败,大发国难财。
抗战后期已经严重丧失人心。
⑷国民党政府违背全国人民迫切要求休养生息,和平建国的意愿,执行反人民的内战政策。
为了筹措内战经费,国民党政府对人民征收苛重捐税,无限制发行纸币,将全国各阶层人民置于饥饿和死亡的界线上,因而迫使全国各阶层人民团结起来和国民政府斗争。
⑸学生运动的高涨,不可避免地促进了整个人民运动的高涨。
二、如何认识民主党派的历史作用?中国共产党领导的多党合作、政治协商的格局是怎样形成的?答:1. 民主党派的历史作用:⑴中国各民主党派是中国共产党领导的爱国统一战线的重要组成部分。
中国各民主党派形成时的社会基础,主要是民族资产阶级,城市小资产阶级及其知识分子,以及其他爱国民主分子。
他们所联系和代表的不是单一阶级,而是这些阶级、阶层的人们在反帝爱国和争取民主的共同要求基础上的联合,是阶级联盟性质的政党。
在它们的成员和领导骨干中,还有一定数量的革命知识分子和少数共产党人。
在中国的政治生活中,各民主党派和无党派民主人士是一支重要的力量。
⑵抗战胜利后,民主党派在中国的政治舞台上比较活跃。
尽管各自的纲领不尽相同,但都主张爱国、反对卖国,主张民主、反对独裁。
这与中国共产党的新民主主义革命政纲基本上是一致的。
在战后进行国共谈判和召开政协会议时,民主党派作为“第三方面”,主要是同共产党一起,反对国民党的内战,独裁政策,为和平民主而奔走呼号的。
第七章配位化合物及配位平衡 习题答案 1.配合物的化学式 命名 中心离子 配离子电荷 配体 配位数 [Ag(NH 3)2]NO 3 硝酸二氨合银(I ) Ag + +1 NH 3 2 K 4[Fe(CN)6] 六氰合铁(II)酸钾 Fe 2+ -4 CN - 6 K 3[Fe(CN)6] 六氰合铁(III)酸钾Fe 3+-3 CN - 6 H 2[PtCl 6] 六氯合铂(IV )酸氢 Pt 2+ -2 Cl - 6 [Zn(NH 3)4](OH)2 氢氧化四氨合锌(II ) Zn 2+ +2 NH 3 4 [Co(NH 3)6]Cl 3氯化六氨合钴(III )Co 3++3NH 362.写出下列配合物的化学式,并指出中心离子的配体、配位原子和配位数。
答:(1)[CrCl 2 (NH 3)3 (H 2O)]Cl ,配位体为Cl -、NH 3、H 2O 。
配位原子为Cl 、N 、O 。
配位数为6。
(2)[ Ni(NH 3)4]SO 4,配位体为NH 3。
配位原子为N 。
配位数为4。
(3)NH 4[Cr(SCN)4(NH 3)2],配位体为SCN -、NH 3。
配位原子为S 、N 。
配位数为6。
(4)K 4[Fe(CN)6] ,配位体为CN -。
配位原子为C 。
配位数为6。
3.答:[PtCl 2(NH 3)4]Cl 24. 解:(1) 223344[()]Cu NH Cu NH +++ c 平 x 1 1×10-32312.59342443{[()]}11010[][]1Cu NH K Cu NH x +-Θ+⨯=== 稳x =2.57×10-16 Q=[Cu 2+][OH -]2=2.57×10-16×0.001×0.001=2.57×10-22<202.210sp K Θ-=⨯无沉淀。
(2) Q=[Cu 2+][S 2-]=2.57×10-16×0.001=2.57×10-19>366.310sp K Θ-=⨯,有沉淀。
第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
毛概第七章习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第七章社会主义改革开放理论一、单项选择题1.中国共产党召开的()开启了改革开放历史新时期。
A.八大B.十一届三中全会C.十三大D.十五大2. 社会主义社会()理论是我们党提出改革开改的理论基础。
A.基本矛盾B.主要矛盾C.阶级斗争D.初级阶段3. 社会主义的基本矛盾是指()A.无产阶级与资产阶级之间的矛盾B.人民日益增长的物质文化需要同落后的社会生产之间的矛盾C.生产关系与生产力之间的矛盾,上层建筑与经济基础之间的矛盾D.敌我矛盾和人民内部矛盾4. 解决社会主义初级阶段主要矛盾的根本途径是()A.革命B.改革C.自力更生D.艰苦创业5.在全面改革中,()是重点。
A.经济体制改革B.政治体制改革C.文化体制改革D.社会体制改革6.社会主义改革开放是()A.社会主义国家的立国之本B.社会主义建设的中心C.社会主义强国富民之路D.执政党建设的主要内容7.我国实行对外开放的前提和基础是()A.以经济建设为中心B.四项基本原则C.引进、吸收和创新相结合D.独立自主、自力更生8.党的十七大报告指出,我国新时期最显着的成绩是()A. 改革开放B. 快速发展C. 建立社会主义市场经济体制D. 给人民带来更多福祉9.我国社会主义改革是一场新的革命,其性质是()A. 解放生产力,发展生产力B. 社会主义基本制度的根本变革C. 社会主义制度的自我完善和发展D. 建立和完善社会主义市场经济体制10.我国社会主义经济体制改革与政治体制改革的关系表现为()A.前者是目的,后者是手段B.前者是基础,后者是目标C.前者是内容,后者是形式D.二者相互依赖,相互配合世纪90年代,我国对外开放进入新阶段的重要标志是()A.形成了全方位、多层次、宽领域的对外开放格局B.我国进入世界十大贸易国行列C.引进外资规模居发展中国家首位D.形成了沿海、沿江、沿边对外开放的新格局二、简答题1.简述邓小平对社会主义社会基本矛盾理论的发展。
习题7.11.设X 表示某种型号的电子元件的寿命(以小时计),它服从指数分布:⎪⎩⎪⎨⎧≤>=-.0,00,1),(~/x x e x f X x θθθθ为未知参数, 0>θ. 现得样本值为168, 130, 169, 143, 174, 198, 108, 212, 252,试求未知参数θ的矩估计值.2. 设总体X 的概率分布为22)1()1(2321θθθθ--kP X其中θ为未知参数.现抽得一个样本,1,2,1321===x x x 求θ的矩估计值和极大似然估计值.3. 设总体X 具有概率概率密度⎩⎨⎧<<=-其他,00,),(1x e x f θθθ其中θ为未知参数. n X X X ,,,21 是来自总体X 的样本, 求λ的矩估计量和极大似然估计量.4.设),1(~p b X ,n X X X ,,,21 是取自总体X 的一个样本,试求参数p 的极大似然估计.5. 设总体X 的数学期望和方差分别为μ和2σ,21,X X 3,X 为来自总体的的样本,对于参数μ的三个估计量3211656163X X X ++=∧μ3212525251X X X ++=∧μ3213313131X X X ++=∧μ问它们中那些是无偏估计量,哪一个更有效?6.设总体X 的k 阶矩)1)((≥=k X E k k μ存在, 又设n X X X ,,,21 是X 的一个样本.试证明不论总体服从什么分布, k 阶样本矩∑==n i ki k X n A 11是k 阶总体矩k μ的无偏估计量.7. 为了估计湖中有多少条鱼,特从湖中捞出1000条鱼,标上记号后又放回湖中,然后再捞出150条鱼,发现其中10条鱼带有已给的记号,问在湖中有多少条鱼,才能使150条鱼中出现10条有记号的鱼概率为最大?8. 设),,,21n X X X (为总体X 的样本,欲使21112)(ˆi n i i X Xk -=∑-=+σ为2σ的无偏估计,问k 应取什么值?9.设分别自总体),(21σμN 和),(22σμN 中抽取容量为21,n n 的两独立样本.其样本方差分别为2221,S S . 试证, 对于任意常数2221),1(,bS aS Z b a b a +==+都是2σ的无偏估计, 并确定常数b a ,使)(Z D 达到最小.10.设n X X ,,1 是取自总体X 的样本, 且)(kX D 存在, .,,2,1n k = 则∑=n i kiX n 11为)(k X E 的相合估计量, .,,2,1n k =习题7.21. 为考虑某种香烟的尼古丁含量(以mg 计), 抽取了8支香烟并测得尼古丁的平均含量为.26.0=x 设该香烟尼古丁含量)3.2,(~μN X . 试求μ的置信区间, 置信度为0.95.2. 从一批灯泡中随机地抽取10只作寿命(单位:h)试验, 计算得1147=x 已知这批灯泡寿命),8,(~μN X 求平均寿命μ的置信度为95%的单侧置信下限.3..某总体的标准差cm 10=σ,从中抽取100个个体,其样本平均数cm 500=x ,试给出总体期望值μ的95%的置信上、下限(即置信区间的上、下限).4..对方差2σ为已知的正态总体来说,问需取容量n 为多大的样本,方使总体均值μ的置信水平为100(1-a )%的置信区间长不大于定值L . 习题7.31.已知来自容量49=n 的正态总体)3.7,(2μN 的一个样本,其样本均值8.28=x ,试对总体的均值作区间估计(05.0=α)2.设轴承内环锻压零件的平均高度),(24.0~μN X 现抽出了20只环,测得其平均高度的算术平均值mm 3.32=x ,求内环平均高度的95%置信区间.3.. 随机地从一批钉子中抽取16枚,测得其长度(单位:cm )为2.14 2.13 2.10 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11 若钉长分布为正态的,试对下面情况分别切除总体期望μ的置信度为0.9的置信区间;(1)已知cm 01.0=σ;(2)σ未知.4. 某大学英语测验,抽得20个学生的分数平均数72=x ,样本方差162=s ,假设分数服从正态分布,求2σ的置信度为98%的置信区间.5.为考察某城市成年男性的胆固醇水平, 现抽取了样本容量为25的一样本, 并测得样本均值,186=x 样本标准差12=s . 假定所论胆固醇水平),,(~2σμN X μ与2σ均未知. 试分别求出μ以及σ的90%置信区间.6. 测量铝的比重16次,测得029.0,705.2==s x ,试求出铝的比重置信水平为95%的置信区间,设这16次测量结果可以看作来自同一正态总体.分别求出总体均值μ和方差2σ的置信水平为95%的置信区间.7.为了在正常条件下,检验一种杂交作物的两种新处理方案,在同一地区随机地选择5块地段,在各地段按两种方案试验作物,得到单位面积产量如下:(单位:kg )方案I 87 56 93 93 75 方案II 79 58 91 82 74若两种产量都服从正态分布,且有相同的方差,问按95%的置信度,两种方案的平均产量的差在什么范围内?8. 随机地从A 中导线中抽取4根,并从B 中导线中抽取5根,测得其电阻)(Ω为A 种导线 0.143 0.142 0.143 0.147B 种导线 0.140 0.142 0.136 0.138 0.140设测试数据分别服从正态分布),(21σμN 和),(22σμN ,并且它们相互独立,2σ已知,等于20025.0,但21,μμ均未知,试求21μμ-的置信水平为0.95的置信区间. 9. 有两台机器生产同一种零件,分别抽取6件和5件测量其尺寸(单位:cm )如下:第一台机器:6.2 5.7 6.5 6.0 6.3 5.8 第二台机器:5.6 5.9 5.6 5.7 5.8已知零件尺寸服从正态分布,问若取置信度为0.90,两台机器加工精度(标准差)之比应在什么范围内.10设两位化验员A 、B 独立地对某种聚合物的含氮量用相同的方法分别作了18次、13次测定,测得的数据经计算得样本方差依次为为=2As 0.34,=2B s 0.29,设2A σ和2B σ分别是A 、B 两化验员测量数据的总体的方差,且总体服从正态分布,求方差比22/B A σσ的置信度为95%的置信区间.习题7.41. 为估计一批产品的一等品率,从中抽取100件进行检验,发现60件一等品,若取05.0=α,试求p 的置信区间.2.某射手对一快速移动靶射击100次,结果有8次命中,试求这名射手命中率p 的95%的置信区间.3.设总体)(~λπX ,抽取容量为100的样本,已知样本均值x =4,求总体均值λ的置信度为98%的置信区间.4.从一大批灯泡中任意抽取100只,测得它们的使用寿命并计算得样本均值)(2000h x =,假设灯泡的使用寿命服从指数分布)(λE ,求参数λ的置信度为95%的置信区间.总习题七A 组一、填空题1.设总体X 具有区间[0,θ]上的均匀分布(θ>0),x 1,x 2,…,x n 是来自该总体的样本,则θ的矩估计θˆ=___________. 答案:x 22.设总体X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x αα,x 1,x 2,…,x n 为总体X 的一个样本,则未知参数α的矩估计αˆ=___________. 答案:x13.设总体),,(~2σμN X , 321x x x ,,为来自X 的样本,则当常数a =___________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 答案:1/44. 若由总体F(x ,θ)(θ为未知参数)的样本观察值求得P (35.5<θ<45.5)=0.9,则称________是θ的一个置信度为________的置信区间. 答案:(35.5,45.5),0.95. 总体未知参数θ的极大似然估计θˆ就是________函数的最大值点. 答案:似然6.设总体是X ~N (2,μ),321x x x ,,是总体的简单随机样本,1ˆμ, 2ˆμ是总体参数μ的两个估计量,且1ˆμ=321414121x x x ++,2ˆμ=321313131x x x ++,其中较有效的估计量是_________.答案:2ˆμ7.某实验室对一批建筑材料进行抗断强度试验,已知这批材料的抗断强度 X ~N (μ,0.09),现从中抽取容量为9的样本观测值,计算出样本平均值x =8.54,已知u 0.025=1.96,则置信度0.95时μ的置信区间为___________.答案:(8.5204,8.5596)8. 当2σ已知时,正态总体均值μ的90%的置信区间的长度为________. 答案:nu σ05.029. 设X 和2S 是来自二项分布总体)(p m B ,的样本均值和样本方差,样本容量为n ,若用2kS X -作为2mp 的无偏估计,则k =________.答案:110. 设总体X 的概率密度为⎩⎨⎧<≥=--θθθθx x e x f x 若若,0,);()( 则n X X X ,,21是来自总体X 的简单随机样本,则未知参数θ的矩估计量为答案:1-X因为1)()()(+===⎰⎰+∞--+∞∞-θθθdx xedx x xf X E x 令X =+1θ解得参数θ的矩估计量为1-=∧X θ二、选择题1. 总体未知参数θ的估计量θˆ是( ) A. 随机变量 B. 总体 C. θ D. 均值答案:A2.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( )A .x 2B .xC .2xD .x21答案:B3.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ答案:A4. 设0,1,0,1,1,为来自两点分布总体),(p B 1的样本观察值,则p 的矩估计量为( )A. 1/5B. 2/5C. 3/5D. 4/5 答案;C5. 无论2σ是否已知,正态总体均值μ的置信区间的中心都是( ) A. μ B. 2σ C. X D. 2S 答案;C6. 当2σ未知时,正态总体均值μ的置信度为α-1的置信区间的长度是样本方差S 的( )倍. A. ()n t a 2 B. ()122/-n t na C.()12/-n t nS a D.1-n S答案:B7.设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知。