当前位置:文档之家› 透明塑料材料的激光焊接

透明塑料材料的激光焊接

透明塑料材料的激光焊接
透明塑料材料的激光焊接

透明塑料材料的激光焊接在许多工业应用中,热塑性元件的激光焊接已经成为一项

标准的加工方式。当使用二极管激光器、Nd:YAG激光器或光纤激光器时,标准的操作是在重合处进行投射式激光焊接。聚焦激光辐射穿透上层透明的塑料,被下层材料吸收,吸收的辐射能在表面转化成热能,由于热能的传导,就在上层形成接点。

原色或者有色的塑料在近红外波段的吸收较低。炭黑是一种树脂添加剂,它可以在很广的波段(从可见到红外)有效提高塑料对激光的吸收率。然而,如果使用了炭黑,塑料就只能做成深色,无法做成透明的塑料元件。

由英国剑桥焊接研究所(TWI)开发的Clearweld工艺使得透明或者有色塑料能够有效地吸收近红外光。它采用了特殊的近红外吸收材料作为元件表面的涂层,或者作为添加剂掺入下层的树脂中。这些材料在可见光范围内的吸收较小,在近红外区(800-1100 nm)的吸收较大。目前,在最大的吸收波长附近,具有各种不同的窄吸收带宽的吸收材料,它们可以被用来调整塑料的光学特性,以便适应各种常见的近红外激光器。除了取决于所使用的激光波长,最佳的吸收材料还取决于具体应用上的要求,比如加工参数、材料特性和目标元件所需的颜色。

Clearweld涂层工艺

带有吸收范围在940-1100 nm吸收剂的涂层为低粘性、基于溶剂的液体物质,被应用于各种配料系统中。典型的溶剂是乙醇和丙酮。涂层的用量以纳升/平方毫米(nL/mm2)为单位。溶剂可作为载体,挥发得很快,从而在塑料表面形成一层吸收材料薄膜。通常,干燥时间在1至7秒。也可以使用辅助干燥的方法,例如使用红外线灯对零件的预加热或者后加热,令溶剂的挥发更为迅速。涂层过程可以与焊接过程分开进行。

当涂层应用到材料表面时,一个均匀的吸收剂薄层就沉积在材料的表面。在激光辐射以前,干燥后的涂层在可见波段有些许颜色。进行焊接时,激光辐射被涂层吸收,同时被转化成热能。由于热传导,临近于涂层的表面材料被加热而熔化,固化后就形成了焊点。在加热的过程中,吸收剂分解,涂层就完全失去了可见波段的颜色(见图1)。添加剂

吸收剂还可被于许多热塑材料中,它作为添加剂被加入下层的塑料中以协助激光焊接过程。这个过程类似于在材料中添加炭黑,不过,这里的颜色更为多样,可被用于透明/不透明的塑料零件中。

根据应用上的不同要求,技术人员可以利用Clearweld吸收剂工艺来调节材料熔化的深度。这是通过改变树脂中吸模具设计师工作职责五金模具是什么https://www.doczj.com/doc/555676454.html,/zyzs/396.html

平面设计和产品设计一样吗?学平面设计要从哪儿下手啊https://www.doczj.com/doc/555676454.html,/zyzs/393.html

机械CAD证考试要多少钱?CAD考试有哪些级别https://www.doczj.com/doc/555676454.html,/cadjc/885.html 平面设计液晶显示器用哪种好?平面设计电脑配置https://www.doczj.com/doc/555676454.html,/pmsj/272.html https://www.doczj.com/doc/555676454.html, 郑州网页设计培训收剂的浓度来实现的。吸收剂浓度与光学穿透深度直接相关,提高浓度就使得穿透深度降低,从而也减小了熔化的深度。

如果需要一个很大的熔池来修正缝隙和几何偏差,并且不希望多聚物塑料被热降解,那么吸收剂的浓度可以设得低一些。如果所需的熔池的尺寸较小,比如,在微型流体设备的应用中,那么吸收剂的浓度可以高一些。

包含Clearweld添加剂的特定混合树脂被设计并用于800-1100 nm波段的激光焊接中。这些树脂是以注模或者挤压模的形式制成,在混合过程中,它们的颜色可以通过着色剂进行配色,以获得一个特定的配方来实现特定的应用要求。该配方需要考虑许多方面的参数,包括多聚物的兼容性、颜色要求,以及焊接激光的波长。

图2 是激光焊接的黄色和橙色的透明塑料样品。通过成功的进行配色,透光的上层和吸收性的下层可能看起来一模一样,同时焊接过程也得到了优化。但是,有时颜色的要求可能决定了所需的激光波长以及其他参数。可焊接的树脂以及这些添加剂可以一同进行混合挤压成模、模内注塑,或者挤压成薄膜,被冲切后,该薄膜可以被用于激光焊接中的中间过渡层。焊接储油器

图3为激光焊接的储油器,它是由透明无色的PMMA塑料制成的。该零件是在Barkston 塑料工业公司的半自动化生产线上制成的。在使用激光焊接以前,该产品是通过粘合剂连接起来的,其中的各部件是通过复杂的机械切割、额外的修正和表面的抛光等加工过程来实现的。顶部和底部的扁平盖子与中间的柱子是通过940nm二极管激光器焊接而成的。在焊接以前,Clearweld涂层被加在柱子的边缘。干燥后,元件被组装、夹紧并置于激光焊接台上。焊接过程是通过一个圆形的焊接线路来实现的,聚焦的激光光束从顶部穿过盖子射到柱子的边缘。在整个过程中,在柱子上部边缘的涂层被降解,使得底部盖子处、柱子的另一个边缘也同时被焊接。这是因为激光在柱子侧壁的内部反射,所以激光光束被引到另一边。激光焊接得到的流体焊接点非常紧密,强度很高,并且具有很好的光学外形。

利用Clearweld涂层,顶部和底部可以同时被激光焊接到柱子上。这使得生产时间显著降低,产品质量明显提高,因为产品具有真空密封特性,而且整个产品完全透明。储油器的生产可以实现经济型、小批量生产,每批50个产品。

焊接医用管件

在与Natvar公司合作中,我们使用添加剂来吸收激光能量,焊接医疗应用中所需的管子(如图4)。通常,这些产品都是使用紫外光粘接或者溶剂接合的方式来实现的。紫外光粘接通常需要15-20秒的固化时间。溶剂接合是即时的,但是必须要加入一种化学品来产生接点。紫外光粘接和溶剂接合的方式都需要在整个过程中接触端口表面(锥形渐缩处),通常长度可达0.250-0.500英寸。这些管子可以通过管子内层和外层混合挤压成型来实现套管的要求,管子的外部是柔软、可触的表面。该表层可以是不同的塑料或者热塑性人造橡胶材料,比如PVC、TPU、TPE,或者COPE。添加剂被加在管子壁的外层,这样就可以利用激光来焊接管子两端的端口部分。管子和端口处必须是透明无色的,以便测量流经管子的液体。通过压合过程,端口被固定到管子上。利用光束整形,激光焊接过程可以形成环形接点,从而同步的进行焊接。压合过程不需要额外的夹具来固定。这样,激光焊接在管子的端部就形成了密封的接点,该焊接对元件的透明度没有任何影响。

与紫外光粘接和溶剂接合方法相比,激光焊接的主要优势是它可以形成一个机械连接,不需要其他任何的溶剂或者接合剂。与传统的方法相比,要形成一个机械连接,激光焊接需要一个0.125英寸的长度。这个长度与常用工艺的标准可以相比拟,甚至要优于目前的常用工艺。另外,激光焊接所需时间小于0.5秒,而紫外光粘接则需要15-20秒固化时间。一些应用中,在管子的两端需要有不同类型的接口(利用溶剂接合一端,由紫外光粘接另一端)。而激光焊接则对两端都适用,而溶剂接合工艺则无法实现。

透明的热塑性多聚物塑料和人造橡胶也可以进行激光焊接,可以采用近红外吸收材料来产生热能和局域熔化。该技术已经成功应用于不同的场合,表明Clearweld涂层或者添加剂能够匹配热塑性材料的吸产品设计师必须具备的能力如何做产品设计说明https://www.doczj.com/doc/555676454.html,/zyzs/397.html

flash空白网站怎么添加flash https://www.doczj.com/doc/555676454.html,/zyzs/436.html

建筑CAD是什么意思?建筑CAD怎样用文本标注?https://www.doczj.com/doc/555676454.html,/cadjc/886.html proe 抄数绘图的含义PROE源文件丢失怎么办??https://www.doczj.com/doc/555676454.html,/zyzs/412.html

https://www.doczj.com/doc/555676454.html, 3dmax培训https://www.doczj.com/doc/555676454.html, 郑州模具培训学校

收特性,从而使这些材料在工业上能实现激光焊接。激光焊接工艺能够得到透明无色的焊缝。激光能量仅在两元件交接面的焊缝处被吸收。其它区域并不吸收任何辐射,这样工件上就没有额外的热应力。

使用添加剂,技术人员可以得到高质量的接点。与使用涂层相比,根据吸收剂的不同浓度,激光辐射能够在材料内部更深处被吸收。这样就形成了体积更大的熔融物质,它对于补偿更大的缝隙、或者填满较大的偏差来说更为有利。添加剂很适合于有色透明/不透明基底材料的注模,这些基底材料被应用于电子产品的外壳、医疗设备、液体容器,以及其他较小的元件,或者其它带有较大焊接区域的元件。通过很好的调节焊接参数,可以令焊缝的外观整洁,并且焊接强度高。

激光焊接技术为工程师们提供了干净整洁的光学无色焊接点、真空密封的特性、灵活的设计、无接触式生产、无微粒且几乎没有闪光的加工过程,并且该技术不需要外加物质作为粘合剂。该技术在医疗、电子、汽车、纺织品、包装和消费品市场实现了新型且先进的塑料激光焊接。此外,所使用的添加剂和涂层都具有生物相容性。

本文作者R. Klein (rklein@https://www.doczj.com/doc/555676454.html,) 来自Gentex公司德国分部(Gross-Umstadt) 。G. McGrath 来自Gentex Corporation 公司英国分部(Cambridge) 。

各种塑料材料简介

聚丙烯(PP) 俗称百折胶 性能:PP是重量最轻的一种塑料,密度0.9g/cm3比水轻(可浮于水面)。料粒为乳白色或半透明。耐热(可在100度左右使用) 、耐腐蚀、韧性好(能经受上万次弯曲) 用途:编织袋,包装膜,餐具,家电外壳 聚苯乙烯(PS) 俗称普通硬胶 单体:苯乙烯---石油合成的一种无色液体。 辨别:硬而脆的无色透明塑料(仿玻璃状),密度1.05g/cm3,与水基本相同。燃烧火焰上端金黄色,同时软化起泡,无滴落,有浓烟黑柱,发出苯乙烯单体的“甜香味”味。 性能:透明度高,高光泽,质硬而脆,敲打响声清脆,易划伤和开裂,用手能折断。 用途:透明镜片,透明餐具,日用品及玩具外壳 高抗冲聚苯乙烯(HIPS) 俗称高冲击硬胶 单体:苯乙烯和橡胶共聚合成 辨别:亚白色不透明,密度1.04g/cm3,燃烧火焰上端金黄色,会软化起泡,无滴落,有浓烟黑柱,有飞灰。 性能:HIPS为PS的改性材料,韧性比PS提高四倍。制品不透明,易着色,吸水性低,加工时可不需预先干燥。 用途:家电外壳,玩具外壳,中空制品,瓶子 丙烯腈-苯乙烯共聚物(AS) 俗称透明大力胶 单体:苯乙烯(S)和丙烯腈(A)共聚合成 辨别:透明粒料,密度 1.07g/cm3,比水略重。燃烧火焰闪光、黄亮、冒黑烟,熄灭时有一股似PS刺激性的气味(腥味)。 性能:具有较高的透明性,也具有良好的机械性能,耐化学腐蚀,耐油脂,印刷性能良好。是优秀的透明制品的原料。 用途:化妆品外盒、打火机外壳、食品容器、镜片,家电 丙烯腈-丁二烯-苯乙烯共聚物(ABS树脂) 俗称超不碎胶 单体:丙烯腈(A)-丁二烯(B)-苯乙烯(S)共聚合成 辨别:淡黄色不透明颗粒,密度1.05,表面较高光泽,燃烧火焰黄色,发出黑烟,塑料软化烧焦,无熔溶滴落。 性能:具有“韧、硬、刚”的综合性能,强度高、刚性好,硬度、耐冲击性、制品表面光泽性好. 用途:用于家电外壳及各种制品的外壳。 聚碳酸酯(PC) 俗称防弹胶 PC是一种综合性能优良的工程塑料,纯PC密度为1.20g/cm3,比水重. 辨别:PC颗粒呈淡黄色或无色的透明。PC燃烧时,火焰上端呈金黄色,下端成兰色,冒大量黑烟、起泡、炭化,离火后有自熄现象,有一股略刺激性的酚(香)味。 性能:PC制品透明有光泽,耐冲击高、耐温性好(120℃)、韧性好且有较高的硬度、刚性。用途:透明镜片,电器外壳,通讯器外壳 1、高聚物(塑料)的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。 2、结晶性材料与非结晶性材料的主要区别

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

透明塑料材质

透明塑料材质最大的特点就是具有一定的透光性和透明性,因此在材质编辑上面主要设置的是材质透明度和亮度两方面,首先来看看照明部分的过程,照明仍然使用区域照明。 1. 运行3ds max,打开一个塑料杯的场景,模型如图1所示。 图1 2. 在视图中建立一盏目标聚光灯,之后调整聚光灯的位置,再在修改面板中勾选启用阴影选项,把 倍增值设置为1.1,聚光灯的位置以及参数的设置如图2所示。 图2

3. 在视图中再建立一盏目标聚光灯,把倍增值设置为0.4,聚光灯的位置和参数值如图3所示。 图3 4. 在左视图中建立第三盏聚光灯,倍增值设置为2,把类型设置为倒数,并且设置开始参数为1200, 在远程衰减选项组中勾选使用选项,设置开始为1200,结束为1480,聚光灯的位置以及设置的参数如图4所示。 图4

5. 下面进行主光源的阴影设置,在场景中选取第一盏创建的聚光灯进入修改命令面板,在阴影选项 组的下拉菜单中选择投影方式为区域阴影,展开区域阴影修改面板,把阴影质量设置为4,把区域灯光尺寸的长度与宽度都设置为120,参数的设置如图5所示。 图5 6. 渲染之后可以看到设置完成灯光和投影的效果,如图6所示。

图6 7. 这里需要介绍一些三点照明的使用技巧,所谓三点照明就是指使用主光源、辅光源和背光源对物 体进行照明。如有特殊需要也可以添加其他的辅助光源。早三点照明中,典型的主光源放置角度是以摄影机为准,通常情况下将主光源放置在与摄影机成35度至45度角,比摄影机稍高的位置。辅光源一般被放置在比主光源稍低,并且与主光源大约成90度角的位置。辅光源的亮度通常只有主光源的一半,甚至更低,背光源经常被放置在对象的后面,正对着摄影机的角度。 8. 透明塑料材质最大的特点就是具有一定的透光性和透明性,因此在材质编辑上面主要设置的是 材质透明度和亮度两方面,材质的设置时我们需要使用凹凸贴图来模拟杯子上面的褶皱,使用凹凸贴图的好处是可以在不增加模型面数的同时得到更加丰富的细节。 1. 打开材质编辑器,选择一个材质球,赋予给杯子,解除环境光与漫反射的锁定,把高光 反射拖拽到漫反射中,复制其属性,将高光级别设置为120,将光泽度设置为50,把版透明度的颜色设置为RGB=35、35、35,如图1所示。 图1

激光焊接机的主要特性及工作原理(精)

激光焊接机的主要特性及工作原理 激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接机的主要特性 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 激光焊接与其它焊接技术相比, 激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件 二、激光焊接机的种类 激光焊接机又常称为激光焊机、雷射焊接机、镭射焊机、激光冷焊机、激光氩焊机、激光焊接设备等。按其工作方式常可分为激光模具烧焊机(手动激光焊接设备)、自动激光焊接机、激光点焊机、光纤传输激光焊接机、振镜焊接机、手持式焊接机等,专用激光焊接设备有传感器焊机、矽钢片激光焊接设备、键盘激光焊接设备。 三、激光焊接机的工作原理 激光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池。它是一种新型的焊接方式,主要针对薄壁材料、精密零件的焊接,可实现点焊、对接焊、叠焊、密封焊等,深宽比高,焊缝宽度小,热影响区小、变形小,焊接速度快,焊缝平整、美观,焊后无需处理或只需简单处理,焊缝质量高,无气孔,可精确控制,聚焦光点小,定位精度高,易实现自动化。

塑料材质知识大全

PS塑料 (聚苯乙烯) 英文名称:Polystyrene 比重:1.05克/立方厘米成型收缩率:0.6-0.8% 成型温度:170-250℃干燥条件:--- PMMA塑料(有机玻璃) (聚甲基丙烯酸甲脂) 英文名称:Polymethyl Methacrylate 比重:1.18克/立方厘米成型收缩率:0.5-0.7% 成型温度:160-230℃干燥条件:70-90℃ 4小时

POM 塑料 (聚甲醛) 英文名称:Polyoxymethylene(Polyformaldehyde) 比重:1.41-1.43 克/立方厘米 成型收缩率:1.2-3.0% 成型温度: 170-200℃ 干燥条件: 80-90℃ 2小时 PP 塑料 (聚丙烯) 英文名称:Polypropylene 比重:0.9-0.91克/立方厘米 成型收缩率:1.0-2.5% 成型温度: 160-220℃ 干燥条件:--- PE 塑料 (聚乙烯) 英文名称:Polyethylene 比重:0.94-0.96克/ 立方厘米 成型收缩率:1.5-3.6% 成型温度: 140-220℃ 干燥条件:---

聚氯乙烯PVC 英文名称:Poly(Vinyl Chloride) 比重:1.38克/立方厘米成型收缩率:0.6-1.5% 成型温度: 干燥条件:--- 160-190℃ PA塑料(尼龙) (聚酰胺) 英文名称:Polyamide 比重:PA6-1.14克/立方厘米PA66-1.15克/立方厘米PA1010-1.05克/立方厘米成型收缩率:PA6-0.8-2.5%PA66-1.5-2.2%成型温度:220-300℃干燥条件:100-110℃ 12小时

激光塑料焊接技术讲解

激光塑料焊接技术 自从激光问世,人们就开始研究如何把激光作为工具来对材料进行加工。早在上个世纪70年代,汽车工业就开始尝试用激光来进行材料加工。在工业上第一个用激光进行塑料焊接实际应用的是1998年Marquardt公司用半导体激光器批量制造电子汽车钥匙,黑色聚合物(PA)材料的钥匙盖子被焊接到同样是黑色但对激光波长透明的PA钥匙壳上。根据分子结构塑料可分为三种:热塑材料,热固材料和合成橡胶。目前对热塑材料激光焊接的研究和应用比较多, 自从激光问世,人们就开始研究如何把激光作为工具来对材料进行加工。早在上个世纪70年代,汽车工业就开始尝试用激光来进行材料加工。在工业上第一个用激光进行塑料焊接实际应用的是1998年Marquardt公司用半导体激光器批量制造电子汽车钥匙,黑色聚合物 (PA)材料的钥匙盖子被焊接到同样是黑色但对激光波长透明的PA钥匙壳上。 根据分子结构塑料可分为三种:热塑材料,热固材料和合成橡胶。目前对热塑材料激光焊接的研究和应用比较多,下面我们就从三个方面简单讲述针对热塑材料的激光焊接技术和研究进展。 一. 激光焊接的流程和方法 激光对热塑材料的焊接主要是采用激光透射焊接的方法。此方法对被焊接的两种材料性质有一定的要求,也就是上面的热塑层对采用的激光波长是透明的,而下面的热塑层能吸收激光能量。激光束透过透明的上层材料到达下层材料,下层材料的表面因吸收激光能量而熔化,此时在一定的压力下两种材料通过分子联接而被焊接在一起。由于激光是非机械接触的聚焦在下层材料的表面,激光引起的热效应是局域的,所以此方法可避免对被焊接材料的机械和热损伤。目前热塑材料总加工的20%左右是基于激光焊接的。 根据不同的焊接任务和要求激光焊接的流程大致有以下几种。 轮廓焊接掩模焊接准同步焊接同步焊接 轮廓焊接是最简单,目前使用最广的焊接流程。在焊接时激光束通过光学系统和振镜在被焊接的物体上移动或者激光束静止而被焊接物体移动。激光与被焊接物体之间的相互作用时间取决于光束焦点尺寸和移动速度,既而影响焊接时间和效果。轮廓焊接是一种非常灵活的焊接流程,可实现复杂的三维焊接,在包装行业里有广泛的应用。 掩模焊接是一种借助掩模,基于轮廓焊接或着同步焊接方法

激光焊接的特点

激光焊接的特点 一、激光焊接的主要特性 激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接薄 壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传 导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效 应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。与 其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场, 光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透 明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于 大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近 几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的 推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为 更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激 光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达 不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导

常用透明塑料的特性及注塑工艺

常用透明塑料的特性及注塑工艺 透明塑料必须有高透明度,一定的强度和耐磨性,能抗冲击,耐热件要好,耐化学性要优,吸水率要小,只有这样才能在使用中能满足透明度的要求而长久不变,常用的透明塑料有: 1.聚甲基丙烯酸甲酯(即俗称亚加力或有机玻璃,代号PMMA), 2.聚碳酸酯(代号PC), 3.聚对苯二甲酸乙二醇脂(代号PET), 4.透明尼龙, ABS 5.AS(丙烯睛一苯乙烯共聚物), 6.聚砜(代号PSF) 1)性能比较 材料\性能透明度J/m2 热形温度℃收缩率 PMMA 92 95 0.5 PC 90 137 0.6 PET 86 120 2 一般要求的制品仍以选用PMMA为主,而PET由于要经过拉伸才能得到好的机械性能,所以多在包装、容器中使用。 2)注塑过程中工艺特性 i. PMMA的工艺特性 PMMA粘度大,流动性稍差,因此必须高料温、高注射压力注塑才行,其中注射温度的影响大于注射压力,但注射压力提高,有利于改善产品的收缩率。注射温度范围较宽,熔融温度为160℃,而分解温度达270℃,因此料温调节范围宽,工艺性较好。故改善流动性,可从注射温度着手。冲击性差,耐磨性不好,易划花,易脆裂,故应提高模温,改善冷凝过程,去克服这些缺陷。 ii. PC的工艺特性 PC粘度大,融料温度高,流动性差,回此必须以较高温度注塑(270-320T之间),相对来说料温调节范围较窄,工艺性不如PMMA。注射压力对流动性影响较小,但因粘度大,仍要较大注射压力,相应为了防止内应力产生,保压时间要尽量短。收缩率大,尺寸稳定,但产品内应力大,易开裂,所以宜用提高温度而不是压力去改善流动性,并且从提高模具温度,改善模具结构和后处理去减少开裂的可能。当注射速度低时,浇口处易生波纹等缺陷,放射咀温度要单独控制,模具温度要高,流道、浇口阻力要小。 iii. PET的工艺特性 PET成型温度高,且料温调节范围窄(260-300℃),但熔化后,流动性好,故工艺性差,且往往在射咀中要加防延流装置。机械强度及性能注射后不高,必须通过拉伸工序和改性才能改善性能。模具温度准确控制,是防止翘曲。变形的重要回素,回此建议采用热流道模具。模具温度官高,否则会引起表面光泽差和脱模回难。 3)透明塑料件的缺陷和解决办法 i.银纹:由充模和冷凝过程中,内应力各向异性影响,垂直方向产生的应力,使树脂发生流动上取向,而和非流动取向产生折光率不同而生闪光丝纹,当其扩展后,可能使产品出现裂纹。除了在注塑工艺和模具上注意外,最好产品作退火处理。如PC料可加热到160℃以上保持3-5分钟,再自然冷却即可。 ii.气泡:由于树脂内的水气和其他气体排不出去,或因充模不足,冷凝表面又过快冷凝而形成“真空泡”。

塑料的激光焊接

塑料的激光焊接 摘要:塑料激光焊接的特点与金属材料的激光焊接有较大的不同。本文论述了塑料激光焊接的基本原理、所用的激光设备,焊接工艺以及塑料激光焊接在工业生产中的应用。塑料激光焊接的工艺涉及焊接吸收剂、激光波长、被焊材料的特性和要求、加工系统控制软件等等。 关键词:塑料激光焊接工艺应用 一、前言 自上世纪60年代问世以来,激光以其相干性好、能量密度高、准直性好等优异特性,在现代工业的各个方面得到了广泛的应用。在材料加工领域,激光用来进行金属材料的切割、焊接、表面相变硬化、合金化、熔覆、打孔、打标、辅助切削、直接制造、快速成形、清洗及微细加工等等。利用激光来焊接金属材料有许多优越性:方便快捷、焊缝小、焊接影响区域小,对原材料性质和形态的改变均很小;易于实现数控控制,可以焊接形状特殊的工件;激光能量集中、作用时间短,可以焊接薄板、金属丝等传统焊接工艺难以加工的材料以及精密、微小、排列密集、受热敏感的材料,等等。激光焊接在金属材料加工中的应用越来越普遍,正逐步从特种加工转变为常规加工工艺。 随着石油的大规模开采使用和石油化工工业的高速发展,塑料作为一种工程材料,成本低廉、获取方便(石油炼化工业的产品)、加工成型技术简单快捷、成品重量轻、物理特性优良、能提供各种工程性能,其应用非常广泛。塑料作为钢铁、铝、镁等金属和其他一些非金属材料在工程上的替代品,在工业制造和日常生活中的使用都越来越普遍。 当前,激光所能够焊接的材料,除了传统的金属材料之外,其范围正在逐步扩大,在例如陶瓷等非金属材料上的使用也越来越多;而塑料作为有机材料的代表之一,也被用来作为激光焊接的对象,能够用激光实现焊接的塑料必须是热固性的。20世纪70年代,激光开始被应用到塑料焊接上;但直到20世纪90年代,才取得了大规模的工业应用[1]。见于文献报道的最早激光塑料焊接应用是在1972年,使用100瓦的CO2激光光源,以每秒10毫米的速度焊接聚乙烯薄板(最大厚度为1.5毫米)。 直到目前,由于激光器技术的限制以及塑料材料本身固有的强度低、耐热性差、易变形等特点,在塑料工业中,激光作为焊接工具还不是非常普遍;塑料激光焊接

激光拼焊板技术简介激光拼焊特点及应用

激光拼焊板简介及特点及应用什么是激光拼焊板? 拼焊板是将几块没有同材质、没有同厚度、没有同涂层的钢材焊接成一块整体板,以满足零部件对材料性能的没有同要求。激光焊接凭着多项显着的优点,非常适合用于消耗拼焊板。 激光拼焊板简介--技术的发展 传统上汽车车身零件有两种成形方法:分离成形战整体成形。其中,分离成形方法是利用没有同的压机分别成形单个零件,然后将各个零件焊接起来组成目标部件。这种方法虽然提下了材料选择的灵活性,但同时也增加了冲压战加工本钱、装配本钱以及形状配合问题,并且由于点焊时材料的重迭额外增加了车身的重量。 整体成形方法则是在一台压机上将一块整体板同时成形几个零件。从车身结构设计的观点来看,每个车身零件具有没有同的厚度战抗腐蚀性能要求,假如是单一板成形,必须对所有零部件的材料采取相同的等级、镀层类型战材料厚度,导致对某些零件的选材裕度过大,从而增加了车身的重量,提下了本钱,并且还会增大成形易度。这是整体成形方法与分离成形方法相比的一大缺点。 为了降低车身重量、提下车身的装配精度、增加车身的刚度、降低汽车车身制造过程中的冲压战装配本钱,减少车身零件的数目同时将其整体化是非常必要的。因而,一种同时克服传统分离成形方法战整体成形方法的缺点的消耗形式――拼焊板冲压成形发展起来了。 激光拼焊板简介-技术特点 以车门内板为例:为了保证功能的需要,车门内板的主体必须有必然的柔性,而门板的前、后部需要有必然的强度。假如采取传统的冲压成形方法就需要另外设计增强板,而采取拼焊技术,可先将三块没有同厚度的钢板拼焊成一块整板,便可冲压成形。

激光拼焊板技术是基于成生的激光焊接技术发展起来的现代加工工艺技术。激光焊接的下能密度、无填料、无搭接、深熔、速度快等特点,使得激光拼焊板技术具有以下特点:焊缝处的热应变值较低,热影响区小,通过激光束的聚焦给焊接边缘提供需要的下能量,聚焦点的直径可以达到零点几个毫米,保留杰出的材料成形性能;焊缝较狭窄且平整,消除成形过程的没有利影响,避免了破坏工具、模具的危险;焊接消耗效率下,能够真现下度自动化。 激光拼焊板消耗装备首要有:传送装置、激光焊接装备、机械手、在线无损检测装备等。一般根据产量的没有同,可以采取没有同的装备组合。 激光焊接的首要工艺流程:卷料开平→落料→激光焊接→冲窝(假如需要)→堆垛包装激光拼焊板简介-技术上风 采取激光拼焊板可以给汽车制造业带来巨大的经济效益,如车身装配中的大量点焊,把两个焊头夹在工件边缘上进行焊接,凸缘宽度需要16mm,而激光拼焊板无需搭接,点焊改为激光拼焊技术可以节省钢材,节省的用量视采取拼焊板的数量而定;用传统点焊焊接两片0.8mm的钢板冲压件,平均是20点/min,焊距是25mm,速度则为0.5m/min,这会耗费相当的时间,采取激光拼焊板替代点焊工艺后所需要的时间可以得到大量节省、焊接质量得到质的提下。 零件数量的减少,以及随之而来的消耗装备战制造工艺简化,大大提下了消耗效率,降低整车制造及装配本钱;由于产品的没有同零件在成形前即通过激光连气儿焊接工艺焊接在一起,因而提下了产品的精度,大大降低了零部件的制造及装配公差;通过部件的优化减轻了重量,从而降低油耗,处于环保时代,这一点非常重要;由于没有再需要增强板,也没有搭接接缝,大大提下了装配件的抗腐蚀性能;通过消除搭接提下部件的耐腐蚀能力,大大减少了密封措施的使用;通过对材料厚度以及质量的严格筛选,在材料强度战抗冲击

【精品文档】塑料材料有材质证明word版本 (3页)

本文部分内容来自网络整理所得,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即予以删除! == 本文为word格式,下载后可方便编辑修改文字! == 塑料材料有材质证明 塑料材料有材质证明:pa66材质证明 PA66|塑胶原料|PA66|物性价格|PA66|材质证明 东莞越达塑胶原料有限公司位于广东省东莞市黄江镇华南塑胶城。 公司秉承“顾客至上,锐意进缺的经营理念,坚持“客户第一”的原则为 广大客户提供优质的服务,原料销售遍及整个珠江三角洲,公司自开创至今, 受到广大客户的一致好评,东莞越达塑胶原料有限公司将继续保持‘客户至上、诚信为本、质量第一、低价供货’的原则以及完整的售后服务体系全心全意服 务新老顾客。 东莞越达塑胶原料有限公司在阿里巴巴、百度、、搜搜、必应、等搜索引 擎的产品信息真实可靠,价格因行情波动的问题,请来电来函洽谈为准,库存 原料品种繁多,库存基本稳定,但下单之前请确认好库存数量为宜。 东莞越达塑胶原料有限公司可提供相关证书如:ROHS(SGS)报告、UL认证、FDA认证、材质证明及物质安全资料表(MSDS)等,并可提供及国税等服务, 广东省内以货到付款或快递代收款,广东省外货款实行先付款后发货 企业信息 东莞越达塑胶原料有限公司位于广东省东莞市樟木头塑胶原料市场三期(分公司位于黄江华南塑胶城)。 公司秉承“顾客至上,锐意进缺的经营理念,坚持“客户第一”的原则为 广大客户提供优质的服务,原料销售遍及整个珠江三角洲,公司自开创至今,

受到广大客户的一致好评,东莞越达塑胶原料有限公司将继续保持‘客户至上、诚信为本、质量第一、低价供货’的原则以及完整的售后服务体系全心全意服 务新老顾客。 工程塑胶原料:PC/ABS、PC、POM、PA6、PA66、PA46、PA9T、 PA6T、PA12、PA11、PBT、PPO、PMMA、PPE、PET、ASA、AES、CA、SPS、PC/PBT、ASA/PC、、PC/PET、PA/ABS、PS/PA、PC/PS、、 PC/PTFE、PBT/PTFE/GF等。 特种工程塑胶原料:PPS、LCP、PEI、PEEK、PPA、、PSF、PES、PTFE、FEP、PVDF、PFA、、PAA等。 热塑性弹性体:TPV、TPR、TPE、PVC、TPU、K胶、EVA、POE、SBS、SEBS、TPEE、TPO、TRS。 东莞越达塑胶原料有限公司在阿里巴巴、百度、、搜搜、必应、等搜索引 擎的产品信息真实可靠,价格因行情波动的问题,请来电来函洽谈为准,库存 原料品种繁多,库存基本稳定,但下单之前请确认好库存数量为宜。 东莞越达塑胶原料有限公司可提供相关证书如:ROHS(SGS)报告、UL认证、FDA认证、材质证明及物质安全资料表(MSDS)等。 塑料材料有材质证明:POM 500P/塑料POM材质证明 POM 500P美国杜邦通用级高粘度特性备注:一般用途,表面经润滑树脂,有优异的加工成型特性。 均一良好的特性。 用途:一般机械零件、齿轮、拉炼、凸轮。 有素材可供机械加工。 重要参数:密度:1.42 g/cm3成型收缩率:2.3 %缺口冲击强度:81 拉伸强度:69 MPa弯曲强度:97 MPa 嘉远塑胶原料有限公司长期供应POM塑胶原料.我公司可以提供原料认证报告;UL认证、FDA认证、材质证明、ISO,ASTM 物性资料、ROHS(SGS)报告、物质安全资料表(MSDS)...... 本公司长期供应

透明塑料的激光焊接

透明塑料的激光焊接 在许多工业应用中,热塑性元件的激光焊接已经成为一项标准的加工方式。当使用二极管激光器、Nd:YAG激光器或光纤激光器时,标准的操作是在重合处进行投射式激光焊接。聚焦激光辐射穿透上层透明的塑料,被下层材料吸收,吸收的辐射能在表面转化成热能,由于热能的传导,就在上层形成接点。 原色或者有色的塑料在近红外波段的吸收较低。炭黑是一种树脂添加剂,它可以在很广的波段(从可见到红外)有效提高塑料对激光的吸收率。然而,如果使用了炭黑,塑料就只能做成深色,无法做成透明的塑料元件。 由英国剑桥焊接研究所(TWI)开发的Clearweld工艺使得透明或者有色塑料能够有效地吸收近红外光。它采用了特殊的近红外吸收材料作为元件表面的涂层,或者作为添加剂掺入下层的树脂中。这些材料在可见光范围内的吸收较小,在近红外区(800~1100 nm)的吸收较大。目前,在最大的吸收波长附近,具有各种不同的窄吸收带宽的吸收材料,它们可以被用来调整塑料的光学特性,以便适应各种常见的近红外激光器。除了取决于所使用的激光波长,最佳的吸收材料还取决于具体应用上的要求,比如加工参数、材料特性和目标元件所需的颜色。 Clearweld涂层工艺 带有吸收范围在940~1100 nm吸收剂的涂层为低粘性、基于溶剂的液体物质,被应用于各种配料系统中。典型的溶剂是乙醇和丙酮。涂层的用量以纳升/平方毫米(nL/mm2)为单位。溶剂可作为载体,挥发得很快,从而在塑料表面形成一层吸收材料薄膜。通常,干燥时间在1至7秒。也可以使用辅助干燥的方法,例如使用红外线灯对零件的预加热或者后加热,令溶剂的挥发更为迅速。涂层过程可以与焊接过程分开进行。 当涂层应用到材料表面时,一个均匀的吸收剂薄层就沉积在材料的表面。在激光辐射以前,干燥后的涂层在可见波段有些许颜色。进行焊接时,激光辐射被涂层吸收,同时被转化成热能。由于热传导,临近于涂层的表面材料被加热而熔化,固化后就形成了焊点。在加热的过程中,吸收剂分解,涂层就完全失去了可见波段的颜色(见图1)。 添加剂

激光塑料焊接优势

塑料激光焊接工艺 1.激光的波长 在金属材料的激光焊接工艺中,一般采用YAG或者CO2激光作为光源,塑料焊接也不例外。随着半导体材料工业的快速发展,半导体激光作为光源也渐渐得到了应用。 三者之中,由于易于获得较大功率,前两者在传统的材料加工工业中的使用较为普遍;而由于塑料激光焊接对光源功率大小要求不高,但对可控性和易操作性要求较高,因此半导体激光在塑料焊接中也很有用武之地。 CO2、Nd:YAG和半导体激光三种光源的波长、最大功率、最小聚焦直径等参数的典型值如下所列: 1.CO2激光:波长较长,为10.6微米,属远红外波段,一般情况下塑料材料对这一波长的吸收情况好。目前最大输出功率达50kW,转化效率约10%,最小聚焦直径约0.2~0.7mm。焊接塑料时热作用区深度较深,适合于需要焊接较厚的塑料材料。CO2激光不能用光纤传输,只能$&* 透镜反射镜组成的光学系统来构建刚性传输光路,从而影响激光头的操作性。 2.Nd:YAG激光:波长较短,为1.06微米,属近红外区波长,不易被塑料吸收。最大输出功率6kW,转化效率为3%,最小聚焦直径0.1~0.5mm。Nd:YAG激光的特点是聚焦区域小,可以方便地通过光纤传输来构建光路,可将激光头装到机器人手臂上,实现焊接过程的数控和精密自动化;另一方面可以较好地透过上层的待焊接材料,到达下层待焊接材料或者中间层而被吸收,从而实现焊接。 3.半导体激光:波长0.8~1.0微米,最大输出功率6kW,转化效率30%,最小聚焦直径0.5mm。由于其输出输出功率较小,适用于焊接激光功率要求较低的场合,如小型塑料器件的精密焊接。半导体激光能量转化效率高,易于实现激光器的小型化和便携化。 2.塑料材料 能够被激光焊接的塑料均属于热塑性塑料。理论上,所有热塑性塑料都能够被激光焊接。 塑料激光焊接技术对被焊接塑料的要求为:在热作用区内的材料,要求对激光光波的吸收性好;不属于热作用区部分的材料,则要求对光波的透过性好,尤其在对两件薄塑料件进行叠焊时更是如此。一般向热作用区塑料中添加吸收剂可以达到目的。目前能够使用激光焊接的单种成分塑料包括: PMMA――聚甲基丙烯酸甲脂(有机玻璃),PC塑料,ABS塑料, LDPE-低密度聚乙烯塑料,HDPE-高密度聚乙烯塑料,PVC-聚氯乙稀塑料,Nylon 6-尼龙6,Nylon 66-尼龙66,PS-PS树脂,等等。 上述各种塑料制成的塑料件,如模制的塑料品、塑料板、薄膜、人造橡胶、纤维甚至纺织物都可以作为被焊接的对象。由于激光焊接具有传统焊接不具备的热作用区小、控制精确容易的特点,因此上述各种单体材料之间也可以进行焊接。 3.吸收剂 吸收剂的应用是塑料激光焊接工艺中非常重要的工艺。如前所述,塑料激光焊接的本质是将热作用区的待焊接塑料融化,随后冷却自然实现塑料件的接合。让塑料融化需要使塑料件吸收足够的激光能量。塑料自身能够以较高吸

分析塑料激光焊接及其应用

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/555676454.html,)分析塑料激光焊接及其应用 随着绿色环保理念在全球工业生产中的贯彻以及生产成本控制方面的考虑,塑料作为一种性能优异的可再生非金属材料,被日益广泛地应用在各行业的零部件设计、制造上,传统的金属部件越来越多地被拥有同样工作性能的塑料部件替代,同时对塑料零件之间的焊接连接技术和焊接质量也提出了更高的要求,这些变化为激光焊接技术在塑料材料领域的应用提供了契机。 一、传统塑料焊接常用的方法 1、热气焊接 热气焊接法利用加热的气流(通常为空气)将热塑性塑料基材和热塑性塑料焊条加热和熔化。基材和焊条熔融后形成焊缝。为确保有效焊接,必须在焊条上施加适当的温度和压力,还应确保合适的焊接速度和焊枪位置。主要用途包括化学品存储容器、通风管道和汽车保险杠等注塑件维修等。氮气用于氧气敏感的材料,如聚乙烯;氧气则形成更高的焊接强度。 这一焊接方法的主要优点在于能焊接大型、复杂的部件,但是焊接速度慢,焊接质量完全依赖于焊工的技能。 2、热板焊接 对于塑料接合来说,热板焊接是最简单的批量生产技术。高温热板夹于待接缝的表面之间,直到软化为止。此时,将热板抽出,两表面在受控压力之下贴合,保持一段特定的时间后合在一起。然后,让熔融表面冷却,形成焊接。焊接工具或加热组件配有内置电热器,以避免塑料粘连于焊接工具上。

多种日常用品都采用这一焊接工艺,例如:吸尘器外壳,洗衣机和洗碗机部件、制动液油箱、后灯、指示灯等汽车部件。热板焊接法的弊端在于焊接速度较慢。 3、植入焊接 在植入焊接中,首先将金属嵌件夹在待接缝的部件之间,然后通过感应或电阻方式加热。采用电阻焊接时,要求沿接缝放置电线将电流传导到植入件中;采用感应焊接时则不需要这种方式。植入焊接法已用于焊接大型部件等的复杂接缝,包括汽车保险杠、电动汽车和游艇船壳等。 5、摩擦焊接 热塑性塑料摩擦焊接(也称为“旋转焊接”)与金属焊接的原理相同。在这种焊接工艺中,将一片基材固定,另一片基材以受控的角速度旋转。当部件压合在一起时,摩擦热导致聚合物熔融,冷却后即形成焊接。摩擦焊接能产生优良的焊接质量,焊接工艺简单,重复性强,仅适合于至少有一个部件是圆形且不需要角度对齐的应用领域。 6、振动焊接 振动焊接也称为线性摩擦焊接。两件热塑性部件在适当的压力、频率和振幅下相互摩擦,直到产生足够的热量使聚合物熔融为止。振动停止后,部件彼此对齐,熔化的聚合物固化后形成焊接。 此焊接工艺主要优点在于能高速焊接大型复杂线性部件。其它强项包括:能同时焊接多个部件,焊接工具简单,几乎能焊接所有热塑性材料,主要用于汽车和家用电器行业。 7、超声波焊接

常用透明塑料的特性

塑料中常用透明原料的特性及注塑工艺 由于塑料具有重量轻、韧性好、成型易。成本低等优点,因此在现代工业和日用产品中,越来越多用塑料代替玻璃,特别应用于光学仪器和包装工业方面,发展尤为迅速。但是由于要求其透明性要好,耐磨性要高,抗冲击韧性要好,因此对塑料的成份,注塑整个过程的工艺,设备,模具等,都要作出大量工作,以保证这些用于代替玻璃的塑料(以下简称透明塑料),表面质量良好,从而达到使用的要求。 目前市场上一般使用的透明塑料有聚甲基丙烯酸甲酯(即俗称亚加力或有机玻璃,代号pmma)、聚碳酸酯(代號pc)。聚对苯二甲酸乙二醇脂(代号pet)、透明尼龙。as(丙烯睛一苯乙烯共聚物)、聚砜(代号psf)等,其中我们接触得最多的是pmma、pc和pet 三种塑料,由于篇幅有限,下面就以这三种塑料为例,讨论透明塑料的特性和注塑工艺。 一、透明塑料的性能 透明塑料首先必须有高透明度,其次要有一定的强度和耐磨性,能抗冲击,耐热性要好,耐化学性要优,吸水率要小,只有这样才能在使用中,能满足透明度的要求而长久不变,下面列出表1,比较一下pmma、pc和pet的性能。 表1:透明塑料性能比较

注:(1)因品种繁多,这只是取平均值,实际不同品种数据有异。(2)pet数据(机械方面)为经拉伸后的数据。 从表1数据可知pc是较理想的选择,但主于其原料价贵和注塑工艺较难,所以仍以选用pmma为主,(对一般要求的制品),而ppt 由于要经过拉伸才能得到好的机械性能,所以多在包装、容器中使用。 二、透明塑料注塑过程中应注意的共同问题 透明塑料由于透光率要高,必然要求塑料制品表面质量要求严格,不能有任何斑纹、气孔、泛白。雾晕、黑点、变色、光泽不佳等缺陷,因而在整个注塑过程对原料、设备。模具、甚至产品的设计,都要十分注意和提出严格甚至特殊的要求。其次由于透明塑料多为熔

激光焊的主要工艺参数对焊接质量的影响

激光焊的主要工艺参数对焊接质量的影响 一、激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500℃左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 二、激光深熔焊接的主要工艺参数 1. 激光功率 激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率

塑料中常用透明原料PMMA,PC,PET的特性及注塑工艺(精)

塑料中常用透明原料(PMMA, PC, PET)的特性及注塑工艺 由于塑料具有重量轻、韧性好、成型易。成本低等优点,因此在现代工业和日用产品中,越来越多用塑料代替玻璃,特别应用于光学仪器和包装工业方面,发展尤为迅速。但是由于要求其透明性要好,耐磨件要高,抗冲击韧件要好,因此对塑料的成份,注塑整个过程的工艺,设备,模具等,都要作出大量工作,以保证这些用于代替玻璃的塑料(以下简称透明塑料),表面质量良好,从而达到使用的要求。 目前市场上一般使用的透明塑料有聚甲基丙烯酸甲酯(即俗称亚加力或有机玻璃,代号PMMA)、聚碳酸酯(代号PC)、聚对苯二甲酸乙二醇脂(代号PET)、透明尼龙。AS(丙烯睛一苯乙烯共聚物)、聚砜(代号PSF)等,其中我们接触得最多的是PMMA、PC和PET三种塑料,由于篇幅有限,下面就以这三种塑料为例,讨论透明塑料的特性和注塑工艺。 一、透明塑料的性能 透明塑料首先必须有高透明度,其次要有一定的强度和耐磨性,能抗冲击,耐热性要好,耐化学性要优,吸水率要小,只有这样才能在使用中,能满足透明度的要求而长久不变,下面列出表l,比较一下 PMMA、PC和PET的性能。 表1:透明塑料性能比较 注:(1)因品种繁多,这只是取平均值,实际不同品种数据有异。 (2)PET数据(机械方面)为经拉伸后的数据。

从表1数据可知PC是较理想的选择,但主于其原料价贵和注塑工艺较难,所以仍以选用PMMA为主,(对一般要求的制品),而PET由于要经过拉伸才能得到好的机械性能,所以多在包装、容器中使用。 二、透明塑料注塑过程中应注意的共同问题 透明塑料由于透光率要高,必然要求塑料制品表面质量要求严格,不能有任何斑纹、气孔、泛白、雾晕、黑点、变色、光泽不佳等缺陷,因而在整个注塑过程对原料、设备、模具、甚至产品的设计,都要十分注意和提出严格甚至特殊的要求。其次由于透明塑料多为熔点高、流动性差,因此为保证产品的表面质量,往往要在较高温度、注射压力、注射速度等工艺参数作细微调整,使注塑料时既能充满模,又不会产生内应力而引起产品变形和开裂。 下面就其在原料准备、对设备和模具要求、注塑工艺和产品的原料处理几方面,谈谈应注意的事项。 (一)原料的准备与干燥由于在塑料中含有任何一点杂质,都可能影响产品的透明度,因此和储存、运输、加料过程中,必须注意密封,保证原料干净。特别是原料中含有水分,加热后会引起原料变质,所以一定要干燥,并在注塑时,加料必须使用干燥料斗。还要注意一点的是干燥过程中,输入的空气最好应经过滤、除湿,以便保证不会污染原料。其干燥工艺如表2, 表2,透明塑料的干燥工艺: (二)机筒、螺杆及其附件的清洁 为防止原料污染和在螺杆及附件凹陷处存有旧料或杂质,特别热稳定性差的树脂存在,因此在使用前、停机后都应用螺杆清洗剂清洗干净各件,使其不得粘有杂质,当没有螺杆清洗剂时,可用PE、PS等树脂清洗螺杆。当临时停机时,为防止原料在高温下停留时间长,引起解降,应将干燥机和机筒温度降低,如 PC、PMMA等机筒温度都要降至 160℃以下。(料斗温度对于 PC应降至100℃以下)

激光焊接原理讲解

激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接机、激光点焊机、光纤传输激光焊接机,光焊接是利用高能量的激光脉冲对材料进行微小区域内的局部加热,激光辐射的能量通过热传导向材料的内部扩散,将材料熔化后形成特定熔池以达到焊接的目的。 一、激光焊接的主要特性。 20世纪70年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。 高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。 与其它焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。 但是,激光焊接也存在着一定的局限性: 1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。 2、激光器及其相关系统的成本较高,一次性投资较大。 二、激光焊接热传导。

相关主题
文本预览
相关文档 最新文档