2018年天津市河北区中考一模数学试题答案
- 格式:docx
- 大小:370.86 KB
- 文档页数:7
2018年天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣12.tan60°的值等于()A.B.C.D.3.下列logo标志中,既是中心对称图形又是轴对称图形的是()A.B. C.D.4.据2015年1月16日的渤海早报报道,2014年天津市公共交通客运量达1510000000人次,较2013年增长10.6%,将1510000000用科学记数法表示应为()A.151×l07 B.15.1×108C.15×l07D.1.51 xl095.如图,根据三视图,判断组成这个物体的块数是()A.6 B.7 C.8 D.96.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm7.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为()A.40°B.50°C.55°D.60°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.9.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A.x(x+1)=45 B.x(x﹣1)=45 C.x(x+1)=45 D.x(x﹣1)=4511.如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A .B .2C .D .312.二次函数y=ax 2+bx+c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题:13.若,则的值为 .14.抛物线y=﹣2x 2+x ﹣4的对称轴为 .15.晨光中学规定学生的体育成绩满分为100分,其中早操及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小惠的三项成绩依次是95分,90分,85分,小惠这学期的体育成绩为 分.16.已知反比例函数y=﹣,则有①它的图象在一、三象限:②点(﹣2,4)在它的图象上;③当l <x <2时,y 的取值范围是﹣8<y <﹣4;④若该函数的图象上有两个点A (x 1,y 1),B (x 2,y 2),那么当x 1<x 2时,y 1<y 2 以上叙述正确的是 .17.如图,△ABC 是边长为的等边三角形,点P .Q 分别是射线AB 、BC 上两个动点,且AP=CQ ,PQ 交AC 与D ,作PE 丄AC 于E ,那么DE 的长度为 .18.如图,有一张长为7宽为5的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为(结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明裁剪的过程.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为.20.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)求这100个样本数据的平均数、众数和中位数;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?21.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.(Ⅰ)求⊙O的半径;(Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案)22.如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?24.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P 为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣1【考点】有理数的除法.【分析】根据有理数的除法,同号得负,并把绝对值相除,即可解答.【解答】解:(﹣16)÷8=﹣2,故选:B.【点评】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.2.tan60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】求得60°的对边与邻边之比即可.【解答】解:在直角三角形中,若设30°对的直角边为1,则60°对的直角边为,tan60°==,故选D.【点评】考查特殊角的三角函数值;熟练掌握特殊角的三角函数值是解决此类问题的关键.3.下列logo标志中,既是中心对称图形又是轴对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.据2015年1月16日的渤海早报报道,2014年天津市公共交通客运量达1510000000人次,较2013年增长10.6%,将1510000000用科学记数法表示应为()A.151×l07 B.15.1×108C.15×l07D.1.51 xl09【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1510000000用科学记数法表示为:1.51 xl09.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,根据三视图,判断组成这个物体的块数是()A.6 B.7 C.8 D.9【考点】由三视图判断几何体.【分析】从主视图看出:从左到右依次有1个、2个、3个,从左视图和俯视图可以看出只有一列,据此求解.【解答】解:根据左视图和俯视图发现该组合体共有一列,从主视图发现该组合体共有1+2+3=6个小正方体,【点评】本题可根据“俯视图打地基,正视图疯狂盖,左视图拆违章”进行求解.要注意本题中第二层有两种不同的情况.6.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(mm).故选B.【点评】本题考查了正多边形和圆的知识,构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行求解.7.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为()A.40°B.50°C.55°D.60°【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故选:C.【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.【考点】概率公式.【分析】看有食物的情况占总情况的多少即可.【解答】解:共有6条路径,有食物的有2条,所以概率是,故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,因为杯子和桶底面半径比是1:2,则底面积的比为1:4,在高度相同情况下体积比为1:4,杯子内水的体积与杯子外水的体积比是1:3,所以高度不变时,杯外注水时间是杯内注水时间的3倍,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:C.【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A.x(x+1)=45 B.x(x﹣1)=45 C.x(x+1)=45 D.x(x﹣1)=45【考点】由实际问题抽象出一元二次方程.【分析】每家公司都与其他公司鉴定了一份合同,设有x家公司参加,则每个公司要签(x﹣1)份合同,签订合同共有x(x﹣1)份.【解答】解:设有x家公司参加,依题意,得x(x﹣1)=45,故选B.【点评】考查了由实际问题抽象出一元二次方程,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数;或者平面内,n个点(没有三点共线)之间连线,所有线段的条数.11.如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A.B.2 C.D.3【考点】相似三角形的判定与性质;射影定理.【分析】求出∠ADC=∠ACB=90°,∠CAD=∠BAC,推出△CAD∽△BAC,得出比例式=,代入求出即可.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△CAD∽△BAC,∴=,∵AC=4,AB=10,∴=,∴AD==,故选A.【点评】本题考查了相似三角形的性质和判定,关键是能根据相似得出比例式.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【专题】代数几何综合题;压轴题;数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c >0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:13.若,则的值为.【考点】分式的化简求值.【专题】计算题.【分析】这道求代数式值的题目,不应考虑把a的值直接代入,两式合并后约分,然后再代入求值.【解答】解:原式====.【点评】分子、分母能因式分解的先因式分解,化简到最简然后代值求解.14.抛物线y=﹣2x2+x﹣4的对称轴为.【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为X=﹣,此题中的a=﹣4,b=3,将它们代入其中即可.【解答】解:x=﹣=﹣=.故答案为.【点评】本题考查二次函数对称轴公式的应用,熟练掌握对称轴公式是解题的关键.15.晨光中学规定学生的体育成绩满分为100分,其中早操及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小惠的三项成绩依次是95分,90分,85分,小惠这学期的体育成绩为88.5 分.【考点】加权平均数.【专题】计算题.【分析】利用加权平均数的公式直接计算.用95分,90分,85分别乘以它们的百分比,再求和即可.【解答】解:小惠这学期的体育成绩=(95×20%+90×30%+85×50%)=88.5(分).故答案为88.5.【点评】本题考查了加权成绩的计算.16.已知反比例函数y=﹣,则有①它的图象在一、三象限:②点(﹣2,4)在它的图象上;③当l<x<2时,y的取值范围是﹣8<y<﹣4;④若该函数的图象上有两个点A (x1,y1),B(x2,y2),那么当x1<x2时,y1<y2以上叙述正确的是②③.【考点】反比例函数的性质.【分析】利用反比例函数的性质逐条进行分析后即可确定正确的答案.【解答】解:①∵k=﹣8<0,∴它的图象在一、三象限错误:②∵﹣2×4=﹣8,∴点(﹣2,4)在它的图象上正确;③当l<x<2时,y的取值范围是﹣8<y<﹣4,正确;④当两个点A (x1,y1),B(x2,y2)分别位于不同的象限时,则x1<x2时,y1<y2错误,故答案为:②③.【点评】考查了反比例函数的性质,对于反比例函数y=,当k>0时,在每一个象限内,函数值y 随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.17.如图,△ABC是边长为的等边三角形,点P.Q分别是射线AB、BC上两个动点,且AP=CQ,PQ交AC与D,作PE丄AC于E,那么DE的长度为.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】过P作PF∥BC交AC于F,推出△APF是等边三角形,推出AP=PF=CQ,求出∠FPD=∠Q,根据AAS证△FPD≌△CQD,推出FD=DC,根据等腰三角形性质得出AE=EF,求出DE=FE+DF=AC,代入求出即可.【解答】解:过P作PF∥BC交AC于F,∵△ABC是等边三角形,∴∠ACB=∠B=∠A=60°,∵PF∥BC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴∠APF=∠AFP=∠A=60°,∴△APF是等边三角形,∴AP=PF,∵AP=CQ,∴PF=CQ,∵PF∥BC,∴∠FPD=∠Q,在△FPD和△CQD中,∴△FPD≌△CQD(AAS),∴FD=DC,∵AP=PF,PE⊥AF,∴AE=EF,∴DE=FE+DF=CD+AE=AC,∵AC=,∴DE=,故答案为.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点的综合运用.18.如图,有一张长为7宽为5的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为(结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明裁剪的过程.【考点】图形的剪拼.【分析】(I)设正方形的边长为a,则a2=7×5,可解得正方形的边长;(II)以BM=6为直径作半圆,在半圆上取一点N,使MN=1,连接BN,则∠MNB=90°,由勾股定理,得BN==,由此构造正方形的边长,利用平移法画正方形.【解答】解:(I)设正方形的边长为a,则a2=7×5,解得a=;(II)如图,(1)以BM=6为直径作半圆,在半圆上取一点N,使MN=1,连接BN,由勾股定理,得BN==;(2)以A为圆心,BN长为半径画弧,交CD于K点,连接AK,(3)过B点作BE⊥AK,垂足为E,(4)平移△ABE,△ADK,得到四边形BEFG即为所求.故答案为:.【点评】此题考查了图形的剪拼,用到的知识点是勾股定理、矩形的性质、正方形的性质等,关键是利用有关性质通过空间想象画出图形.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1(Ⅱ)解不等式②,得x<2(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣1≤x<2 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】(Ⅰ)、(Ⅱ)通过移项、合并,把x的系数化为1得到不等式的解;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)根据大小小大中间找确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x<2;(Ⅲ)如图,(Ⅳ)原不等式的解集为﹣1≤x<2.故答案为x≥﹣1,x<2,﹣1≤x<2.【点评】本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)求这100个样本数据的平均数、众数和中位数;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【考点】条形统计图;用样本估计总体;加权平均数;中位数;众数.【分析】(1)根据平均数、众数、中位数的计算公式和定义分别进行解答即可得出答案;(2)先求出家庭中月平均用水量不超过12吨所占的百分比,再乘以总数即可得出答案.【解答】解:(1)这100个样本数据的平均数是:(10×20+11×40+12×10+13×20+14×10)=11.6(吨);11出现的次数最多,出现了40次,则众数是11;把这100个数从小到大排列,最中间两个数的平均数是11,则中位数是11;(2)根据题意得:×500=350(户),答:该市直机关500户家庭中月平均用水量不超过12吨的约有350户.【点评】此题考查了条形统计图,用到的知识点是平均数、众数、中位数和用样本估计总体,关键是读懂统计图,从不同的统计图中得到必要的信息.21.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.(Ⅰ)求⊙O的半径;(Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案)【考点】垂径定理;勾股定理;圆周角定理.【分析】(Ⅰ)连接OA,OC,根据圆周角定理得到∠AOC=60°,由角平分线的定义得到∠APC=∠BPC,求得,得到AD=BD=,OC⊥AB,即可得到结论;(Ⅱ)先求得AC=BC,再根据已知条件得S四边形PACB=S△ABC+S△PAB S△ABC,当S△PAB最大时,四边形PACB面积最大,求出PC=2,从而计算出最大面积.【解答】解:(Ⅰ)如图1,连接OA,OC,∵∠ABC=30°,∴∠AOC=60°,∵PC是∠APB的平分线,∴∠APC=∠BPC,∴,∴AD=BD=,OC⊥AB,∴OA=1,∴⊙O的半径为1;(Ⅱ)如图2,∵PC平分∠APB,∴∠APC=∠BPC,∴AC=BC,由AB=cm,求得AC=BC=1,∵S四边形PACB=S△ABC+S△PAB,S△ABC为定值,当S△PAB最大时,四边形PACB面积最大,由图可知四边形PACB由△ABC和△PAB组成,且△ABC面积不变,故要使四边形PACB面积最大,只需求出面积最大的△PAB即可,在△PAB中,AB边不变,其最长的高为过圆心O与AB垂直(即AB的中垂线)与圆O交点P,此时四边形PACB面积最大.此时△PAB为等边三角形,此时PC应为圆的直径∠PAC=90°,∵∠APC=∠BAC=30°,∴PC=2AC=2,∴四边形PACB的最大面积为×=(cm2).【点评】本题考查了垂径定理,圆周角定理,以及圆心角、弧、弦之间的关系,根据题意分类讨论是解题的关键.22.如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,进而里锐角三角函数关系得出DE、AE的长,即可得出DF的长,求出BC即可.【解答】解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,∴cos∠ADE=cos15°=≈0.97,∴≈0.97,解得:DE=1552(m),sin15°=≈0.26,∴≈0.26,解得;AE=416(m),∴DF=500﹣416=84(m),∴tan∠BDF=tan15°=≈0.27,∴≈0.27,解得:BF=22.68(m),∴BC=CF+BF=1552+22.68=1574.68≈1575(m),答:他飞行的水平距离为1575m.【点评】此题主要考查了解直角三角形的应用,正确构造直角三角形得出CF,BF的长是解题关键.23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?【考点】一次函数的应用.【分析】(Ⅰ)①分两种情况,当x≤100时,y=x;当x>100时,根据甲商场累计购物超过100元后,超出100元的部分按90%收费列出合算解析式;②分两种情况,当x≤100时,y=x;当x>100时,根据乙商场累计购物超过50元后,超出50元的部分按95%收费列出解析式;(Ⅱ)根据在同一商场累计购物超过100元时和(1)得出的关系式0.9x+10与0.95x+2.5,分别进行求解,然后比较,即可得出答案.【解答】解:(Ⅰ)①分两种情况,当x≤100时,y=x;当x>100时,根据题意得:y=100+(x﹣100)×90%=0.9x+10;②分两种情况,当x≤100时,y=x;当x>100时,根据得:y=50+(x﹣50)×95%=0.95x+2.5;(Ⅱ)根据题意得:0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,则当累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当累计购物超过100元而不到150元时,在乙商场实际花费少.【点评】此题主要考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,依题意列出相关的式子进行求解.本题涉及方案选择时应与方程或不等式联系起来.24.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P 为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.【考点】一次函数综合题.【分析】(Ⅰ)过M作ME⊥x轴于点E,由三角形中位线定理可求得ME和OE,可求得M点坐标;(Ⅱ)①同(Ⅰ)容易求得M坐标;②由条件可分别求得直线l和AC的方程,利用图象的交点,可求得Q坐标;(Ⅲ)可分别用t表示出OQ和OP的长,可证明△OPQ为直角三角形,且OQ=OP,可得到∠QOP=45°.【解答】解:(Ⅰ)过M作ME⊥x轴于点E,如图1,由题意可知M为OP中点,∴E为OA中点,∴OE=OA=,ME=AP=,∴M点坐标为(,);(Ⅱ)①同(Ⅰ),当P(1,t)时,可得M(,t);②设直线OP的解析式为y=kx,把P(1,t)代入可求得k=t,∴直线OP解析式为y=tx,又l⊥OP,∴可设直线MQ解析式为y=﹣x+b,且过点M(,),把M点坐标代入可得=﹣+b,解得b=,∴直线l解析式为y=﹣x+,又直线AC解析式为y=﹣x+1,联立直线l和直线AC的解析式可得,解得,∴Q点坐标为(,);(Ⅲ)不变化,∠QOP=45°.理由如下:由(Ⅱ)②可知Q点坐标为(,),∴OQ2=PQ2=()2+()2=,又P(1,t),∴OP2=1+t2,∴OQ2+QP2=OP2,∴△OPQ是以OP为斜边的等腰直角三角形,∴∠QOP=45°,即∠QOP不变化.【点评】本题主要考查一次函数的综合应用,涉及正方形的性质、待定系数法求函数解析式、三角形中位线定理、直角三角形的判定等知识点.在(Ⅰ)中利用M为OP的中点是解题的关键,在(Ⅱ)②中求得直线l和直线AC的解析式是解题的关键,在(Ⅲ)中,注意利用(Ⅱ)的结论,求得OQ 和OP的长是解题的关键.本题涉及知识点较多,计算量大,有一定的难度.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;。
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津市河北区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣6)+2 的结果等于()A.﹣8B.﹣4C.4D.82.(3分)sin60°的值等于()A.B.C.D.13.(3分)如图图形中,是轴对称图形的是()A.B.C.D.4.(3分)据统计,至2017年末,天津市常住人口总量为15568700人,将15568700用科学记数法表示为()A.0.155687×108B.1.55687×107C.15.5687×106D.15568.7×1035.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算+()A.B.C.1D.﹣18.(3分)方程组的解是()A.B.C.D.9.(3分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3 10.(3分)已知反比例函数y=,当﹣3≤x≤﹣1时,y的最小值是()A.﹣9B.﹣3C.﹣1D.111.(3分)如图,两个三角形的面积分别是7和3,对应阴影部分的面积分别是m、n,则m﹣n等于()A.4B.3C.2D.不能确定12.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形二、填空题(本大题共6小题,每小题3分,共18分,请将答案答在试卷后面的答题纸的相应位置)13.(3分)计算2a(a+3b)的结果等于.14.(3分)分解因式:x2﹣9=.15.(3分)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中黑色球3个,白色球2个,随机抽取一个小球是白色球的概率是.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为.18.(3分)如图,在由小正方形组成的网格中,点A、B 均在格点上.(1)在图 1 中画出一个直角△ABC,使得点 C 在格点上且tan∠BAC=;(Ⅱ)在图 2 中画出一个△ABD,使得点 D 在格点上且tan∠BAD=,请在图2 所示的网格中,用无刻度的直尺,画出△ABD,并简要说明理由.三、解答题(本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程,请将答案答在试卷后面的答题纸的相应位置)19.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得;(Ⅱ)解不等式(2),得;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图,请你根据统计图给出的信息回答:(I)在这20个家庭中,收入为1.1万元的有个;(Ⅱ)求样本中的平均数、众数和中位数.21.(10分)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠PAC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠PAM=∠DAN.22.(10分)如图,某数学兴趣小组测量位于某山顶的一座雕像AB高度,已知山坡面与水平面的夹角为30°,山高BC为285米,组员从山脚D处沿山坡向着雕像方向前进540米后到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.23.(10分)某公司计划组装A、B两种型号的健身器材共40套,用于公司职工的锻炼.组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B 型健身器材甲种部件3个和乙种部件6个.公司现有甲种部件228个,乙种部件194个,设组装A型器材的套数为x(x为正整数).(Ⅰ)根据题意,填写下表组装A型器材的套数为x组装B型器材的套数为(40﹣x)需用甲种部件7x需用乙种部件(Ⅱ)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(Ⅲ)组装一套A型健身器材需费用50元,组装一套B型健身器材需费用68元,求总组装费用最少的组装方案,最少总组装费用是多少?24.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).25.(10分)如图,抛物线y=ax2﹣2x+3与x轴交于A、B两点(点A在点B左边),与y轴交于C点,B(1,0).第二象限内有一点P在抛物线上运动,OP 交线段AC于点E.(Ⅰ)求抛物线的解析式及点A、C的坐标;(Ⅱ)设△PAC的面积为S.当S最大时,求点P的坐标及S的最大值;(Ⅲ)是否存在点P,使点E是OP的中点.若存在,求出点P的坐标;若不存在,说明理由.2018年天津市河北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣6)+2 的结果等于()A.﹣8B.﹣4C.4D.8【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.依此即可求解.【解答】解:(﹣6)+2=﹣4.故选:B.【点评】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.(3分)sin60°的值等于()A.B.C.D.1【分析】根据特殊角的三角函数值直接解答即可.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选:C.【点评】此题比较简单,只要熟记特殊角的三角函数值即可解答.3.(3分)如图图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.4.(3分)据统计,至2017年末,天津市常住人口总量为15568700人,将15568700用科学记数法表示为()A.0.155687×108B.1.55687×107C.15.5687×106D.15568.7×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15568700用科学记数法表示为:1.55687×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的主视图为:俯视图为:左视图为:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】估算确定出范围即可.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:B.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握各自的性质是解本题的关键.7.(3分)计算+()A.B.C.1D.﹣1【分析】先根据同分母分式的加法计算,再约分即可得.【解答】解:原式===﹣1,故选:D.【点评】本题主要考查分式的加减法,解题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.8.(3分)方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②,得:4x=8,解得:x=2,将x=2代入①,得:2+y=6,解得:y=4,所以方程组的解为,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(3分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.10.(3分)已知反比例函数y=,当﹣3≤x≤﹣1时,y的最小值是()A.﹣9B.﹣3C.﹣1D.1【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象,即可得到y的取值范围.【解答】解:∵k=3>0,∴在每个象限内y随x的增大而减小,又∵当x=﹣3时,y=﹣1,当x=﹣1时,y=﹣3,∴当﹣3≤x≤﹣1时,﹣3≤y≤﹣1,∴y的最小值是﹣3.故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x 的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.11.(3分)如图,两个三角形的面积分别是7和3,对应阴影部分的面积分别是m、n,则m﹣n等于()A.4B.3C.2D.不能确定【分析】设重叠部分的面积为x.由题意,m=7﹣x,n=3﹣x,由此即可解决问题;【解答】解:设重叠部分的面积为x.由题意,m=7﹣x,n=3﹣x,∴m﹣n=(7﹣x)﹣(3﹣x)=4,故选:A.【点评】本题考查整式的加减,解题的关键是理解题意,学会利用参数解决问题,属于中考常考题型.12.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;根据a>0,c<0,可得到3a与c的关系,得出选项C错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D 正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵a>0,c<0,∴3a>0,﹣c>0.∴3a﹣c>0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选:D.【点评】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).二、填空题(本大题共6小题,每小题3分,共18分,请将答案答在试卷后面的答题纸的相应位置)13.(3分)计算2a(a+3b)的结果等于2a2+6ab.【分析】根据单项式乘多项式的运算法则计算可得.【解答】解:2a(a+3b)=2a2+6ab,故答案为:2a2+6ab.【点评】本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式的运算法则.14.(3分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.15.(3分)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中黑色球3个,白色球2个,随机抽取一个小球是白色球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于袋子中共有5个小球,其中白色小球有2个,所以随机抽取一个小球是白色球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为0.【分析】由两根互为相反数可知两根之和为0,再由根与系数的关系可得到关于a的方程,即可求得a的值.【解答】解:∵方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,∴a2﹣2a=0,解得a=0或a=2,当a=2时,方程为x2+1=0,该方程无实数根,舍去,∴a=0,故答案为:0.【点评】本题主要考查根与系数的关系,由条件得出两根和为0是解题的关键.18.(3分)如图,在由小正方形组成的网格中,点A、B 均在格点上.(1)在图 1 中画出一个直角△ABC,使得点 C 在格点上且tan∠BAC=;(Ⅱ)在图 2 中画出一个△ABD,使得点 D 在格点上且tan∠BAD=,请在图2 所示的网格中,用无刻度的直尺,画出△ABD,并简要说明理由.【分析】(Ⅰ)依据点 C 在格点上且tan∠BAC=,即可得到直角△ABC;(Ⅱ)依据点 D 在格点上且tan∠B=,即可得到△ABD,利用平行线分线段成比例定理,即可得到结论.【解答】解:(Ⅰ)如图,选取点C,连接AC、BC,则点C即为所求.(答案不唯一)(Ⅱ)如图,选取点D,连接AD,BD,点D即为所求.理由:如图,∵DE∥AB且ED=AB,∴,∴BF=BE,由图可得,AB=EB,BE⊥AB,∴tan∠BAD=.【点评】本题主要考查了应用与设计作图以及解直角三角形,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.三、解答题(本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程,请将答案答在试卷后面的答题纸的相应位置)19.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得x≤1;(Ⅱ)解不等式(2),得x≥﹣2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1.【分析】分别求出不等式组中两不等式的解集,表示在数轴上找出解集的公共部分确定出不等式组的解集即可.【解答】解:(I)解不等式(1),得x≤1;(Ⅱ)解不等式(2),得x≥﹣2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为﹣2≤x≤1.故答案为:(I)x≤1;(Ⅱ)x≥﹣2;(Ⅳ)﹣2≤x≤1.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.20.(8分)某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图,请你根据统计图给出的信息回答:(I)在这20个家庭中,收入为1.1万元的有3个;(Ⅱ)求样本中的平均数、众数和中位数.【分析】(Ⅰ)利用条形图提供的数据完成所给表,并计算平均数;(Ⅱ)根据平均数、中位数和众数的定义求解即可;【解答】解:(Ⅰ)根据条形图填表如下:年收入(万元)0.60.9 1.0 1.1 1.2 1.3 1.49.7户数11234531在这20个家庭中,收入为1.1万元的有3个;(Ⅱ)平均收入为(20×0.05×0.6+20×0.05×0.9+20×0.1×1.0+20×0.15×1.1+20×0.2×1.2+20×0.25×1.3+20×0.15×1.4+20×0.05×9.7)÷20=32÷20=1.6(万元),数据中的第10和11个数据的平均数为1.2(万元),所以中位数是1.2(万元);众数是最高的条形图的数据1.3(万元);故答案为:3;【点评】本题考查的是平均数、众数和中位数的概念和其意义.要注意:当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.21.(10分)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠PAC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠PAM=∠DAN.【分析】(Ⅰ)根据切线的性质和平行线的性质证明即可;(Ⅱ)连接BM.利用直径和内接四边形的性质解答即可.【解答】证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠PAM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠1+∠2=90°,∵AD⊥PN,∴∠AND+∠3=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠2,∴∠1=∠3,即∠PAM=∠DAN.【点评】此题考查切线的性质,关键是根据切线的性质和平行线的性质证明.22.(10分)如图,某数学兴趣小组测量位于某山顶的一座雕像AB高度,已知山坡面与水平面的夹角为30°,山高BC为285米,组员从山脚D处沿山坡向着雕像方向前进540米后到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.【分析】作EF⊥AC于F,EG⊥DC于G,根据直角三角形的性质求出EG,根据题意求出BF,根据正切的定义求出AF,计算即可.【解答】解:作EF⊥AC于F,EG⊥DC于G,在Rt△DEG中,EG=DE=270,∴BF=BC﹣CF=285﹣270=15,EF==15,∵∠AEF=60°,∴∠A=30°,∴AF==45,∴AB=AF﹣BF=30(米),答:雕像AB的高度为30米.【点评】此题是解直角三角形﹣仰角俯角问题,主要考查了锐角三角函数的意义,解本题的关键是构造直角三角形.23.(10分)某公司计划组装A、B两种型号的健身器材共40套,用于公司职工的锻炼.组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B 型健身器材甲种部件3个和乙种部件6个.公司现有甲种部件228个,乙种部件194个,设组装A型器材的套数为x(x为正整数).(Ⅰ)根据题意,填写下表组装A型器材的套数为x组装B型器材的套数为(40﹣x)需用甲种部件7x3(40﹣x)需用乙种部件4x6(40﹣x)(Ⅱ)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(Ⅲ)组装一套A型健身器材需费用50元,组装一套B型健身器材需费用68元,求总组装费用最少的组装方案,最少总组装费用是多少?【分析】(Ⅰ)依据组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B型健身器材甲种部件3个和乙种部件6个,可得代数式;(Ⅱ)根据题中已知条件列出不等式组,解不等式租得出整数即可解得组装方案;(Ⅲ)根据组装方案的费用y关于x 的一次函数,解得当x=27时,组装费用y 最小为2234.【解答】解:(Ⅰ)依题意得,组装B型器材需用甲种部件3(40﹣x)个,需用乙种部件6(40﹣x)个;组装A型器材需用乙种部件4x个;故答案为:3(40﹣x),6(40﹣x),4x;(Ⅱ)依题意得,,解得23≤x≤27,∵x为正整数,∴x的取值为23,24,25,26,27,∴组装A、B两种型号的健身器材时,共有5种组装方案;(Ⅲ)总组装费用y=50x+68(40﹣x)=﹣18x+2720,∵k=﹣18<0,∴y随着x的增大而减小,∴当x=27时,y有最小值2234,此时的组装方案为:组装A型健身器材27套,组装B型健身器材13套.最小组装费用为2234元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,解决问题的关键是掌握一次函数的性质.24.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【分析】(Ⅰ)设A'B'与x轴交于点H,依据旋转的性质得出BO∥A'B',即可得到OH=OB'=,B'H=3,进而得出点B'的坐标为(,3);(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【解答】解:(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=2,∴OH=OB'=,B'H=3,∴点B'的坐标为(,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,).∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点评】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP为半径的圆.25.(10分)如图,抛物线y=ax2﹣2x+3与x轴交于A、B两点(点A在点B左边),与y轴交于C点,B(1,0).第二象限内有一点P在抛物线上运动,OP 交线段AC于点E.(Ⅰ)求抛物线的解析式及点A、C的坐标;(Ⅱ)设△PAC的面积为S.当S最大时,求点P的坐标及S的最大值;(Ⅲ)是否存在点P,使点E是OP的中点.若存在,求出点P的坐标;若不存在,说明理由.【分析】(Ⅰ)直接把B点坐标代入进而得出函数解析式,再利用y=0,以及x=0即可得出答案;(Ⅱ)首先求出函数解析式,进而表示出△PAC的面积为S,进而得出答案;(Ⅲ)表示出E点坐标,再利用AF=EF,进而得出答案.【解答】解:(Ⅰ)将点B(1,0)代入y=ax2﹣2x+3,解得:a=﹣1,故抛物线解析式为:y=﹣x2﹣2x+3,当y=0,解得:x1=﹣3,x2=1,故A(﹣3,0),当x=0时,y=3,则C点坐标为:(0,3);(Ⅱ)如图,过点P作PD∥OC,交AC于点D,设点P则坐标为:(m,﹣m2﹣2m+3),由A(﹣3,0),C(0,3)可得:直线AC的解析式为:y=x+3,∴点D的坐标为:(m,m+3),∴PD=﹣m2﹣3m,∵S=PD•AO=﹣(m+)2+,∴当m=﹣时,点P的坐标为:(﹣,),S的最大值为:;(Ⅲ)如图,过点E作EF⊥OA于点F,若点E是OP的中点,则点E的坐标为:(,),此时,OF=﹣,AF=3+,EF=,由OA=OC,得AF=EF,∴3+=,化简得:m2+3m+3=0,△=b2﹣4ac=﹣3<0,∴不存在点P,使点E是OP的中点.【点评】此题主要考查了二次函数的综合应用,正确表示出△PAC的面积是解题关键.。
2018年河北区初中毕业生学业考试模拟试卷(一)数学答案第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.123456789101112BCBBCBDADBAD第Ⅱ卷(非选择题共84分)二、填空题:本大题共6小题,每小题3分,共18分.(13)2a 2+6ab ;(14)(x +3)(x ―3);(15)25;(16)6;(17)0;(18)(Ⅰ)如图,选取点C ,连接AC 、BC ,点C 即为所求.(Ⅱ)如图,选取点D ,连接AD 、BD ,点D 即为所求.理由:如图,DE ∥AB 且DE =12AB ,∴BF EF =AB DE =12.∴BF =23BE .∵BE =AB ,BE ⊥AB ,∴tan ∠BAD =BF AB =23.三、解答题:(本大题共7小题,共66分)解:解不等式①,得x≤1.……2分解不等式②,得x≥-2.……4分……6分原不等式组的解集为-2≤x≤1.……8分解:(Ⅰ)在这20个家庭中,收入为1.1万元的有3个.……2分(Ⅱ)0.6×1+0.9×1+1.0×2+1.1×3+1.2×4+1.3×5+1.4×3+9.7×120=1.6,所以平均数为1.6.……4分因为1.3出现了20×25%=5次,次数最多,所以众数是1.3.……6分因为从小到大排列后,中间的两个数都是1.2,所以中位数是1.2.……8分(21)本小题10分证明:(Ⅰ)如图,连OC ,∵OA =OC ,∴∠1=∠2.……1分∵PC 是⊙O 的切线,∴OC ⊥PC .……2分∵AD ⊥PC ,∴AD ∥OC .∴∠2=∠3.……4分∴∠1=∠3.……5分(Ⅱ)如图,连BM ,∵AB 是⊙O 的直径,∴∠1+∠2=90°.……6分∵AD ⊥PN ,∴∠AND +∠3=90°.……7分∵ABMN 是⊙O 的内接四边形,∴∠AND =∠2.……9分∴∠1=∠3.……10分(22)本小题10分解:如图,过点E 作EF ⊥AC 于F ,EG ⊥CD 于G ,在Rt △DEG 中,∵DE =540,∠D =30°,∴EG =DE ·sin D =540×12=270.……2分∵BC =285,CF =EG ,∴BF =BC -CF =15.……4分在Rt △BEF 中,tan ∠BEF =BFEF ,∠BEF =30°,∴EF =3BF =153.……6分在Rt △AEF 中,∠AEF =60°,设AB =x ,∵tan ∠AEF =AFEF,∴AF=EF×tan∠AEF.……8分∴x+15=153×3.∴x=30.答:雕像AB的高度为30米.……10分(23)本小题10分解:(Ⅰ)根据题意,填写下表:组装A型器材的套数为x组装B型器材的套数为(40-x)需用甲种部件7x3(40-x)需用乙种部件4x6(40-x)……2分(Ⅱ)依据题意得7x+3(40-x)≤228,4x+6(40-x)≤194.……4分解得23≤x≤27.……5分由于x为正整数,所以x取23,24,25,26,27.故组装A、B两种型号的健身器材共有5种组装方案.……6分(Ⅲ)总的组装费用为y=50x+68(40-x)=-18x+2720.……8分∵k=-18<0,∴y随x的增大而减小.所以,当x=27时,总的组装费用最少,此时的组装方案为:组装A型器材27套,组装B型器材13套.……9分最少组装费用是2234元.……10分(24)本小题10分(Ⅰ)解:如图1,设A′B′与x轴交于点H,∵OA=2,OB=23,∠AOB=90°,∴∠ABO=∠B′=30°.……1分∵∠BOB′=α=30°,∴A′B′∥OB.……2分∵OB′=OB=23,∴OH =3,B′H =3.∴点B′的坐标为(3,3).……4分(Ⅱ)证明:∵∠BOB′=∠AOA′=α,OB =OB′,OA =OA′,∴∠OBB′=∠OA′A =180°-α2.……6分∵∠BOA′=90°+α,四边形OBPA′的内角和为360°,∴∠BPA′=90°,即AA′⊥BB′.……8分(Ⅲ)解:3-2.……10分【说明:如图,作AB 的中点M (1,3),连MP .因为∠APB =90°,所以点P 的轨迹是以点M 为圆心,以MP =12AB =2为半径的圆,除去点(2,23).】(25)本小题10分解:(Ⅰ)将点B (1,0)代入y =ax 2-2x +3,解得a =-1.……1分∴抛物线的解析式为y =-x 2-2x +3,A (-3,0),C (0,3).……3分(Ⅱ)如图,过点P 作PD ∥OC ,交AC 于点D ,设点P 的坐标为(m ,-m 2-2m +3),由A (-3,0),C (0,3)可得直线AC 的解析式为y =x +3.……4分∴点D 的坐标为(m ,m +3).∴PD =-m 2-3m .……5分∵S =12PD ·AO ,∴S =-32(m +32)2+278.……6分∴当m =-32时,点P 的坐标为(-32,154),S 的最大值为278.……7分(Ⅲ)方法一:如图,过点E 作EF ⊥OA 于点F ,若点E 是OP 的中点,则点E 的坐标为(m 2,-m 2-2m +32).……8分此时,OF =-m 2,AF =3+m2,EF =-m 2-2m +32.由OA =OC ,得AF =EF .∴3+m 2=-m 2-2m +32,化简得m 2+3m +3=0.……9分因为此方程无解,所以不存在点P ,使点E 是OP 的中点.……10分方法二:设点E 的坐标为(t ,t +3),若点E 是OP 的中点,DF则点P的坐标为(2t,2t+6).……8分∵点P在抛物线y=-x2-2x+3上,∴2t+6=-(2t)2-2(2t)+3,化简得4t2+6t+3=0.……9分因为此方程无解,所以不存在点P,使点E是OP的中点.……10分。
2018 年天津市初中毕业生学业考试一试卷数学第Ⅰ卷一、选择题(本大题共12 小题,每题 3 分,共 36 分. 在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.计算 ( 3)2的结果等于()A.5 B . 5 C .9 D . 92. cos30 的值等于()A.2B .3C.1D.3 2 23. 今年“五一”假期,我市某主题公园共招待旅客77800 人次,将 77800 用科学计数法表示为()A.0.778 105 B . 7.78 104 C .103 D.778 102 4. 以下图形中,能够看作是中心对称图形的是()A. B . C. D .5. 以下图是一个由5 个同样的正方体构成的立体图形,它的主视图是()A. B . C. D.6. 预计65 的值在()A.5 和6 之间 B .6 和7 之间C.7 和8之间D .8和9之间7. 计算 2x3 2x 的结果为( )x1 x 1A .1B.3C.3 D.x3x 1x 18. 方程组 x y 10的解是()2x y 16A .x 6B. x 5C.x 3D .x 2y4y 6y 6y 89. 若点 A( x 1 , 6) , B(x 2 , 2) , C ( x 3 ,2) 在反比率函数 y12的图像上,则 x 1 , x 2 ,xx 3 的大小关系是( )A . x 1 x 2 x 3B . x 2 x 1 x 3C. x 2x 3x 1D. x 3 x 2x 110. 如图,将一个三角形纸片 ABC 沿过点 B 的直线折叠,使点 C 落在 AB 边上的点 E 处,折痕为 BD ,则以下结论必定正确的选项是( )A .ADBD BC. ED EB DB. AED . AEACCBAB11. 如图,在正方形 ABCD 中, E , F 分别为 AD , BC 的中点, P 为对角线 BD上的一个动点,则以下线段的长等于AP EP 最小值的是()A .ABB. DEC. BDD .AF12. 已知抛物线yax 2bxc ( a , b , c 为常数,a0 )经过点 (1,0) ,(0,3),其对称轴在 y 轴右边,有以下结论:①抛物线经过点 (1,0) ;②方程 ax 2bx c 2 有两个不相等的实数根;③ 3 a b 3 .此中,正确结论的个数为()A.0B.1 二、填空题(本大题共D.3第Ⅱ卷6 小题,每题 3 分,共18 分)13. 计算2x4 x3的结果等于.14.计算( 6 3)( 6 3) 的结果等于.15.不透明袋子中装有 11 个球,此中有 6 个红球, 3 个黄球, 2 个绿球,这些球除颜色外无其余差异 . 从袋子中随机拿出 1 个球,则它是红球的概率是.16. 将直线 y x 向上平移 2 个单位长度,平移后直线的分析式为.17. 如图,在边长为 4 的等边△ ABC 中,,分别为AB ,BC 的中点, EF ACD E于点 F , G 为 EF 的中点,连结 DG ,则 DG 的长为.18.如图,在每个小正方形的边长为 1 的网格中,△ABC 的极点 A , B , C 均在格点上 .( 1)ACB 的大小为(度);( 2)在以下图的网格中,P 是 BC 边上随意一点 . A 为中心,取旋转角等于BAC ,把点P 逆时针旋转,点P 的对应点为''的P . 当CP最短时,请用无刻度...直尺,画出点P',并简要说明点P'的地点是怎样找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)x 3 1 (1)19. 解不等式组1 3x (2)4x请联合题意填空,达成此题的解答 .(Ⅰ)解不等式( 1),得.(Ⅱ)解不等式( 2),得.(Ⅲ)把不等式( 1)和( 2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某养鸡场有 2500 只鸡准备对出门售 . 从中随机抽取了一部分鸡,依据它们的质量(单位: kg ),绘制出以下的统计图①和图②.请依据有关信息,解答以下问题:(Ⅰ)图①中 m 的值为;(Ⅱ)求统计的这组数据的均匀数、众数和中位数;(Ⅲ)依据样本数据,预计这2500 只鸡中,质量为的约有多少只?21.已知AB是O 的直径,弦 CD 与 AB 订交,BAC 38 .(Ⅰ)如图①,若 D 为AB的中点,求ABC 和ABD 的大小;(Ⅱ)如图②,过点 D 作O 的切线,与 AB 的延伸线交于点 P ,若 DP / / AC ,求 OCD 的大小 .22.如图,甲、乙两座建筑物的水平距离 BC 为 78m ,从甲的顶部 A 处测得乙的顶部 D 处的俯角为 48 ,测得底部 C 处的俯角为 58 ,求甲、乙建筑物的高度 AB和 DC (结果取整数) .参照数据: tan48 , tan58 1.60 .23.某游泳馆每年夏天推出两种游泳付费方式 . 方式一:先购置会员证,每张会员证100 元,只限自己当年使用,凭据游泳每次再付费 5 元;方式二:不购置会员证,每次游泳付费 9 元.设小明计划今年夏天游泳次数为x ( x 为正整数).(Ⅰ)依据题意,填写下表:游泳次数10 15 20 x方式一的总花费(元) 150 175方式二的总花费(元) 90 135(Ⅱ)若小明计划今年夏天游泳的总花费为270 元,选择哪一种付费方式,他游泳的次数比许多?(Ⅲ)当 x 20 时,小明选择哪一种付费方式更合算?并说明原因.24.在平面直角坐标系中,四边形 AOBC 是矩形,点O (0,0),点A(5,0),点B(0,3) .以点 A 为中心,顺时针旋转矩形 AOBC ,获得矩形 ADEF ,点 O , B , C 的对应点分别为 D,E,F .(Ⅰ)如图①,当点 D 落在 BC 边上时,求点 D 的坐标;(Ⅱ)如图②,当点 D 落在线段 BE 上时, AD 与 BC 交于点 H .①求证△ADB ≌ △AOB ;②求点 H 的坐标 .(Ⅲ)记 K 为矩形 AOBC 对角线的交点, S 为△KDE 的面积,求 S 的取值范围(直接写出结果即可) .25. 在平面直角坐标系中,点O (0,0) ,点 A(1,0) .已知抛物线y x2 mx 2m( m 是常数),定点为P .(Ⅰ)当抛物线经过点 A 时,求定点 P 的坐标;(Ⅱ)若点 P 在x轴下方,当AOP 45 时,求抛物线的分析式;(Ⅲ)不论m取何值,该抛物线都经过定点H . 当AHP 45 时,求抛物线的分析式 .2018 年天津市初中毕业生学业考试一试卷参照答案一、选择题1-5 : CBBAA 6-10 :DCABD11-12 :DC二、填空题13. 2 x 714. 315.6 16.y x 21117.19 218. (Ⅰ) 90 ;(Ⅱ)如图,取格点 D , E ,连结 DE 交 AB 于点 T ;取格点 M ,N ,连结 MN 交 BC 延伸线于点 G ;取格点 F ,连结 FG 交 TC 延伸线于点 P ' ,则点 P ' 即为所求 .三、解答题19. 解:(Ⅰ) x 2 ; (Ⅱ) x 1;(Ⅲ)(Ⅳ) 2 x 1 .20. 解:(Ⅰ) 28. (Ⅱ)察看条形统计图,51114164,∵ x5 11 14 164∴这组数据的均匀数是 1.52.∵在这组数据中, 1.8 出现了 16 次,出现的次数最多,∴这组数据的众数为 1.8.∵将这组数据按从小到大的次序摆列,此中处于中间的两个数都是 1.5 ,有21.5 ,∴这组数据的中位数为 1.5.(Ⅲ)∵在所抽取的样本中,质量为 2.0kg 的数目占8% .∴由样本数据,预计这2500 只鸡中,质量为的数目约占 8% .有 2500 8% 200 .∴这 2500 只鸡中,质量为的约有 200 只。
天津市河北区普通中学2018届初三数学中考复习 图形的相似及位似 专项练习1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( A ) A.34 B.43 C.916 D.1692.如图,点F 在平行四边形ABCD 的边AB 上,射线CF 交DA 的延长线等于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( C ) A .0个 B .1个 C .2个 D .3个3.如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B .如果△ABD 的面积为15,那么△ACD 的面积为( D )A .15B .10 C.152D .54.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOES △COB=12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个5.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于点E ,交AB 于点D ,连接AE ,则S △ADE ∶S △CDB 的值等于( D )A .1∶ 2B .1∶ 3C .1∶2D .2∶36.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( D ) A.12B .1 C. 3 D .27. 如图,矩形ABCD 的边长AD =3,AB =2,E 为AB 的中点,F 在边BC 上,且BF =2FC ,AF 分别与DE ,DB 相交于点M ,N ,则MN 的长为( B ) A.225 B.9220 C.324 D.4258. 如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH ·PB ;④S △BPD S 正方形ABCD =3-14.其中正确的是__①③④__.(写出所有正确结论的序号)9.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别为O (0,0),A (2,0),B (2,1),C (0,1),以坐标原点O 为位似中心,将矩形OABC 放大为原图形的2倍,记所得矩形为OA 1B 1C 1,B 为对应点为B 1,且B 1在OB 的延长线上,则B 1的坐标为__(4,2)__.10.一副三角板按图叠放,则△AOB 与△DOC 的面积之比为__1∶3__.11.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为__5__.12.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(-3,0),∠B =30°,则点B 的坐标为__(-3-3,3.13.如图,已知△ABC ,△DCE ,△FEG ,△HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一直线上,且AB =2,BC =1,连接AI ,交FG 于点Q ,则QI =__43__.14.如图,已知EC ∥AB ,∠EDA =∠ABF . (1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE ·OF .解:(1)∵EC ∥AB ,∴∠EDA =∠DAB , ∵∠EDA =∠ABF , ∴∠DAB =∠ABF , ∴AD ∥BC , ∵DC ∥AB ,∴四边形ABCD 为平行四边形 (2)∵EC ∥AB ,∴△OAB ∽△OED ,∴OA OE =OBOD,∵AD ∥BC ,∴△OBF ∽△ODA ,∴OB OD =OFOA,∴OA OE =OFOA,∴OA 2=OE ·OF15.如图,已知四边形ABCD 内接于⊙O,A 是BDC ︵的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF ︵=AD ︵. (1)求证:△ADC∽△EBA;(2)如果AB =8,CD =5,求tan ∠CAD 的值.解:(1)∵四边形ABCD 内接于⊙O,∴∠CDA =∠ABE. ∵BF ︵=AD ︵,∴∠DCA =∠BAE, ∴△ADC ∽△EBA(2)∵A 是BDC ︵的中点, ∴AB ︵=AC ︵,∴AB =AC =8, ∵△ADC ∽△EBA ,∴∠CAD =∠AEC,DC AB =ACAE,即58=8AE ,∴AE =645, ∴tan ∠CAD =tan ∠AEC =AC AE =8645=5816.如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.解:(1)有三对相似三角形,即△AMP∽△BPQ∽△CQD(2)设AP =x ,由折叠知,BP =AP =EP =x ,AB =DC =2x ,由△AMP∽△BPQ 得AM BP =APBQ,即1x =x BQ ,∴BQ =x 2,由△AMP∽△CQD 得AP CD =AM CQ ,即x 2x =1CQ,∴CQ =2,∴AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+1.∵在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35,变形得3x 2-10x +3=0,解得x 1=3,x 2=13(不合题意,舍去),∴AB =617.如图,Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm.动点M 从点B 出发,在BA 边上以每秒3 cm 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以每秒2 cm的速度向点B 运动,运动时间为t 秒(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.图① 图②解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm ,BA =62+82=10(cm),当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t 10=8-2t 8,解得t =2011;当△BMN ∽△BCA 时,BMBC=BN BA ,∴3t 8=8-2t 10,解得t =3223,∴△BMN 与△ABC 相似时,t 的值为2011或3223(2)过点M 作MD ⊥CB 于点D ,由题意得DM =BM ·sin B =3t ·610=95t (cm),BD =BM ·cos B=3t ·810=125t (cm),∴CD =(8-125t )cm ,∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD ,∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴AC CN =CD DM ,∴62t =8-125t95t ,解得t =1312或t =0(舍去),则t 的值为1312。
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.分式方程213xx=-的解为()A.x=-2 B.x=-3 C.x=2 D.x=3【答案】B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.2.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】3 1.732-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732-≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3-表示的点与点B最接近,故选B.3.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9【答案】A【解析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OB OB '= , 故选A .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.4.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα【答案】B【解析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.5.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.7.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 8.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数D.方差【答案】B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.9.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.二、填空题(本题包括8个小题)11.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.【答案】14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD中,BD=2.∵菱形的周长为10,BD=2,∴AB=5,BO=3,∴22534AO=-=,AC=3.∴面积168242S=⨯⨯=.故答案为14.【点睛】此题考查了菱形的性质及面积求法,难度不大.12.如图,已知一次函数y=ax+b和反比例函数kyx=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________【答案】﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.【答案】40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.14.如图,直线y =x +2与反比例函数y =k x 的图象在第一象限交于点P.若OP =10,则k 的值为________.【答案】1【解析】设点P (m ,m+2),∵OP=10,∴()222m m ++ =10, 解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键. 15.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.【答案】73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.16.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.【答案】11 【解析】根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案.【详解】∵a <28<b ,a 、b 为两个连续的整数,∴252836<<,∴a =5,b =6,∴a +b =11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.17.若式子2x x+有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1.【解析】由2x +知20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题(本题包括8个小题)19.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题.试题解析:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF .考点:平行四边形的判定与性质.20.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?【答案】(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x 天 根据题意,得1010511.5x x ++= 解得x =20经检验,x =20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天) (6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.21.解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,22.如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.求证:△ACB ≌△BDA ;若∠ABC =36°,求∠CAO 度数.【答案】(1)证明见解析(2)18°【解析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”. 23.观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.【答案】(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【解析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-(); (3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 24.为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?【答案】(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元.【解析】整体分析:(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x 元,一副羽毛球拍y 元,由题意得,211632204x y x y +=⎧⎨+=⎩, 解得:2860x y =⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.25.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD , 同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得332答:树高AB 为(332 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 26.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( )A .10000x ﹣90005x -=100B .90005x -﹣10000x =100 C .100005x -﹣9000x =100 D .9000x ﹣100005x -=100 【答案】B 【解析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x 元,则可列方程为:9000x 5-﹣10000x=100, 故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )A .B .C .D .【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A 、上面小下面大,侧面是曲面,故本选项正确;B 、上面大下面小,侧面是曲面,故本选项错误;C 、是一个圆台,故本选项错误;D 、下面小上面大侧面是曲面,故本选项错误;故选A .点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.4.在函数y =1x x 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠1【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x ﹣2≠2.解得:x≥2且x≠2.故x 的取值范围是x≥2且x≠2.故选C .【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.5.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°【答案】B 【解析】由正方形的性质和等边三角形的性质得出∠BAE =150°,AB =AE ,由等腰三角形的性质和内角和定理得出∠ABE =∠AEB =15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE ,∴∠BAE =90°+60°=150°,AB =AE ,∴∠ABE =∠AEB =12(180°﹣150°)=15°, ∴∠BFC =∠BAF+∠ABE =45°+15°=60°;故选:B .【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.6.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .【答案】D【解析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.7.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+B .72072054848x +=+C .720720548x -=D .72072054848x -=+ 【答案】D 【解析】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+, 根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+, 可以列出方程:72072054848x -=+. 故选D .9.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差【答案】D【解析】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符;B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符;C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12, 添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化.故选D .10.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125【答案】B【解析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.二、填空题(本题包括8个小题)11.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.12.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.【答案】300【解析】设成本为x 元,标价为y 元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x 元,标价为y 元,依题意得0.75250.920y x y x +=⎧⎨-=⎩,解得250300x y =⎧⎨=⎩故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.13.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.【答案】73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.14.与直线2y x =平行的直线可以是__________(写出一个即可).【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.15.已知:如图,在△AOB 中,∠AOB=90°,AO=3 cm ,BO=4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D=__________cm .【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.16.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.【答案】50°.【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.17.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.【答案】m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2m x-,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1. 点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.18.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.【答案】1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(本题包括8个小题)19.如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .【答案】证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.20.如图,P是半圆弧AB上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接CB.已知=,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.AB6cm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0 0.5 1 1.5 2 2.5 3y/cm 3 3.1 3.5 4.0 5.3 6(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBC周长C的取值范围是______.≤≤.【答案】(1)4.6(2)详见解析;(3)9C12【解析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.【详解】()1经过测量,x2=时,y值为4.6()2根据题意,画出函数图象如下图:()3根据图象,可以发现,y的取值范围为:3y6≤≤,C6y=+,故答案为9C12≤≤.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.21.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O 分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,【答案】(1)证明见解析;(2)AD=xy3013【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF =,即AD 2=AB•AF=xy , 则AD=xy ; (3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B , ∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·1813AB AF =⨯=, 则DG=133********⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.22.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)【答案】解:(1)22.1.(2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x -1)]=(0.1x +0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x +0.9)+0.3x=12,整理,得x 2+14x -120=0,解这个方程,得x 1=-20(不合题意,舍去),x 2=2.当x >10时,根据题意,得x·(0.1x +0.9)+x=12,整理,得x 2+19x -120=0,解这个方程,得x 1=-24(不合题意,舍去),x 2=3.∵3<10,∴x 2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x 部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x >10时,分别讨论得出即可.23.已知抛物线y =ax 2﹣bx .若此抛物线与直线y =x 只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y 轴上的点P (1,n )为中心,作该抛物线关于点P 对称的抛物线y',若这两条抛物线有公共点,求n 的取值范围;若a >1,将此抛物线向上平移c 个单位(c >1),当x =c 时,y =1;当1<x <c 时,y >1.试比较ac 与1的大小,并说明理由.【答案】(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】(1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a ≥c ,b≥2ac ,。
2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆一.选择题(共2小题)1.(2020•南开区二模)如图,五边形ABCDE 是⊙O 的内接正五边形,AF 是⊙O 的直径,则∠BDF 的度数是( )A .18°B .36°C .54°D .72°2.(2019•滨海新区模拟)一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为( )A .2√2B .4√2C .4√3D .8二.填空题(共2小题)3.(2020•天津一模)如图所示,平行四边形内有两个全等的正六边形,若阴影部分的面积记为S 1,平行四边形的面积记为S 2,则S 1S 2的值为 .4.(2018•红桥区模拟)如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于 .三.解答题(共33小题)5.(2020•北辰区一模)已知四边形ABCD 是平行四边形,且以AB 为直径的⊙O 经过点D .(Ⅰ)如图(1),若∠BAD=45°,求证:CD与⊙O相切;(Ⅱ)如图(2),若AD=6,AB=10,⊙O交CD边于点F,交CB边延长线于点E,求BE,DF的长.6.(2020•天津模拟)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=2√3,∠ABC=60°,求OC的长.7.(2019•滨海新区一模)如图,Rt△ACB中,∠ACB=90°,O为AB上一点.⊙O经过点A,与AC交于点E,与AB交于点F,连接EF.(Ⅰ)如图1,若∠B=30°,AE=2,求AF的长;(Ⅱ)如图2,DA平分∠CAB,交CB于点D,⊙O经过点D;①求证:BC为⊙O的切线:②若AE=3,CD=2,求AF的长.8.(2019•和平区二模)如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.(1)图①,当BC为⊙O的直径时,求BD的长.(2)图②,当BD=5时,求∠CDB的度数.9.(2018•西青区二模)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA 上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.(I)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;(Ⅱ)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.10.(2018•东丽区二模)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(Ⅱ)若⊙O半径为2,TC=√3,求AD的长.11.(2018•河西区一模)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,∠E=30°.(Ⅰ)求∠OCE的度数;(Ⅱ)若⊙O的半径为2√2,求线段EF的长.12.(2020•红桥区三模)在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;̂上一点,连接DC并延长,与AB的延长线相交于点P,连接AD,(Ⅱ)如图②,D为AC若AD=CD,∠P=30°,求∠CAP的大小.13.(2020•和平区三模)已知在△ABC中,BC⊥AB.AB是⊙O的弦,AC交⊙O于点D,且D为AC的中点,延长CB交⊙O于点E,连接AE.(I)如图①,若∠E=50°,求∠EAC的大小;(1)如图②,过点E作⊙O的切线,交AC的延长线于点F.若CF=2CD,求∠CAB的大小.14.(2020•滨海新区二模)如图①,在⊙O中,AB为直径,C为⊙O上一点,∠A=30°,过点C作⊙O的切线,与AB的延长线相交于点P.(Ⅰ)求∠P的大小;(Ⅱ)如图②,过点B作CP的垂线,垂足为点E,与AC的延长线交于点F,①求∠F的大小;②若⊙O的半径为2,求AF的长.15.(2020•西青区二模)已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线交于点P,CP与⊙O交于点D.(I)如图①,若△ABC为等边三角形,求∠P的大小;(II)如图②,连接AD,若PD=AD,求∠ABC的大小.16.(2020•红桥区二模)已知AB是⊙O的直径,弦CD与AB相交于点E,∠BAC=52°.̂的中点,求∠ABC和∠ABD的大小;(Ⅰ)如图①,若D为AB(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若AE=AC,求∠P的大小.17.(2020•南开区二模)如图1,AB是⊙O的直径,弦CD⊥AB于G,过C点的切线与射线DO相交于点E,直线DB与CE交于点H,OG=BG,BH=1.(Ⅰ)求⊙O的半径;(Ⅱ)将射线DO绕D点逆时针旋转,得射线DM(如图2),DM与AB交于点M,与⊙O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.18.(2020•滨海新区一模)如图,△ABC内接于⊙O.(Ⅰ)如图①,连接OA,OC,若∠B=28°,求∠OAC的度数;(Ⅱ)如图②,直径CD的延长线与过点A的切线相交于点P.若∠B=60°,⊙O的半径为2,求AD,PD的长.19.(2020•和平区一模)已知AB是⊙O的直径,点C在⊙O上.(Ⅰ)如图①,点D在⊙O上,且AC=CD,若∠CDA=20°,求∠BOD的大小;(Ⅱ)如图②,过点C作⊙O的切线,交BA的延长线于点E,若⊙O的直径为2√3,AC=√3,求EA的长.20.(2020•河北区模拟)已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.21.(2020•和平区模拟)已知,AB为⊙O的直径,C,D为⊙O上两点,过点D的直线EF 与⊙O相切,分别交BA,BC的延长线于点E,F,BF⊥EF(I)如图①,若∠ABC=50°,求∠DBC的大小;(Ⅱ)如图②,若BC=2,AB=4,求DE的长.22.(2019•北辰区二模)已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC =25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.23.(2019•津南区二模)已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.24.(2019•红桥区二模)已知△ABC内接于⊙O,AB为⊙O的直径,过点O作AB的垂线,与AC相交于点E,与过点C的⊙O的切线相交于点D.(Ⅰ)如图①,若∠ABC=67°,求∠D的大小;(Ⅱ)如图②,若EO=EC,AB=2,求CD的长.25.(2019•西青区二模)已知AB是⊙O的直径,C为⊙O上一点,OC=4,∠OAC=60°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小及P A的长;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小及P A的长.26.(2019•滨海新区二模)已知AB是⊙O的直径,点C,D在⊙O上,CD与AB交于点E,连接BD.(Ⅰ)如图1,若点D是弧AB的中点,求∠C的大小;(Ⅱ)如图2,过点C作⊙O的切线与AB的延长线交于点P,若AC=CP,求∠D的大小.27.(2019•河北区二模)已知,⊙O的半径为1,直线CD经过圆心O,交⊙O与C、D两点,直径AB⊥CD,点M是直线CD上异于C、D、O的一个动点,直线AM交⊙O于点N,点P是直线CD上另一点,且PM=PN.(Ⅰ)如图1,点M在⊙O的内部,求证:PN是⊙O的切线;(Ⅱ)如图2,点M在⊙O的外部,且∠AMO=30°,求OP的长.28.(2019•和平区一模)已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B =70°,连接DO,CO,DC(1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.29.(2019•河西区模拟)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C(Ⅰ)若∠ADE=25°,求∠C的度数(Ⅱ)若AB=AC,求∠D的度数.30.(2018•河西区二模)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.31.(2018•津南区一模)已知P A与⊙O相切于点A,B、C是⊙O上的两点.(Ⅰ)如图①,PB与⊙O相切于点B,AC是⊙O的直径,若∠BAC=25°;求∠P的大小;(Ⅱ)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小.32.(2018•滨海新区一模)如图,AB为⊙O的直径,C为⊙O上一点.(Ⅰ)如图①,若C为半圆的中点,求∠CAB的度数.(Ⅱ)如图②,若∠CAB=20°,D为AC的中点,连接OD并延长交⊙O于点E,过点C的切线CF与AE的延长线交于点F,求∠ECF的度数.33.(2018•西青区一模)已知△ABC中,点D是BC边上一点,以AD为直径的⊙O与BC 相切于点D,与AB、AC分别交于点E、F(Ⅰ)如图①,若∠AEF=52°,求∠C的度数.(Ⅱ)如图②,若EF经过点O,且∠AEF=35°,求∠B的度数.34.(2018•河北区一模)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠P AC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠P AM=∠DAN.35.(2018•红桥区模拟)如图,AB是⊙O的直径,OD垂直于弦AC交于点E,交⊙O于点D,F是BA延长线上一点,若∠CDB=∠F.(Ⅰ)求证:FD与⊙O的相切;(Ⅱ)若AB=10,AC=8,求FD的长.36.(2018•和平区模拟)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E(Ⅰ)如图①,求∠CED的大小;(Ⅱ)如图②,当DE=BE时,求∠C的大小.37.(2018•河北区二模)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.2018-2020年天津中考数学复习各地区模拟试题分类(10)——圆参考答案与试题解析一.选择题(共2小题)1.【解答】解:∵AF 是⊙O 的直径,五边形ABCDE 是⊙O 的内接正五边形,∴CF̂=DF ̂,BC ̂=DE ̂,∠BAE =108°, ∴BF̂=EF ̂, ∴∠BAF =12∠BAE =54°,∴∠BDF =∠BAF =54°,故选:C .2.【解答】解:∵圆内接正六边形的边长是4,∴圆的半径为4.那么直径为8.圆的内接正方形的对角线长为圆的直径,等于8.∴圆的内接正方形的边长是4√2.故选:B .二.填空题(共2小题)3.【解答】解:如图,则S 阴影=2(S △BEF +S 四边形FGMN ),设正六边形的边长为a ,由于正六边形的存在,所以∠BEF =60°,则可得BE =EF =2a ,BC =4a ,AB =3a ,则在Rt △BEF 中可得其高EP =√3a ,同理可得FQ =√32a ,∴S 1=2(S △BEF +S FGMN )=2(12•BF •EP +FG •FQ ) =2(12•2a •√3a +√32a •a ) =3√3a 2,而S 2=BC •h =4a •3√32a =6√3a 2, ∴S 1S 2=12, 故答案为:12.4.【解答】解:连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边, ∴∠AOB =360°6=60°,∠AOC =360°4=90°,∴∠BOC =30°,∴n =360°30°=12,故答案为:12三.解答题(共33小题)5.【解答】(Ⅰ)证明:连接OD .∵∠A =45°,OA =OD ,∴∠A =∠ADO =45°,∴∠BOD =90°.∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠CDO +∠BOD =180°.∴∠CDO =∠BOD =90°.∴OD ⊥DC ,∴CD 与⊙O 相切.(Ⅱ)如图2中,连接DE ,EF ,BD .∵AB是⊙O直径,∴∠ADB=90°.∵AD∥BC,∴∠ADB=∠EBD=90°.∴DE是⊙O直径.∴DE=AB=CD=10.∴BE=BC=AD=6.在Rt△DEF和Rt△CEF中,EF2=DE2﹣DF2,EF2=CE2﹣CF2∴DE2﹣DF2=CE2﹣CF2.设DF=x,则CF=10﹣x.∴102﹣x2=122﹣(10﹣x)2.解得x=145.即DF=145.6.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴AB =BE ;(2)解:∵OD ∥BE ,∠ABC =60°, ∴∠DOP =∠ABC =60°,∵PD ⊥OD ,∴tan ∠DOP =DP OD , ∴2√3OD =√3,∴OD =2,∴OP =4,∴PB =6,∴sin ∠ABC =PC PB ,∴√32=PC 6, ∴PC =3√3,∴DC =√3,∴DC 2+OD 2=OC 2,∴(√3)2+22=OC 2,∴OC =√7.7.【解答】(Ⅰ)解:∵AF 是⊙O 的直径, ∴∠AEF =90°,∵∠ACB =90°,∴∠AEF =∠ACB ,∴EF ∥AB ,∴∠AFE =∠B =30°,(Ⅱ)①证明:连接OD,如图2所示:∵DA平分∠CAB,∴∠DAC=∠DAO,∵OA=OD,∴∠DAO=∠ADO,∴∠DAC=∠ADO,∴OD∥AC,∴∠ODB=∠ACB=90°,∴BD⊥OD,∵⊙O经过点D,∴BC为⊙O的切线;②解:连接DE,如图3所示:∵BC为⊙O的切线,∴∠CDE=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴CD:CA=CE:CD,∴CD2=CE×CA,即22=CE(CE+3),解得:CE=1,或CE=﹣4(舍去),∴CA=4,设⊙O的半径为r,∵EF∥BC,∴AFBF =AECE=31=3,∴AF=3BF=2r,∴BF=23r,∵OD∥AC,∴△BOD∽△BAC,∴OD AC =OB AB,即r 4=r+23r 2r+23r , 解得:r =52,∴AF =2r =5.8.【解答】解:(1)如图1中,连接CD . ∵BC 为⊙O 直径,∴∠CDB =90°,∴∠CAB =90°,∵AD 是∠CAB 的角平分线,∴∠DAB =12∠CAB =45°,∴∠DCB =∠DAB =45°∴△CDB 为等腰直角三角形,∵BC =10,∴BD =5√2.(2)连接OD 、OB ,∵⊙O 直径为10,∴OB =OD =5,∴BD =5,∴OB =OD =BD ,∴△OBD是等边三角形,∴∠BOD=60°,∵CD̂=DB̂,∴∠ACD=∠BAD=30°,∴∠BAC=60°,∵四边形CABD是圆内接四边形,∴∠CDB+∠BAC=180°,∴∠CDB=120°.9.【解答】解:(I)如图①中,连接OQ.∵EQ是切线,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=12∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(Ⅱ)如图②中,连接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切线,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.10.【解答】解:(Ⅰ)连接OT,如图1:∵TC⊥AD,⊙O的切线TC,∴∠ACT=∠OTC=90°,∴∠CAT+∠CTA=∠CTA+∠ATO,∴∠CAT=∠ATO,∵OA=OT,∴∠OAT=∠ATO,∴∠DAB=2∠CAT=50°,∴∠CAT=25°,∴∠ATC=90°﹣25°=65°;(Ⅱ)过O作OE⊥AC于E,连接OT、OD,如图2:∵AC⊥CT,CT切⊙O于T,∴∠OEC=∠ECT=∠OTC=90°,∴四边形OECT是矩形,∴OT=CE=OD=2,∵OE⊥AC,OE过圆心O,∴AE=DE=12AD,∵CT=OE=√3,在Rt△OED中,由勾股定理得:ED=2−OE2=√22−(√3)2=1,∴AD=2.11.【解答】解:(Ⅰ)∵CD是⊙O的切线,∴OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠COE=∠DAO=105°,∴∠OCE=180°﹣∠COE﹣∠E=45°;(Ⅱ)作OM⊥CE于M,则CM=MF,∵∠OCE=45°,∴OM=CM=2=MF,在Rt△MOE中,ME=OMtanE=2√3,∴EF=ME﹣MF=2√3−2.12.【解答】解:(Ⅰ)如图①,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)连接OC,OD,∵AD=CD,∴∠AOD=∠COD,∵OA=OD=OC,∴∠OAD=∠ADO=∠ODC=∠DCO,∵∠P=30°,∴∠P AD+∠ADP=150°,∴∠COP=∠DCO﹣∠P=20°,∵∠CAP=12∠COP,∴∠CAP=10°.13.【解答】解:(1)连接ED,如图1,∵△ABC是直角三角形,∴∠ABC=90°,∴∠ABE=90°,∴AE是⊙O的直径,∴ED⊥AC,∵AD=DC,∴AE=CE,∴∠AED=∠CED=12∠AEC=12×50°=25°,∴∠EAC=90°﹣∠AED=90°﹣25°=65°;(2)连接ED,如图2,∵D为AC的中点,∴∠ABE=90°,∴AE是直径,∵EF是⊙OO的切线,∴∠AEF=90°,∵D为AC的中点,∴AC=2CD,∵CF=2CD,∴AC=CF,∴CE=12AF=AC,由(1)得AE=CE,∴AE=CE=AC,∴∠EAC=60°,∵AB⊥EC,∴∠CAB=12∠EAC=30°14.【解答】解:(Ⅰ)如图①中,连接OC.∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠A=30°,∴∠BOC=2∠A=60°,在Rt△OPC中,∠POC+∠P=90°,∴∠P=90°﹣60°=30°.(Ⅱ)如图②中,①由(Ⅰ)∠OCP=90°,又∵BF⊥PC,即∠PEB=90°,∴OC∥BF,∴∠F=∠ACO=∠A=30°,②由①∠F=∠A,∴AB=BF,连接BC,则∠BCA=90°,即BC⊥AF,∴AC=CF,∵∠BOC=60°,OC=OB,∴△OBC是正三角形,∴BC=OC=2,∴AC=√AB2−BC2=√42−22=2√3,∴AF=4√3.15.【解答】解:(Ⅰ)如图①,连接AO,∵△ABC为等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∵∠AOC+∠AOF=180°,∴∠AOP=60°,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P+∠AOP=90°,∴∠P=90°﹣∠AOP=90°﹣60°=30°;(Ⅱ)如图②,∵PD=AD,∴∠P=∠P AD,∵OA=OD,∴∠ADO=∠OAD,∵∠ADO=∠P+∠P AD=2∠P AD,∴∠OAD=2∠P AD,∵P A是⊙O的切线,∴P A⊥AO,∴∠P AO=90°,∴∠P AD+∠OAD=90°,∴∠P AD+2∠P AD=90°,∴∠P AD=30°,∴∠ADO=2∠P AD=60°,∴∠ADC=60°,∴∠ABC=∠ADC=60°.16.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=52°,∴∠ABC=90°﹣52°=38°,∵D为AB̂的中点,∴AD̂=BD̂,∴∠ACD=∠BCD=12∠ACB=45°,∴∠ABD=∠ACD=45°;(2)如图,连接OD,OC,∵AE=AC,∴∠ACE=∠AEC=64°,∵OA=OC,∴∠ACO=∠CAO=52°,∴∠OCD=∠ACE﹣ACO=12°,∵OC=OD,∴∠ODC=∠OCD=12°,∴∠POD=∠AEC﹣∠ODC=52°,∵DP是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,∴∠P=90°﹣∠POD=38°.17.【解答】解:(Ⅰ)如图1,连接OC,∵OG=BG,且OB⊥CG,∴OC=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠1=∠2=∠3=∠BCH=30°,∠4=60°,∴∠H=90°,∵BH=1,∴OC=BC=2BH=2,即圆O的半径为2;(Ⅱ)如图2,过点F作FE⊥DC.交DC延长线于点E,∴∠CFE+∠FCE=90°,∵OC⊥FC,∴∠OCG+∠FCE=90°,∴∠CFE=∠OCG,∴tan∠CFE=tan∠OCG,即CEEF=√33,设CE=x,则EF=√3x,∵GM=GD,MG⊥CD,∴∠MDG=45°,∵FE⊥ED,∴∠DFE=90°﹣∠MDG=45°=∠MDG,∴EF=ED=EC+CD,又∵CD=2CG=2×√22−12=2√3,∴√3x=x+2√3,解得x=3+√3,∴FC=2EC=6+2√3.18.【解答】解:(Ⅰ)∵∠AOC=2∠ABC,∠B=28°,∴∠AOC=56°,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=180°−56°2=62°;(Ⅱ)如图②,连接OA.∵P A与⊙O相切于点A,∴P A⊥OA,∵∠AOC=2∠ABC,∠B=60°,∴∠AOC=120°.∴∠POA=60°,又OA=OD,∴△AOD是等边三角形,∴AD=OA=2,∵∠P AO=90°,∴∠P=30°.在Rt△P AO中,PO=2OA=4,∴PD=PO﹣OD=2.19.【解答】解:(Ⅰ)如图①,连接OC,∵AC=CD,∠CDA=20°,̂=CD̂,∴∠CAD=∠CDA=20°,AC∴∠COD=∠AOC=2×20°=40°,∴∠AOD=80°,∴∠BOD=180°﹣80°=100°;(Ⅱ)如图②,连接OC,BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=2√3AC=√3,∴∠B=30°,∴∠CAB=60°,∵OC=OA,∴∠ACO=∠CAO=60°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠ECA=30°,∴∠E=∠CAO﹣∠ACE=30°,∴∠E=∠ACE,∴AE=AC=√3.20.【解答】解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=12∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.21.【解答】解(1)如图1,连接OD,BD,∵EF与⊙O相切,∴OD⊥EF,∵BF⊥EF,∴OD∥BF,∴∠AOD=∠B=50°,∵OD=OB,∴∠OBD=∠ODB=12∠AOD=25°;(2)如图2,连接AC,OD,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,AB=4,∴∠CAB=30°,∴AC=AB•cos30°=4×√32=2√3,∵∠ODF=∠F=∠HCO=90°,∴∠DHC=90°,∴AH=AO•cos30°=2×√32=√3,∵∠HAO=30°,∴OH=12OA=12OD,∵AC∥EF,∴DE=2AH=2√3.22.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=12∠AOD=12×90°=45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=12∠AOD=20°.23.【解答】解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴AD̂=CD̂,∴∠ABD=∠CBD=12×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.24.【解答】解:(Ⅰ)连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵OC=OB,∴∠OCB=∠ABC=67°,∴∠BOC=46°,∵OD⊥AB,∴∠BOD=90°,∴∠DOC=44°,∴∠D=90°﹣44°=46°;(Ⅱ)连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A,∵EO=EC,∴∠1=∠2,∴∠D=∠DCE,∵∠DCE+∠1=∠BCO+∠1=90°,∴∠DCE=∠BCO=∠ABC=∠D,∵∠A+∠ABC=90°,∴∠A=30°,∴∠1=∠2=30°,∵AB=2,∴OA=1,∴OE=√3 2,∴OD=√3,∴CD=√3 3.25.【解答】解:(1)∵OA=OC,∠OAC=60°,∴△AOC是等边三角形,∴AC=OC=4,∠AOC=60°,∵过点C作⊙O的切线,与BA的延长线交于点P,∴∠OCP=90°,∴∠P=∠ACP=30°,∴P A=AC=4;(2)作CD⊥AB于D,∵∠AOC=60°,∴∠Q=30°,∵AQ=CQ,∴∠QAC=∠QCA=75°,∵∠OAC=∠OCA=60°,∴∠QAO=∠QCO=15°,∵∠AOC=∠POC+∠APC,∴∠APC=60°﹣15°=45°,∴△PCD是等腰直角三角形,∴PD=CD,∵CD=√32AC=2√3,AD=12AC=2,∴PD=2√3∴P A=AD+PD=2+2√3.26.【解答】解:(Ⅰ)如图1,连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵D是弧AB的中点,̂=BD̂,∴AD∴AD=BD,∴△ABD是等腰直角三角形,∴∠ABD=45°,又∵∠C=∠ABD,∴∠C=45°;(Ⅱ)如图2,连接OC,∵CP是⊙O的切线,∴∠OCP=90°,∵AC=CP,∴∠A=∠P,∵∠COP=2∠A,∴∠COP=2∠P,∴在Rt△OPC中,∠COP+∠P=90°,∴2∠P+∠P=90°,∴∠P=30°,∴∠A=30°,∴∠D=∠A=30°.27.【解答】(Ⅰ)证明:连接ON,如图1,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN,∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,即PN与⊙O相切.(Ⅱ)解:连接ON,如图2,∵∠AMO=30°,PM=PN,∴∠PNM=∠AMO=30°,∠OAN=60°,∴∠NPO=60°,∴OA=ON,∴△AON是等边三角形,∴∠AON=60°,∴∠NOP=30°,∴∠PNO=90°,∴OP=ONcos30°=132=2√33.28.【解答】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°﹣∠AOD﹣∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.29.【解答】解:(Ⅰ)连接OA,∵∠ADE=25°,∴由圆周角定理得:∠AOC=2∠ADE=50°,∵AC切⊙O于A,∴∠OAC=90°,∴∠C=180°﹣∠AOC﹣∠OAC=180°﹣50°﹣90°=40°;(Ⅱ)∵AB=AC,∴∠B=∠C.∵AÊ=AÊ,∴∠AOC=2∠B.∴∠AOC=2∠C.∵∠OAC=90°,∴∠AOC+∠C=90°.∴3∠C=90°.∴∠AOC=2∠C=60°.∴∠D=12∠AOC=30°.30.【解答】解:(1)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴DĈ=BD̂,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5√2,(2)如图②,连接OB,OD,OC.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=12∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴DĈ=BD̂,∴OD⊥BC,设垂足为E,∴BE=EC=OB•sin60°=5√3 2,∴BC=5√3.31.【解答】解:(Ⅰ)连接OB,∵P A,PB与⊙O相切于点A,B,∴P A=PB,∠P AO=∠PBO=90°,∴∠P AB=∠PBA,∵∠BAC=25°,∴∠PBA=90°﹣∠BAC=65°,∴∠P=180°﹣65°×2=50°;(Ⅱ)连接AB、AD,∵∠ACB=90°,∴AB为⊙O的直径,∴∠ADB=90°,∵PD=DB,∵P A与⊙O相切于点A,∴BA⊥AP,∴∠P=∠ABP=45°.32.【解答】解:(Ⅰ)如图①,∵C为半圆的中点,∴AĈ=BĈ,∴AC=BC,而AB为⊙O的直径,∴∠ACB=90°,∴△ACB为等腰直角三角形,∴∠CAB=45°;(Ⅱ)如图②,∵D为AC的中点,∴OE⊥AC,而OA=OC,∴OD平分∠AOC,∴∠COD=∠AOD=90°﹣20°=70°,∵OC=OD,∴∠OCE=∠OEC=12(180°﹣70°)=55°,∴OC⊥CF,∴∠OCF=90°,∴∠ECF=90°﹣55°=35°.33.【解答】解:(I)如图①,连接DF,∵BC是⊙O的切线,∴BC⊥AD,∴∠ADC=90°,∴∠F AD+∠C=90°,∵AD是⊙O的直径,∴∠AFD=90°,∴∠F AD+∠ADF=90°,∴∠C=∠ADF,∵∠AEF=∠ADF,∴∠C=∠AEF=52°;(II)如图②,∵AD和AF都是直径,∴OA=OE,∴∠OAE=∠AEF=35°,∵BC与⊙O相切于点D,∴BC⊥AD,∴∠ADB=90°,∴∠B=90°﹣∠OAE=90°﹣35°=55°.34.【解答】证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠P AM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠1+∠2=90°,∵AD⊥PN,∴∠AND+∠3=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠2,∴∠1=∠3,即∠P AM=∠DAN.35.【解答】(Ⅰ)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC(同位角相等,两直线平行),∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;(Ⅱ)由垂径定理可知,E是弦AC的中点,∵AB是直径,∴∠ACB =90°,∴BC =√102−82=6,∵OA =OB ,∴OE =12BC =3,∵AE ∥DF ,∴AE DF =OE OD , ∴4DF =35,∴DF =20336.【解答】解:(Ⅰ)∵四边形ABED 圆内接四边形, ∴∠A +∠DEB =180°,∵∠CED +∠DEB =180°,∴∠CED =∠A ,∵∠A =68°,∴∠CED =68°.(Ⅱ)连接AE .∵DE =BE ,∴DE ̂=BE ,̂∴∠DAE =∠EAB =12∠CAB =34°,∵AB 是直径,∴∠AEB =90°,∴∠AEC =90°,∴∠C =90°﹣∠DAE =90°﹣34°=56°37.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.。
2018年天津市河北区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣6)+2 的结果等于()A.﹣8 B.﹣4 C.4 D.8 2.(3分)sin60°的值等于()A.B.C.D.1 3.(3分)如图图形中,是轴对称图形的是()A.B.C.D.4.(3分)据统计,至2017年末,天津市常住人口总量为15568700人,将15568700用科学记数法表示为()A.0.155687×108B.1.55687×107C.15.5687×106D.15568.7×1035.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A. B.C.D.6.(3分)估计的值在()A.2和3之间B.3和4之间 C.4和5之间D.5和6之间7.(3分)计算+()A.B.C.1 D.﹣1 8.(3分)方程组的解是()A.B.C.D.9.(3分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3 B.0≤y≤2 C.1≤y≤3D.0≤y≤310.(3分)已知反比例函数y=,当﹣3≤x≤﹣1时,y的最小值是()A.﹣9 B.﹣3 C.﹣1 D.1 11.(3分)如图,两个三角形的面积分别是7和3,对应阴影部分的面积分别是m、n,则m﹣n等于()A.4 B.3 C.2 D.不能确定12.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形二、填空题(本大题共6小题,每小题3分,共18分,请将答案答在试卷后面的答题纸的相应位置)13.(3分)计算2a(a+3b)的结果等于.14.(3分)分解因式:x2﹣9= .15.(3分)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中黑色球3个,白色球2个,随机抽取一个小球是白色球的概率是.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a ﹣1=0的两个实数根互为相反数,则a的值为.18.(3分)如图,在由小正方形组成的网格中,点A、B 均在格点上.(1)在图1 中画出一个直角△ABC,使得点C 在格点上且tan∠BAC=;(Ⅱ)在图2 中画出一个△ABD,使得点D 在格点上且tan∠BAD=,请在图2 所示的网格中,用无刻度的直尺,画出△ABD,并简要说明理由.三、解答题(本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程,请将答案答在试卷后面的答题纸的相应位置)19.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得;(Ⅱ)解不等式(2),得;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图,请你根据统计图给出的信息回答:(I)在这20个家庭中,收入为1.1万元的有个;(Ⅱ)求样本中的平均数、众数和中位数.21.(10分)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠PAC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠PAM=∠DAN.22.(10分)如图,某数学兴趣小组测量位于某山顶的一座雕像AB高度,已知山坡面与水平面的夹角为30°,山高BC为285米,组员从山脚D处沿山坡向着雕像方向前进540米后到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.23.(10分)某公司计划组装A、B两种型号的健身器材共40套,用于公司职工的锻炼.组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B 型健身器材甲种部件3个和乙种部件6个.公司现有甲种部件228个,乙种部件194个,设组装A 型器材的套数为x (x 为正整数).(Ⅰ)根据题意,填写下表有多少种组装方案?(Ⅲ)组装一套A 型健身器材需费用50元,组装一套B 型健身器材需费用68元,求总组装费用最少的组装方案,最少总组装费用是多少?24.(10分)在平面直角坐标系中,已知点A (2,0),点B (0,2),点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).25.(10分)如图,抛物线y=ax2﹣2x+3与x轴交于A、B两点(点A在点B左边),与y轴交于C点,B (1,0).第二象限内有一点P在抛物线上运动,OP交线段AC于点E.(Ⅰ)求抛物线的解析式及点A、C的坐标;(Ⅱ)设△PAC的面积为S.当S最大时,求点P的坐标及S的最大值;(Ⅲ)是否存在点P,使点E是OP的中点.若存在,求出点P的坐标;若不存在,说明理由.2018年天津市河北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣6)+2 的结果等于()A.﹣8 B.﹣4 C.4 D.8【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.依此即可求解.【解答】解:(﹣6)+2=﹣4.故选:B.【点评】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.(3分)sin60°的值等于()A.B.C.D.1【分析】根据特殊角的三角函数值直接解答即可.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选:C.【点评】此题比较简单,只要熟记特殊角的三角函数值即可解答.3.(3分)如图图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.4.(3分)据统计,至2017年末,天津市常住人口总量为15568700人,将15568700用科学记数法表示为()A.0.155687×108B.1.55687×107C.15.5687×106D.15568.7×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15568700用科学记数法表示为:1.55687×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A. B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的主视图为:俯视图为:左视图为:故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)估计的值在()A.2和3之间B.3和4之间 C.4和5之间D.5和6之间【分析】估算确定出范围即可.【解答】解:∵9<13<16,∴3<<4,则的值在3和4之间,故选:B.【点评】此题考查了估算无理数的大小,以及算术平方根,熟练掌握各自的性质是解本题的关键.7.(3分)计算+()A.B.C.1 D.﹣1【分析】先根据同分母分式的加法计算,再约分即可得.【解答】解:原式===﹣1,故选:D.【点评】本题主要考查分式的加减法,解题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.8.(3分)方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②,得:4x=8,解得:x=2,将x=2代入①,得:2+y=6,解得:y=4,所以方程组的解为,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(3分)如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3 B.0≤y≤2 C.1≤y≤3D.0≤y≤3【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.10.(3分)已知反比例函数y=,当﹣3≤x≤﹣1时,y的最小值是()A.﹣9 B.﹣3 C.﹣1 D.1【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象,即可得到y的取值范围.【解答】解:∵k=3>0,∴在每个象限内y随x的增大而减小,又∵当x=﹣3时,y=﹣1,当x=﹣1时,y=﹣3,∴当﹣3≤x≤﹣1时,﹣3≤y≤﹣1,∴y的最小值是﹣3.故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k <0时,在每一个象限,y随x的增大而增大.11.(3分)如图,两个三角形的面积分别是7和3,对应阴影部分的面积分别是m、n,则m﹣n等于()A.4 B.3 C.2 D.不能确定【分析】设重叠部分的面积为x.由题意,m=7﹣x,n=3﹣x,由此即可解决问题;【解答】解:设重叠部分的面积为x.由题意,m=7﹣x,n=3﹣x,∴m﹣n=(7﹣x)﹣(3﹣x)=4,故选:A.【点评】本题考查整式的加减,解题的关键是理解题意,学会利用参数解决问题,属于中考常考题型.12.(3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;根据a>0,c<0,可得到3a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵a>0,c<0,∴3a>0,﹣c>0.∴3a﹣c>0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选:D.【点评】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).二、填空题(本大题共6小题,每小题3分,共18分,请将答案答在试卷后面的答题纸的相应位置)13.(3分)计算2a(a+3b)的结果等于2a2+6ab .【分析】根据单项式乘多项式的运算法则计算可得.【解答】解:2a(a+3b)=2a2+6ab,故答案为:2a2+6ab.【点评】本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式的运算法则.14.(3分)分解因式:x2﹣9= (x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.15.(3分)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中黑色球3个,白色球2个,随机抽取一个小球是白色球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于袋子中共有5个小球,其中白色小球有2个,所以随机抽取一个小球是白色球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a ﹣1=0的两个实数根互为相反数,则a的值为0 .【分析】由两根互为相反数可知两根之和为0,再由根与系数的关系可得到关于a的方程,即可求得a 的值.【解答】解:∵方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,∴a2﹣2a=0,解得a=0或a=2,当a=2时,方程为x2+1=0,该方程无实数根,舍去,∴a=0,故答案为:0.【点评】本题主要考查根与系数的关系,由条件得出两根和为0是解题的关键.18.(3分)如图,在由小正方形组成的网格中,点A、B 均在格点上.(1)在图1 中画出一个直角△ABC,使得点C 在格点上且tan∠BAC=;(Ⅱ)在图2 中画出一个△ABD,使得点D 在格点上且tan∠BAD=,请在图2 所示的网格中,用无刻度的直尺,画出△ABD,并简要说明理由.【分析】(Ⅰ)依据点C 在格点上且tan∠BAC=,即可得到直角△ABC;(Ⅱ)依据点D 在格点上且tan∠B=,即可得到△ABD,利用平行线分线段成比例定理,即可得到结论.【解答】解:(Ⅰ)如图,选取点C,连接AC、BC,则点C即为所求.(答案不唯一)(Ⅱ)如图,选取点D,连接AD,BD,点D即为所求.理由:如图,∵DE∥AB且ED=AB,∴,∴BF=BE,由图可得,AB=EB,BE⊥AB,∴tan∠BAD=.【点评】本题主要考查了应用与设计作图以及解直角三角形,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.三、解答题(本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程,请将答案答在试卷后面的答题纸的相应位置)19.(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得x≤1 ;(Ⅱ)解不等式(2),得x≥﹣2 ;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣2≤x≤1 .【分析】分别求出不等式组中两不等式的解集,表示在数轴上找出解集的公共部分确定出不等式组的解集即可.【解答】解:(I)解不等式(1),得x≤1;(Ⅱ)解不等式(2),得x≥﹣2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为﹣2≤x≤1.故答案为:(I)x≤1;(Ⅱ)x≥﹣2;(Ⅳ)﹣2≤x≤1.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.20.(8分)某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图,请你根据统计图给出的信息回答:(I)在这20个家庭中,收入为1.1万元的有 3 个;(Ⅱ)求样本中的平均数、众数和中位数.【分析】(Ⅰ)利用条形图提供的数据完成所给表,并计算平均数;(Ⅱ)根据平均数、中位数和众数的定义求解即可;【解答】解:(Ⅰ)根据条形图填表如下:(Ⅱ)平均收入为(20×0.05×0.6+20×0.05×0.9+20×0.1×1.0+20×0.15×1.1+20×0.2×1.2+20×0.25×1.3+20×0.15×1.4+20×0.05×9.7)÷20=32÷20=1.6(万元),数据中的第10和11个数据的平均数为1.2(万元),所以中位数是1.2(万元);众数是最高的条形图的数据1.3(万元);故答案为:3;【点评】本题考查的是平均数、众数和中位数的概念和其意义.要注意:当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.21.(10分)已知AB是⊙O的直径,点P是AB延长线上的一点.(I)如图1,过P作⊙O的切线PC,切点为C.作AD⊥PC于点D,求证:∠PAC=∠DAC;(II)如图2,过P作⊙O的割线,交点为M、N,作AD⊥PN于点D,求证:∠PAM=∠DAN.【分析】(Ⅰ)根据切线的性质和平行线的性质证明即可;(Ⅱ)连接BM.利用直径和内接四边形的性质解答即可.【解答】证明:(Ⅰ)如图1,连接OC,∵OA=OC,∴∠1=∠2,∵PC是⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴AD∥OC,∴∠2=∠3,∴∠1=∠3,即∠PAM=∠DAN;(Ⅱ)如图2,连接BM,∵AB是⊙O的直径,∴∠1+∠2=90°,∵AD⊥PN,∴∠AND+∠3=90°,∵ABMN时⊙O的内接四边形,∴∠AND=∠2,∴∠1=∠3,即∠PAM=∠DAN.【点评】此题考查切线的性质,关键是根据切线的性质和平行线的性质证明.22.(10分)如图,某数学兴趣小组测量位于某山顶的一座雕像AB高度,已知山坡面与水平面的夹角为30°,山高BC为285米,组员从山脚D处沿山坡向着雕像方向前进540米后到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.【分析】作EF⊥AC于F,EG⊥DC于G,根据直角三角形的性质求出EG,根据题意求出BF,根据正切的定义求出AF,计算即可.【解答】解:作EF⊥AC于F,EG⊥DC于G,在Rt△DEG中,EG=DE=270,∴BF=BC﹣CF=285﹣270=15,EF==15,∵∠AEF=60°,∴∠A=30°,∴AF==45,∴AB=AF﹣BF=30(米),答:雕像AB的高度为30米.【点评】此题是解直角三角形﹣仰角俯角问题,主要考查了锐角三角函数的意义,解本题的关键是构造直角三角形.23.(10分)某公司计划组装A、B两种型号的健身器材共40套,用于公司职工的锻炼.组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B型健身器材甲种部件3个和乙种部件6个.公司现有甲种部件228个,乙种部件194个,设组装A 型器材的套数为x(x为正整数).(Ⅰ)根据题意,填写下表有多少种组装方案?(Ⅲ)组装一套A型健身器材需费用50元,组装一套B型健身器材需费用68元,求总组装费用最少的组装方案,最少总组装费用是多少?【分析】(Ⅰ)依据组装一套A型健身器材甲种部件7个和乙种部件4个,组装一套B型健身器材甲种部件3个和乙种部件6个,可得代数式;(Ⅱ)根据题中已知条件列出不等式组,解不等式租得出整数即可解得组装方案;(Ⅲ)根据组装方案的费用y关于x 的一次函数,解得当x=27时,组装费用y最小为2234.【解答】解:(Ⅰ)依题意得,组装B型器材需用甲种部件3(40﹣x)个,需用乙种部件6(40﹣x)个;组装A型器材需用乙种部件4x个;故答案为:3(40﹣x),6(40﹣x),4x;(Ⅱ)依题意得,,解得23≤x≤27,∵x为正整数,∴x的取值为23,24,25,26,27,∴组装A、B两种型号的健身器材时,共有5种组装方案;(Ⅲ)总组装费用y=50x+68(40﹣x)=﹣18x+2720,∵k=﹣18<0,∴y随着x的增大而减小,∴当x=27时,y有最小值2234,此时的组装方案为:组装A型健身器材27套,组装B 型健身器材13套.最小组装费用为2234元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,解决问题的关键是掌握一次函数的性质.24.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【分析】(Ⅰ)设A'B'与x轴交于点H,依据旋转的性质得出BO∥A'B',即可得到OH=OB'=,B'H=3,进而得出点B'的坐标为(,3);(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A=(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P 的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【解答】解:(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=2,∴OH=OB'=,B'H=3,∴点B'的坐标为(,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,).∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点评】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP为半径的圆.25.(10分)如图,抛物线y=ax2﹣2x+3与x轴交于A、B两点(点A在点B左边),与y轴交于C点,B (1,0).第二象限内有一点P在抛物线上运动,OP交线段AC于点E.(Ⅰ)求抛物线的解析式及点A、C的坐标;(Ⅱ)设△PAC的面积为S.当S最大时,求点P的坐标及S的最大值;(Ⅲ)是否存在点P,使点E是OP的中点.若存在,求出点P的坐标;若不存在,说明理由.【分析】(Ⅰ)直接把B点坐标代入进而得出函数解析式,再利用y=0,以及x=0即可得出答案;(Ⅱ)首先求出函数解析式,进而表示出△PAC的面积为S,进而得出答案;(Ⅲ)表示出E点坐标,再利用AF=EF,进而得出答案.【解答】解:(Ⅰ)将点B(1,0)代入y=ax2﹣2x+3,解得:a=﹣1,故抛物线解析式为:y=﹣x2﹣2x+3,当y=0,解得:x1=﹣3,x2=1,故A(﹣3,0),当x=0时,y=3,则C点坐标为:(0,3);(Ⅱ)如图,过点P作PD∥OC,交AC于点D,设点P则坐标为:(m,﹣m2﹣2m+3),由A(﹣3,0),C(0,3)可得:直线AC的解析式为:y=x+3,∴点D的坐标为:(m,m+3),∴PD=﹣m2﹣3m,∵S=PD•AO=﹣(m+)2+,∴当m=﹣时,点P的坐标为:(﹣,),S的最大值为:;(Ⅲ)如图,过点E作EF⊥OA于点F,若点E是OP的中点,则点E的坐标为:(,),此时,OF=﹣,AF=3+,EF=,由OA=OC,得AF=EF,∴3+=,化简得:m2+3m+3=0,△=b2﹣4ac=﹣3<0,∴不存在点P,使点E是OP的中点.【点评】此题主要考查了二次函数的综合应用,正确表示出△PAC的面积是解题关键.。
天津市河北区普通中学2018届初三数学中考复习图形的变化专题复习练习一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( B )2.从一个边长为3 cm的大立方体挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( C )3.如图是由5块完全相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,其主视图是( B )4.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( D )A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)5.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( B )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3),第5题图) ,第6题图) ,第7题图)6.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( D )A .(2,23)B .(-2,4)C .(-2,22)D .(-2,23) 7.如图,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5 cm ,则∠AOB 的度数是( B )A .25°B .30°C .35°D .40° 8.如图,以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,已知OB =3OB′,则△A ′B ′C ′与△ABC 的面积比为( D )A .1∶3B .1∶4C .1∶5D .1∶99.如图,在△ABC 中,点D 在AB 上,BD =2AD ,DE ∥BC 交AC 于E ,则下列结论不正确的是( D )A .BC =3DE B.BD BA =CE CA C .△ADE ∽△ABC D .S △ADE =13S △ABC10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF∽△CAB;②CF=2AF ;③DF=DC ;④tan ∠CAD = 2.其中正确的结论有( B )A .4个B .3个C .2个D .1个二、填空题11.如图,一个等腰直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A ′B ′C 的位置,使A ,C ,B ′三点共线,那么旋转角的度数是__135°__.12.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为__200米__.13.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中的阴影部分的面积的和为__π__.14.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点(DE 不平行于BC),要使△ADE 与△ABC 相似,需要添加的一个条件是__∠ADE=∠C 或∠AED=∠B 或ADAC=AEAB__.(写出一个即可)15.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶2,点A 的坐标为(0,1),则点E 的坐标是.16.如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,AB =12,EF =9,则DF 的长是__7__.17.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为.18.(2016·梅州)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B ,O 分别落在点B 1,C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去……若点A(32,0),B(0,2),则点B 2016的坐标为__(6048,2)__.三、解答题19.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标;(2)若△ABC 和△A 2B 2C 2关于原点O 成中心对称图形,写出△A 2B 2C 2的各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,写出△A 3B 3C 3的各顶点的坐标.解:(1)图略,A 1(2,2),B 1(3,-2)(2)图略,A 2(3,-5),B 2(2,-1),C 2(1,-3) (3)图略,A 3(5,3),B 3(1,2),C 3(3,1)20.如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD.(1)求证:△ACD∽△CBD;(2)求∠ACB 的大小.解:(1)∵CD 是边AB 上的高,∴∠ADC =∠CDB=90°,又AD CD =CDBD,∴△ACD ∽△CBD(2)∵△ACD∽△CBD,∴∠A =∠BCD,在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°,∴∠BCD +∠ACD=90°,即∠ACB=90°21.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处.(1)求证:B′E=BF ;(2)若AE =3,AB =4,求BF 的长.解:(1)∵矩形ABCD 中,AD ∥BC ,∴∠B ′EF =∠EFB,又∵∠B′FE=∠EFB,∴∠B ′FE =∠B′EF,∴B ′E =B′F,又∵BF=B′F,∴B ′E =BF(2)∵直角△A′B′E 中,A ′B ′=AB =4,∴B ′E =A′B ′2+A′E 2=32+42=5,∴BF =B′E=522.(1)如图1,纸片▱ABCD 中,AD =5,S ▱ABCD =15,过点A 作AE⊥BC,垂足为E ,沿AE 剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为( C )A .平行四边形B .菱形C .矩形D .正方形(2)如图2,在(1)中的四边形纸片AEE ′D 中,在EE ′上取一点F ,使EF =4,剪下△AEF ,将它平移至△DE ′F ′的位置,拼成四边形AFF ′D . ①求证:四边形AFF ′D 是菱形;②求四边形AFF ′D 的两条对角线的长.解:(2)①∵AF 綊DF′,∴四边形AFF′D 是平行四边形,∵S ▱ABCD =AD·AE=15,AD =5,∴AE =3,在Rt △AEF 中,AF =AE 2+EF 2=32+42=5,∴AD =AF ,∴四边形AFF′D 是菱形②连接AF′,DF ,在Rt △AEF ′中,AE =3,EF ′=9,∴AF ′=310,在Rt △DFE ′中,FE ′=1,DE ′=AE =3,∴DF =10,∴四边形AFF′D 两条对角线的长分别是310和1023.如图,⊙O 是△ABC 的外接圆,P 是⊙O 外的一点,AM 是⊙O 的直径,∠PAC =∠ABC.(1)求证:PA 是⊙O 的切线;(2)连接PB 与AC 交于点D ,与⊙O 交于点E ,F 为BD 上的一点,若M 为BC ︵的中点,且∠DCF=∠P,求证:BD PD =FD ED =CDAD.解:(1)连接CM.∵∠PAC=∠ABC,∠M =∠ABC,∴∠PAC =∠M,∵AM 为直径,∴∠M +∠MAC=90°,∴∠PAC +∠MAC=90°,即∠MAP=90°,∴MA ⊥AP ,∴PA 是⊙O 的切线(2)连接AE.∵M 为BC ︵中点,AM 为⊙O 的直径,∴AM ⊥BC ,∵AM ⊥AP ,∴AP ∥BC ,∴△ADP ∽△CDB ,∴BD PD =CDAD,∵AP ∥BC ,∴∠P =∠CBD,∵∠CBD =∠CAE,∴∠P =∠CAE,∵∠P =∠DCF,∴∠DCF =∠CAE,又∵∠ADE=∠CDF,∴△ADE ∽△CDF ,∴CD DA =FD ED ,∴BD PD =FD ED =CDAD24.(10分)(2016·东营)如图1,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B ,C 分别在边AD ,AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长DB 交CF 于点H. ①求证:BD⊥CF;②当AB =2,AD =32时,求线段DH 的长.解:(1)BD =CF.理由:由题意得∠CAF =∠BAD =θ,可证△CAF≌△BAD(SAS),∴BD =CF(2)①由(1)得△CAF≌△BAD,∴∠CFA =∠BDA,∵∠FNH =∠DNA,∠DNA +∠NDA=90°,∴∠CFA +∠FNH=90°,∴∠FHN =90°,即BD⊥CF②连接DF ,延长AB 交DF 于M ,∵△ABC 绕点A 逆时针旋转45°,∴∠BAD =45°,∵∠MAD =∠MDA=45°,∴∠AMD =90°,∴AM ⊥DF ,∵四边形ADEF 是正方形,AD =32,AB =2,∴AM =DM =3,BM =AM -AB =1,∴DB =DM 2+BM 2=10,又∠DHF=90°,∠MDB =∠HDF,∴△DMB ∽△DHF ,∴DM DH =DB DF ,即3DH =106,∴DH =910525.(12分)(2016·资阳)在Rt △ABC 中,∠C =90°,Rt △ABC 绕点A 顺时针旋转到Rt △ADE 的位置,点E 在斜边AB 上,连接BD ,过点D 作DF⊥A C 于点F.(1)如图1,若点F 与点A 重合,求证:AC =BC ; (2)若∠DAF=∠DBA,①如图2,当点F 在线段CA 的延长线上时,判断线段AF 与线段BE 的数量关系,并说明理由;②当点F 在线段CA 上时,设BE =x ,请用含x 的代数式表示线段AF.解:(1)由旋转得∠BAC=∠BA D ,∵DF ⊥AC ,∴∠CAD =90°,∴∠BAC =∠BAD=45°,∵∠ACB =90°,∴∠ABC =45°,∴AC =CB(2)①AF=BE.理由:由旋转得AD =AB ,∴∠ABD =∠ADB,∵∠DAF =∠ABD,∴∠DAF =∠ADB,∴AF ∥BD ,∴∠BAC =∠ABD,由旋转得∠BAC=∠BAD ,∴∠FAD =∠BAC=∠BAD=13×180°=60°,∴△ABD 是等边三角形,∴AD =BD ,可证△AFD≌△BED(AAS),∴AF =BE②由旋转得∠BAC=∠BAD,∵∠ABD =∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD =AB ,∴∠ABD =∠ADB=2∠BAD,可求∠BAD=36°,设BD =x ,作BG 平分∠ABD,∴∠BAD =∠GBD=36°,∴AG =BG =BD =x ,∴DG =AD -AG =AD-BG =AD -BD ,又∵∠BDG=∠ADB,∴△BDG ∽△ADB ,∴BD AD =DG DB .∴BD AD =AD -BDBD,∴AD BD =1+52,∵∠FAD =∠EBD,∠AFD =∠BED,∴△AFD ∽△BED ,∴AD BD =AF BE,∴AF =AD·BE BD =1+52x。
2018年天津市河北区中考数学模拟试卷一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.3.(3分)如图中三视图对应的几何体是()A.圆柱B.三棱柱C.圆锥D.球4.(3分)已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5 B.5 C.﹣3 D.35.(3分)二次函数y=x2﹣6x﹣7的对称轴为()A.x=3 B.x=﹣3 C.x=﹣1 D.x=76.(3分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.(3分)下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上8.(3分)如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A.y= B.y=﹣C.y=D.y=﹣9.(3分)下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=10.(3分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.11.(3分)如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S212.(3分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE ⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=B.y= C.y=2D.y=3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:sin60°=.14.(3分)若关于x的方程x2+mx+1=0有两个相等的实数根,则m=.15.(3分)若正方形的外接圆直径为4,则其内切圆半径为.16.(3分)二次函数y=x2﹣2x﹣5的最小值是.17.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边A的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,若OA=2,则图中阴影部分的面积为.18.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③b+c=0④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号)三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB的距离.(≈1.41,≈1.73,结果取整数)20.(10分)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点.且A点坐标为(1,3),B点的横坐标为﹣3.(Ⅰ)求反比例函数和一次函数的解析式;(Ⅱ)根据图象直接写出使得y1≤y2时,x的取值范围.21.(10分)某小组有5名学生,其中有3名女生和2名男生,现在要从这5名学生中抽取2名学生参加两项不同的活动.(Ⅰ)请用“列表法”或“树状图法”列出所有情况;(Ⅱ)求刚好抽到一男一女的概率.22.(12分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB 的延长线于点P.(Ⅰ)求证:PA是⊙O的切线;(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.23.(12分)如图,边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ;连接PQ,PQ与BC交于点E,QP延长线与AD(或AD延长线)交于点F,连接CQ.求证:(Ⅰ)CQ=AP;(Ⅱ)△APB∽△CEP.24.(12分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与B,C两点重合),过点P作x轴的垂线交抛物线于点F,设点P的横坐标为m(0<m<3)(Ⅰ)当m为何值时,四边形PEDF为平行四边形;(Ⅱ)设△BCF的面积为S,求S的最大值.2018年天津市河北区中考数学模拟试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)如图中三视图对应的几何体是()A.圆柱B.三棱柱C.圆锥D.球【分析】由三视图定义判断即可得.【解答】解:图中三视图对应的几何体是圆锥,故选:C.【点评】本题主要考查由三视图判断几何体,熟练掌握基本几何体的三视图及三视图的定义是解题的关键.4.(3分)已知x=2是一元二次方程x2﹣mx﹣10=0的一个根,则m等于()A.﹣5 B.5 C.﹣3 D.3【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:将x=2代入x2﹣mx﹣10=0,∴4﹣2m﹣10=0∴m=﹣3故选:C.【点评】本题考查一元二次方程的解定义,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.5.(3分)二次函数y=x2﹣6x﹣7的对称轴为()A.x=3 B.x=﹣3 C.x=﹣1 D.x=7【分析】根据二次函数的对称轴公式列式计算即可得解.【解答】解:二次函数y=x2﹣6x﹣7的对称轴为x=﹣,故选:A.【点评】本题考查了二次函数的性质,熟记对称轴公式是解题的关键.6.(3分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.7.(3分)下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上【分析】利用全面调查与抽样调查,方差,以及概率的意义判断即可.【解答】解:A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选:A.【点评】此题考查了概率的意义,全面调查与抽样调查,以及方差,熟练掌握各自的性质是解本题的关键.8.(3分)如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数的解析式为()A.y= B.y=﹣C.y=D.y=﹣【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=2BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解答】解:∵直线y=﹣x+2与y轴交于点A,∴A(0,2),即OA=2,∵AO=2BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+2上,∴点C(﹣1,3),∴反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C 的横坐标并求出纵坐标是解题的关键.9.(3分)下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.10.(3分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.【点评】本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.11.(3分)如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【分析】作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中利用正弦的定义得到AM=3sin50°,利用三角形面积公式得到S1=BC•AM=sin50°,同样在Rt △DEN中得到DN=7sin50°,则S2=EF•DN=sin50°,于是可判断S1=S2.【解答】解:作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中,∵sin∠B=,∴AM=3sin50°,∴S1=BC•AM=×7×3sin50°=sin50°,在Rt△DEN中,∠DEN=180°﹣130°=50°,∵sin∠DEN=,∴DN=7sin50°,∴S2=EF•DN=×3×7sin50°=sin50°,∴S1=S2.故选:D.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了三角形面积公式.12.(3分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE ⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=B.y= C.y=2D.y=3【分析】由在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,可得△OCD与△OCE是等腰直角三角形,即可得OC垂直平分DE,求得DE=2x,再由∠DFE=∠GFH=120°,可求得CF与DF,EF的长,继而求得△DF的面积,再由菱形FGMH中,FG=FE,得到△FGM是等边三角形,即可求得其面积,继而求得答案.【解答】解:∵ON是Rt∠AOB的平分线,∴∠DOC=∠EOC=45°,∵DE⊥OC,∴∠ODC=∠OEC=45°,∴CD=CE=OC=x,∴DF=EF,DE=CD+CE=2x,∵∠DFE=∠GFH=120°,∴∠CEF=30°,∴CF=CE•tan30°=x,∴EF=2CF=x,∴S△DEF=DE•CF=x2,∵四边形FGMH是菱形,∴FG=MG=FE=x,∵∠G=180°﹣∠GFH=60°,∴△FMG是等边三角形,∴S△FGH=x2,∴S菱形FGMH=x2,∴S阴影=S△DEF+S菱形FGMH=x2.故选:B.【点评】此题考查了菱形的性质、等腰直角三角形的性质、等边三角形的判定与性质以及三角函数等知识.注意证得△OCD与△OCE是等腰直角三角形,△FGM 是等边三角形是关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:sin60°=.【分析】根据我们记忆的特殊角的三角函数值即可得出答案.【解答】解:sin60°=.故答案为:.【点评】本题考查了特殊角的三角函数值,属于基础题,注意一些特殊角的三角函数值是需要我们熟练记忆的内容.14.(3分)若关于x的方程x2+mx+1=0有两个相等的实数根,则m=±2.【分析】由于已知方程有两个相等的实数根,所以利用一元二次方程的根的判别式,建立关于m的方程,解方程即可求出m的取值.【解答】解:∵a=1,b=m,c=1,而方程有两个相等的实数根,∴b2﹣4ac=m2﹣4=0∴m=±2.故填:m=±2.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.15.(3分)若正方形的外接圆直径为4,则其内切圆半径为.【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故答案为:【点评】本题考查的是正方形和圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,利用勾股定理是解答此题的关键,属于中考常16.(3分)二次函数y=x2﹣2x﹣5的最小值是﹣6.【分析】利用二次函数顶点式求最小(大)值的方法.【解答】解:∵原式可化为y=x2﹣2x+1﹣6=(x﹣1)2﹣6,∴最小值为﹣6.故答案为:﹣6【点评】此题考查二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边A的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,若OA=2,则图中阴影部分的面积为.【分析】先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC ﹣S扇形BOE=图中阴影部分的面积求出即可.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵OA=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:﹣.【点评】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.18.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③b+c=0④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是②③⑤(填写代表正确结论的序号)【分析】根据二次函数的性质,结合图中信息,一一判断即可解决问题.【解答】解:由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴的另一个交点为(1,0),∴b+c=0,故③正确.∵B(﹣,y1)、C(﹣,y2)为函数图象上的两点,又点C离对称轴近,∴y1,<y2,故④错误,由图象可知,﹣3≤x≤1时,y≥0,故⑤正确.∴②③⑤正确,故答案为②③⑤.【点评】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决问题,属于中考常考题型.三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB的距离.(≈1.41,≈1.73,结果取整数)【分析】过C作CD⊥AB,交AB于点D,利用∠CAD的正弦和余弦分别求出CD、AD,再利用∠CBA的正切求出BD,然后根据AB=AD+BD计算即可得解.【解答】解:如图,过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=AC•sin30°=40×=20(千米),AD=AC•cos∠CAD=AC•cos30°=40×=20(千米),在Rt△BCD中,BD====20(千米),∴AB=AD+DB=20+20=20(+1)≈55(千米),答:AB的距离约为55千米.【点评】本题考查了解直角三角形的应用,主要利用了锐角三角函数,作辅助线构造出直角三角形是解题的关键.20.(10分)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点.且A点坐标为(1,3),B点的横坐标为﹣3.(Ⅰ)求反比例函数和一次函数的解析式;(Ⅱ)根据图象直接写出使得y1≤y2时,x的取值范围.【分析】(Ⅰ)根据待定系数法即可解决问题.(Ⅱ)观察图象y1≤y2时,y1的图象在y2的下面,由此即可写出x的取值范围.【解答】解:(Ⅰ)把点A(1,3)代入y2=,得到m=3,∵B点的横坐标为﹣3,∴点B坐标(﹣3,﹣1),把A(1,3),B(﹣3,﹣1)代入y1=kx+b得到,解得,∴y1=x+2,y2=.(Ⅱ)由图象可知y1≤y2时,x≤﹣3或0<x≤1.【点评】本题考查反比例函数与一次函数的图象的交点,学会待定系数法是解决问题的关键,学会观察图象由函数值的大小确定自变量的取值范围,属于中考常考题型.21.(10分)某小组有5名学生,其中有3名女生和2名男生,现在要从这5名学生中抽取2名学生参加两项不同的活动.(Ⅰ)请用“列表法”或“树状图法”列出所有情况;(Ⅱ)求刚好抽到一男一女的概率.【分析】(Ⅰ)用A表示女生,B表示男生,画树状图将所有等可能的结果列举出来即可,注意是一个不放回实验;(Ⅱ)根据树状图,将一男一女的情况找出来,利用概率公式直接求解即可.【解答】解:(Ⅰ)用A表示女生,B表示男生,画图如下:共有20种情况;(Ⅱ)由树状图可知,刚好抽到一男一女的有12种等可能结果,所以刚好抽到一男一女的概率为=.【点评】此题考查了概率公式与列表法或树状图法求概率.列表法或树状图法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB 的延长线于点P.(Ⅰ)求证:PA是⊙O的切线;(Ⅱ)若BC=2,AB=2,求sin∠ABD的值.【分析】(Ⅰ)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(Ⅱ)根据垂径定理得出BE=,在Rt△ABE中,利用锐角三角函数关系得出sin∠BAE=,再根据等腰三角形的性质得出∠ABD=∠BAE,即可求得求sin∠ABD=sin∠BAE=.【解答】(Ⅰ)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(Ⅱ)解:∵AO⊥BC,BC=2,∴BE=,又∵AB=6∴sin∠BAE==,∵OA=OB∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAE=.【点评】此题主要考查了切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系,正确转化角度得出sin∠ABD=sin∠BAE=是解题关键.23.(12分)如图,边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ;连接PQ,PQ与BC交于点E,QP延长线与AD(或AD延长线)交于点F,连接CQ.求证:(Ⅰ)CQ=AP;(Ⅱ)△APB∽△CEP.【分析】(Ⅰ)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(Ⅱ)根据已知求出∠CPQ=∠ABP,以及∠BAC=∠ACB,即可得出△APB∽△CEP.【解答】证明:(Ⅰ)如图,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(Ⅱ)如图,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP.【点评】此题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定等知识;正确应用正方形的性质是解题关键.24.(12分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与B,C两点重合),过点P作x轴的垂线交抛物线于点F,设点P的横坐标为m(0<m<3)(Ⅰ)当m为何值时,四边形PEDF为平行四边形;(Ⅱ)设△BCF的面积为S,求S的最大值.【分析】(I)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的坐标,根据B与C坐标,利用待定系数法确定出直线BC 解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;(II)先求出OB的长,三角形BCF面积等于铅直高度FP与水平宽度OB的积,列出S关于m的二次函数解析式,利用二次函数性质确定出S的最大值即可.【解答】解:(I)对于抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4)令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;设直线BC的函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=4﹣2=2,∵PF⊥x轴,∴P(m,﹣m+3),F(m,﹣m2+2m+3),∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),当m=2时,四边形PEDF为平行四边形;(II)∵B(3,0),∴OB=3,∴S=PF•OB=×3(﹣m2+3m)=﹣(m﹣)2+(0<m<3),则当m=时,S取得最大值为.【点评】此题属于二次函数综合题,涉及的知识有:抛物线与坐标轴的交点,二次函数的图象与性质,待定系数法确定一次函数解析式,坐标与图形性质,熟练掌握二次函数性质是解本题的关键.。
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
=A B
,∴
==.∴B F=B E.∵B E=A B,B E⊥A B,∴t a n∠B A D==
2018 年河北区初中毕业生学业考试模拟试卷(一)
数学答案
第Ⅰ卷(选择题共36 分)
一、选择题:本大题共12 小题,每小题 3 分,共36 分.
123456789101112
B C B B C B D A D B A D
第Ⅱ卷(非选择题共84 分)
二、填空题:本大题共 6 小题,每小题 3 分,共18 分.
(13)2a2+6a b;(14)(x+3)(x―3);(15
2
(16)6;(17)0;);
5
(18)(Ⅰ)如图,选取点C,连接A C、B C,点C即为所求.
(Ⅱ)如图,选取点D,连接A D、B D,点D即为所求.理由:如图,D E∥A B且
DE 1B F A B1 2 BF 2
2 E F D E2
3 A B3
三、解答题:(本大题共7小题,共66分)
.
解:解不等式①,得x≤1.…… 2 分
解不等式②,得x≥-2.…… 4 分
…… 6 分原不等式组的解集为-2≤x≤1.…… 8 分
解:(Ⅰ)在这 20 个家庭中,收入为 1.1 万元的有 3 个.
…… 2 分
0.6×1+0.9×1+1.0×2+1.1×3+1.2×4+1.3×5+1.4×3+9.7×1 (Ⅱ) 20
=1.6,
所以平均数为 1.6.
…… 4 分
因为 1.3 出现了 20×25%=5 次,次数最多, 所以众数是 1.3.
…… 6 分
因为从小到大排列后,中间的两个数都是 1.2, 所以中位数是 1.2.
…… 8 分
(21) 本小题 10 分
证明:(Ⅰ)如图,连 OC , ∵ OA =OC ,
∴ ∠1=∠2. …… 1 分 ∵ PC 是⊙O 的切线, ∴ O C ⊥P C . …… 2 分 ∵ A D ⊥P C , ∴ A D ∥O C .
∴ ∠2=∠3. …… 4 分 ∴ ∠1=∠3. …… 5 分 (Ⅱ)如图,连 B M , ∵ A B 是⊙O 的直径, ∴ ∠1+∠2=90°. …… 6 分 ∵ AD ⊥PN ,
∴ ∠AND +∠3=90°. …… 7 分 ∵ A B M N 是⊙O 的内接四边形, ∴ ∠A N D =∠2. …… 9 分 ∴ ∠1=∠3. …… 10 分 (22) 本小题 10 分
解:如图,过点 E 作E F ⊥A C 于 F ,E G ⊥C D 于 G , 在 R t △D E G 中,∵ DE =540,∠D =30°,
∴ E G =D E ·s in D =540
1
=270. …… 2 分 2
∵ B C =285,C F =E G , ∴ B F =B C -C F =15. …… 4 分
在 Rt △BEF 中,tan ∠BEF =BF
,∠BEF =30°,
EF
∴ E F = 3B F =15 3. …… 6 分 在 R t △A E F 中,∠AEF =60°,设 A B =x ,
∵ tan ∠AEF =AF
,
EF
×
∴A F=E F×t a n∠A E F.…… 8 分
∴ x+15=15 3× 3.
∴x=30.
答:雕像A B的高度为30 米.……10 分
(23)本小题10 分
解:(Ⅰ)根据题意,填写下表:
组装A型器材的套数为x 组装B型器材的套数为(40-x) 需用甲种部件7x3(40-x)
需用乙种部件4x6(40-x)
分
(Ⅱ)依据题意得7x+3(40-x)≤228,
4x+6(40-x)≤194.…… 4 分
解得23≤x≤27.……5 分
由于x为正整数,
所以x取23,24,25,26,27.
故组装A、B两种型号的健身器材共有5 种组装方案.……6 分
(Ⅲ)总的组装费用为y=50x+68(40-x)=-18x+2720.……8 分∵ k=-18<0,
∴ y随x的增大而减小.
所以,当x=27 时,总的组装费用最少,此时的组装方案为:
组装A型器材27 套,组装B型器材13 套.……9 分
最少组装费用是2234 元.……10 分
(24)本小题10 分
(Ⅰ)解:如图1,设A′B′与x 轴交于点H,
∵ OA=2,OB=2 3,∠AOB=90°,
∴ ∠ABO=∠B′=30°.…… 1 分
∵∠BOB′=α=30°,
∴A′B′∥OB.…… 2 分
∵ OB′=OB=2 3,
∴ OH=3,B′H=3.
∴点B′的坐标为( 3,3).…… 4 分
(Ⅱ)证明:∵ ∠BOB′=∠AOA′=α,OB=OB′,OA=OA′,
∴∠OBB′=∠OA′A
180°-α
=.…… 6 分2
∵ ∠BOA′=90°+α,四边形OBPA′的内角和为360°,∴∠BPA′=90°,即AA′⊥BB′.…… 8 分
(Ⅲ)解:3-2.……10 分
【说明:如图,作AB 的中点M(1,3),连
MP.因为∠APB=90°,
所以点P 的轨迹是以点M 为圆心,
以MP=
1
2=2 为半径的圆,除去点(2,2 3).】
AB
2 (25) 本小题 10 分
解:(Ⅰ)将点 B (1,0) 代入 y =a x 2
-2x +3, 解
得 a =-1. …… 1 分
∴ 抛物线的解析式为 y =-x 2-2x +3,A (-3,0),C (0,3).
…… 3 分
(Ⅱ)如图,过点 P 作P D ∥O C ,交 A C 于点 D , 设点
P 的坐标为 (m ,-m 2-2m +3),
由 A (-3,0),C (0,3) 可得
直线A C 的解析式为 y =x +3. …… 4 分
D
∴ 点 D 的坐标为 (m ,m +3).
∴ P D =-m 2-3m .
…… 5 分
∵ S =1 P D ·A O ,
2
∴ S =-3(m +3)2+27
. …… 6 分
2 2 8
∴ 当 3
3 15 27
m =- 时,点 P 的坐标为(- , 2 4 ),S 的最大值为 8 . …… 7 分
(Ⅲ)方法一:如图,过点 E 作E F ⊥O A 于点 F , 若点 E 是 O P 的中点,
则点 E 的坐标为 m -m 2
-2m +3). …… 8 分
此时,
( 2 , 2 m m
-m 2-2m +3 F
O F =- 2 ,A F =3+ 2 ,E F = 2
.
由 OA =OC ,得 AF =EF .
m -m 2
-2m +3 2 ∴ 3+ 2
= ,化简得 m +3m +3=0.
…… 9 分
2
因为此方程无解,
所以不存在点 P ,使点 E 是 O P 的中点. …… 10 分
方法二:设点 E 的坐标为(t ,t +3), 若点 E 是 OP 的中点,
则点P的坐标为(2t,2t+6).…… 8 分
∵点P在抛物线y=-x2-2x+3上,
∴2t+6=-(2t)2-2(2t)+3,化简得4t2+6t+3=0.……9分因为此方程无解,
所以不存在点P,使点E是O P的中点.…… 10 分。