常微分方程简明教程王玉文等编习题解答
- 格式:doc
- 大小:1.37 MB
- 文档页数:16
常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。
故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。
故特解是时,代入式子得。
当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。
常微分方程学习辅导与习题解答
pdf
《常微分方程学习辅导与习题解答》是常微分方程的教学参考书,为学习或讲授《常微分方程(第三版)》的师生补充教材以外的参考资料,并提供众多常微分方程模型,供常微分方程应用者和准备参加数学建模竞赛者参考。
该书除了传统的内容总结、学习指导、疑难解答、例题补充和解题外,考虑到常微分方程的广泛应用及其在学科发展中的承上启下作用,增加了常微分方程、历史与图形、考研试题等应用例题。
同时,考虑到学生学习和教师备课的差异,除了内容总结、习题和习题答案外,还分别设置了学习指导和补充提高两项内容。
前者方便初学者自学,后者适合师生进一步探索。
全书按原教材内容顺序依章分为“内容提要”、“学习辅导”、“补充提高”和“习题与习题解答”四个部分。
“内容提要”列出定理、公式等基本内容;“学习辅导”含学习要点或解题指导、例题选讲、测试练习;“补充提高”含补充习题、排疑解惑、应用实例、历史与人物;“习题与习题解答”含《常微分方程学习辅导与习题解答》中的测试练习和补充习题的解答以及《常微分方程(第三版)》中全部习题的解答或提示,为方便读者,与教材同步的习题在解答时同时列出题目。
书中还专章给出“期中、期末及硕士研究生入学试题”(包括套题、半套题及散题)和“数学软件在常微分方程中的应用”。
附录中则列出科学计算自由软件SCILAB的使用和绘制轨线图貌的改进及解题常用的部分函数、微分、积分公式,并有各章排疑解惑、应用例题和历史与人物的细目索引。
常微分方程 习题2.2求下列方程的解 1.dxdy=x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dxc dx +>=e x [-21e x-(x x cos sin +>+c] =c e x -21(x x cos sin +>是原方程的解。
2.dtdx+3x=e t 2 解:原方程可化为:dtdx=-3x+e t 2 所以:x=e ⎰-dt3 (⎰et2e -⎰-dt3c dt +>=e t 3- (51e t 5+c>=c e t 3-+51e t 2 是原方程的解。
3.dt ds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c +>=e t sin -(⎰+c dt te t t sin cos sin > = e t sin -(c e te t t +-sin sin sin > =1sin sin -+-t ce t 是原方程的解。
4.dx dy n x x e y nx=- , n 为常数. 解:原方程可化为:dx dy n x x e y nx+= )(c dx ex e ey dxx nn x dxx n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx=0 解:原方程可化为:dx dy =-1212+-y xx⎰=-dxxx ey 212(c dx edxx x +⎰-221>)21(ln 2+=x e)(1ln 2⎰+--c dx exx=)1(12xce x +是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dxdy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dyy x c dy y dx x y dx x y dy y yQ y y y eyQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dyP(y)dyP(y)dy1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
1.4习题答案1. (1) 12150, (2)2.52.2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >.3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >.4.解: 因为当0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dyy y y dt=--知,(1) 当32200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当32200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当32200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071.6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dNkN dt=-, 0k >为比例系数, 方程的解为 ()ktN t ce-=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =⨯-=, 得 24550k e -=,110ln 0.05329k =≈, 因此 0.053()50t N t e -=.(2) 当 4t = 时, 0.0534(4)5040.5N e-⨯==(3) 质量减半时 ()25N t =, 得10.053ln 2t -=, 13t ≈. 7. (1)ln 20.000125730≈, (2) ln 20.866438≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 1689. 解: (1)(1)10dS Sk S dt N =--. (2) 1(1)3dS S k S S dt N =--.(3) (1)dS Sk S l S dt N=--, 其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.13.(1) 22,t y ce c = 为任意常数.(2) 21,2ty ce c =-为任意常数. (3) ln(),y t c c =+ 为任意常数. (4) 22arctan ,y t c c = + 为任意常数.(5) ,1ttce y c ce =-为任意常数, 此外1y =-也是解. (6) 31231,t t y cec -=- 为任意常数.(7) 2ln ||,2t y y e c c +=+ 为任意常数, 此外0y =也是解. (8) 2221,1ct y c t =- +为任意常数. (9) sin(ln ),y t t c c =-+ 为任意常数, 此外22y t =也是解. (10) ln 1,ycy c t+= 为任意常数. 14.(1) 21(111)2t y e =-. (2) 0y =.(3) 2216ln |1|y t =--.(4) 2tan()24t y π=+.15.解: 设0()()tF t f s ds =⎰, 则()F t 可导且()()F t f t '=, 这样有1,dFFFdF dt dt= =, 得 2()2,()2F t t c F t t c =+ =±+, 又(0)0F =, 得0c =. 从而 ()2F t t =±,进而 1()()2f t F t t'==±. 16.解: 首先令 0s =, 由已知可得 ()(0)()1()(0)y t y y t y t y +=-,化简有 2(0)(1())0y y t +=, 知 (0)0y =. 由函数的导数定义00202002()()()lim()()()1()()lim()(1())lim(1()())()1()lim lim1()()(0)(1())s s s s s y t s y t y t sy t y s y t y t y s sy s y t s y t y s y s y t s y t y s y y t →→→→→+-'=+-- =+ =-+ = -' = +变形为2(0)1()dyy dt y t '=+, 积分得 arctan ()(0)y t y t c ' = +, 由(0)0y =, 知 0c =, 所以满足条件的函数为 ()tan (0))y t y t '= ( 17.(0)y ty e'=.18.(1) 21,3tty ce ec -=- 为任意常数.(2) 23,tt y cee c --=+ 为任意常数.(3) 21(cos 2sin 2),4ty ce t t c =-+ 为任意常数. (4) 2612cos 2sin 2555t y e t t =-+.(5) 31523cos 2sin 2131313t y e t t -=-+.(6) 2235t ty e te =+. (7) (1)ty t e =+. 19.(1) sin sin 1,tx cet c -=+- 为任意常数.(2) 122,xy cx e x c =+ 为任意常数. (3) 241(1)(1),2y c t t c =+++ 为任意常数. (4) 3,4c t x c t =+ 为任意常数.20.直接代入方程验证即可. 21.3,1,1a b c = = =.22.(1) 2421111,6224tt x cee t t c -=++++ 为任意常数. (2) 432133341sin cos ,416321281717ty ce t t t t t c -=+-+-+- 为任意常数.(3) 334132cos 2sin 2,61313tt t y ce e e t t c --=+-++ 为任意常数.(4) cos 2sin 2,t ty ce te t t c --=+-+ 为任意常数. 23.(1) 361,3y ct t c =+ 为任意常数.(2) 2(4),t y c t e c -=+ 为任意常数. (3) 22(1),ty ct t t e c =+- 为任意常数. (4) cos cos cos 4,t t t y ce e e dt c --=+ ⎰为任意常数.(5) 11(4cos ),tty c e t dt e c -=+ ⎰为任意常数, 此外1y =也是解.(6) 3333(),dt dt t t y c tedt ec ---⎰⎰=+ ⎰为任意常数.注: 上面的不定积分在这里代表某一个原函数.24.在3y =附近的所有解是递减的, 对(0)3y <的解, 当t →+∞不可能趋于+∞. 25.(1) 取()(2)(2)f t t t t =-+,如图1-22: (2) 取()(2)(3)(2)f y y y y =--+, 如图1-23.图1-22 图1-2327.(,1)0f t =, 在1y =的直线上, 斜率场的斜率标记为水平的; 我们并不能得到关于初始条件(0)0y ≠的特解的有用信息.28.(1) 设 t 时刻湖中盐酸含量Q 为千克, 则60,4000(0)0,dQQ dt Q ⎧=- ⎪⎨⎪=⎩可释得4000()240000(1)t Q t e-=-.(2) 213139.(3) 最终趋向于240000千克.29.(1) 100060,400000020(0)0,dQQ dt t Q ⎧=-⎪+⎨⎪=⎩可解得5150140000001()(400000020)17(400000020)17Q t t t =-+++. (2) 218010.30.设C 处电压为()v t , 则有,(0)dv vv E dt RC=- =, 因此 ()tRC v t Ee -=.31.(1) 12345,8,12.5,19.25y y y y = = = =.(2) 123450.39,0.1004,0.3776,0.9891, 1.5934y y y y y = = =- =-=-, 6789102.0456, 2.3287, 2.5241, 2.6899, 2.8428y y y y y = =- =- =-=-.(3) 123454,1y y y y y = = ===-.(4) 123451.5, 3.375, 2.5547, 3.3462, 2.5939y y y y y = = = ==,6789103.3236, 2.6240,3.3017, 2.6528, 3.2869y y y y y = = = ==32.(1) ()2y t <, (2) 1()3y t <<, (3) 2()4t y t y -<<+, (4) 22()y t t -<<.33. 解: 由方程的右端项为 ()(2)(5)f y y y y =--仅为 y 的函数在全平面上连续可微,从而由存在唯一性定理, 给定初始条件的解是存在并且是唯一的. 首先由()(2)(5)f y y y y =--知方程有()0,()2,()5y t y t y t = = =三个平衡解.(1) 初始条件为 (0)6y =, 初值位于()5y t =的上方, 由唯一性, 满足这个初始条件的解1()y t 一定大于 5, 且 1111(2)(5)0dy y y y dt=-->, 知这个解递增, 并且随着1()y t 的递增,1dy dt也递增并且越来越大, 知在t 增加时, 1()y t 在有限时间内爆破,趋向于 +∞. 当 t 减少时, 1()y t 递减, 并且随着1()y t 的递减趋于5,1dy dt也递减趋向于0, 递减越来越来越缓慢, 知 t →-∞, 1()5y t →.(2) 初始条件为 (0)5y =, 而平衡解()5y t =满足这一初始条件, 由唯一性, 满足这个初始条件的解就是平衡解()5y t =.(3) 初始条件为 (0)1y =, 初值位于()0,()2y t y t = =这两个平衡解的中间, 由唯一性, 满足这个初始条件的解3()y t 一定满足 30()2y t <<, 且 由3333(2)(5)0dy y y y dt=-->, 知这个解递增, 并且随着3()y t 的递增, 3dy dt 也递增但随着3y 趋向于2, 1dy dt趋向于0, 增长越来越缓慢, 知t →+∞, 3()2y t →. 同样, t →-∞, 3()0y t →.(4) 初始条件为 (0)1y =-, 初值位于()0y t =的下方, 由唯一性, 满足这个初始条件的解4()y t 一定小于0, 且4444(2)(5)0dy y y y dt=--<, 与前面类似讨论知, 在t 增加时, 4()y t 在有限时间内爆破, 趋向于-∞. 当t →-∞时,4()0y t →.34. 证明: 由于()f y 连续可微, 知方程()dyf y dt=满足存在唯一性定理的条件. 因为1()y t 是方程的一个解, 1()y t 必可微, 又因为在0t t = 处取得极值, 则由极值的必要条件知10()0y t '=, 从而 01010()(())|0t t dy f y f y t dt ====, 知20()y t y =是方程的一个平衡解, 并且这个解满足初始条件200()y t y =, 而1()y t 这个解满足同样的初始条件, 由解的唯一性, 知 120()()y t y t y ≡=.35.2(),0,t c t cy t c ⎧-≥=⎨<⎩, 其中0c ≥为任意常数, 这些解的定义区间为(,)-∞ +∞.36解: 由 23(,)3f t y y =, 知它在全平面内连续, 又由于13(,)2f t y y y-∂=∂, 在除去0y =的区域内连续, 从而在除去0y =的有界闭区域内有界, 进而满足利普希茨条件,知方程满足初始条件00()0y t y =≠的解在充分小的邻域内存在并且唯一. 当 0y =时, 函数0y =是方程过 (0,0) 的解.当0y ≠时, 方程可变形为 2313y dy dt - =, 积分得 3()y t c =+, c 为任意常数.当0c =时, 得特解 3y t = 是过 (0,0) 的另一个解, 其实, 除零解外, 过(0,0)的所有解可以表示为3111(),0,t c t c y t c ⎧- <=⎨ ≥⎩,3222(),0,t c t c y t c ⎧- >=⎨ ≤⎩, 31132212(),(),0,t c t c y t c t c c t c ⎧- <⎪=- >⎨⎪≤≤⎩,其中12,c c 是满足10c ≤,20c ≥的任意常数, 这些解的定义区间为(,)-∞ +∞, 但本质上在充分小的邻域 (,)εε-内方程所确定的过(0,0)的解只有四个,即 函数30,y y t = =, 3,00,t t y t εε⎧ -<<=⎨ 0≤<⎩及30,0,t y t t εε -<<⎧=⎨ 0≤<⎩.37. 解: (1) 由()3(1)0f y y y =-=得平衡点为 0y = 和 1y =. 因为(0)30f '=-<,所以0y =是汇; 而(0)30f '=>, 所以1y =是源.(2) 由()cos 0f v v v ==得平衡点为 0v =和 2,2v k k ππ=±∈Z . 当1k ≥时,(2)(2)022f k k ππππ'+=-+<, 知22v k ππ=+为汇; 而(2)(2)022f k k ππππ'-=->, 知22v k ππ=-为源. 相反, 当0k <时, (2)(2)022f k k ππππ'+=-+>, 知22v k ππ=+为源; 而(2)2022f k k ππππ'-=-<, 知22v k ππ=-为汇. 同样2v π=和2v π=-都为汇.(3) 2()25f w w w =++总是大于0, 知方程无平衡点. (4) 由()1sin f v v =-+ 得平衡点2,2v k k ππ=+∈Z , 且当2,2v k k ππ≠+∈Z 时, ()0f v <, 知2,2v k k ππ=+∈Z , 都为结点.38.(1) 图1-24, (2) 图1-25, (3) 图1-26, (4) 图1-27.图1-24 图1-25图1-26 图1-27 39.(1) lim ()23,t y t →+∞=- t 减少时, 在有限时间内趋于-∞.(2) lim ()23,lim ()23t t y t y t →+∞→-∞=- =+.(3) 同(1).(4) lim ()23,t y t →-∞=+ t 增加时, 在有限时间内趋于+∞.40.图1-11解: (a) 对应于(7), (b)对应于(2), (c) 对应于 (6), (d) 对应于(3). 例21.41.如图1-28图1-28 42(1) 利用连续函数的介值性定理可证.(2) 利用教材中定理1.7和连续函数的介值性定理. 43.(1)汇, (2) 源, (3) 结点.44. 解: (1) 当 0μ=时, 方程有一个平衡点0y =, 当 0μ>时, 方程没有平衡点, 当0μ<时, 方程有两个平衡点y μ=- 和y μ=--, 知0μ=是方程的分歧值, 这是鞍结点分歧, 相线如图1-12.(2) 由分歧的必要条件,若μ为分歧值则满足21020y y y μμ⎧++=⎨ +=⎩, 得21y μ=-⎧⎨=⎩ 或 21y μ=⎧⎨=-⎩. 当2μ=-或2μ=时, 方程有一个平衡点2y μ=-, 当2μ<- 或 2μ>时, 方程有两个平衡点242y μμ---=和242y μμ-+-=, 当 22μ-<<时, 方程没有平衡点, 知2μ=-和2μ=是方程的分歧值, 在每个分歧值处均为鞍结点分歧. 相线如图1-13.(3) 当 0μ=时, 方程有一个平衡点0y =, 当 0μ≠时, 方程有两个平衡点0y =和y μ=, 知0μ=是方程的分歧值, 这是跨越式分歧, 相线如图1-14.(4) 由分歧的必要条件,若μ为分歧值则满足33030y y y μ2⎧--=⎨ 3-=⎩, 得 21y μ=-⎧⎨=⎩ 或21y μ=⎧⎨=-⎩. 当2μ=-, 方程有两个平衡点2,1y y =- =, 当2μ=时,方程也有两个平衡点1,2y y =- =. 2μ<- 或 2μ>时, 方程有一个平衡点, 当 22μ-<<时, 方程有三个平衡点, 知2μ=-和2μ=是方程的分歧值. 这是复合式分歧. 设2μ>, 方程330y y μ--=的实根为12y >; 2μ<-时, 方程330y y μ--=的实根为22y <-;22μ-<<时, 方程330y y μ--=的实根为345,,y y y , 且345212y y y -<<-<<1< <, 相线如图1-15.图1-12 图1-13图1-14 图1-1545.(1) 1,1μμ= =-是分歧值, 当1μ>或1μ<-时方程无平衡点, 当11μ-≤≤时, 方程有无穷多个平衡点.(2)10,2μμ= =-是分歧值, 当0μ≥或12μ<-时方程无平衡点, 当102μ-<<时,方程有两个平衡点; 当12μ=-时, 方程有一个平衡点.第二章 习题答案1、 (a) (i) 是兔-虎模型; (ii) 是蚊-象模型; (b) (i): )0,0(, )2572,100(-; (ii) )0,0(, )20,548(;(c) 设0)(1=t y , 那么由两个方程组中的第二个方程的表达式可知0|1==t t dt dy,因此从1t t =开始,捕食者y 将一直为零,即捕食此后者不会再生。
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
广东商学院试题参考答案及评分标准2008-2009学 年 第二学 期课程名称 常微分方程 (B 卷)课程代码 108023 课程负责人 黄辉 共 3页 --------------------------------------------------------------------------------------------------------- --- ---------一、填空题(每空3分,共24分)。
1. n ; 2. 2.;12y=μ 3.⎰-x n ds s s f 01;))(,(ϕ 4.;2-=y z 5.;,x x e e - 6. ;3,1,0=x二、选择题 (每题3分 ,共15分)1. A2. C3. B4. A 5.C7.⎪⎩⎪⎨⎧++-==t y x dtdy y dt dx 5三、计算题(每题9分,共54分)。
1. 解:原方程是一阶线性微分方程,此时 22)(,2)(x xe x q x x p =-=-----------------2分则原方程的通解为:⎰⎰+⎰=-xdx xdx x e c dx e xe y 22]2[2--------5分 =2]2[x e c xdx +⎰--------------------------6分=2)(2x e c x +------------------------------9分2. 解:因为,1,122yx N y y M -=∂∂-=∂∂故方程是恰当方程-----2分 故 0)1(1sin 2=-++dx yx dx y dy y xdx ---------3分 即 0||ln cos 2=-++-y xdy ydx y d x d -------------5分 或 0)||ln cos (=++-yx y x d ------------------------6分于是通解为:C yx y x =++-||ln cos ------------------------9分 3. 解:令ty 1'=--------------------------------------------------------2分 则有233,111t t x t tx +=+=解得---------------3分 故 dtt t y t dt dy )23()(23⎰+=+=------------------6分=c t t ++2232-----------------------------7分 故原方程的通解为:⎪⎩⎪⎨⎧++=+=c t t y t t x 223223---------9分 4. 解:先求03222=--x dt dx dtx d 的解------------------------1分 其特征方程3,1,0322,12-==--λλλ-------------2分又1不是特征方程的单根,故特解形如t Ae x =~---4分 代入原方程得到41,4-==-A e Ae t t -----------------------6分 故原方程的通解为t t t e e c e c x 41231-+=-------------------9分 5. 032112)det(2=-=--+=-λλλλA E -------------2分得3,321-==λλ------------------3分 设,311v 对应的特征向量为=λ 由0,123,023112311≠⎪⎪⎭⎫ ⎝⎛--==⎪⎪⎭⎫ ⎝⎛--+ααv v 得----------------------5分 取⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=321,12321v v 同理取--------------6分 所以为基解矩阵⎪⎪⎭⎫ ⎝⎛---=--t t tt e e e e t 3333)32()23()(φ。
常微分方程(第三版) 习题2.52.ydy x xdy ydx 2=-解:2x ,得:ydy x xdyydx =-2c y x yd +-=221即c y x y =+221 4.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u x y= 则dxdu x u dx dy += 即dx dux u dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解。
6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydxx d x yx d yy d x -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221即c x y x =+221 另外0=y 也是方程的解。
8.32xy x y dx dy += 解:令u xy= 则:21u x u dx du x u dx dy +=+= 即21u x dx du x= 得到22x dxu du =故c xu +-=-11 即211xx c y += 另外0=y 也是方程的解。
10. 21⎪⎭⎫⎝⎛+=dx dy dx dy x解:令p dxdy= 即pp x 21+=而p dx dy=故两边积分得到 c p p y +-=ln 212因此原方程的解为pp x 21+=,c p p y +-=ln 212。
12.x y xe dx dy e =⎪⎭⎫⎝⎛+-1 解:y x xe dxdy+=+1令 u y x =+则 dx du dx dy =+111-=-=u xe dx du dx dy 即xdx eduu =c x e u+=--221故方程的解为c x eyx =++221 14.1++=y x dxdy解: 令u y x =++1则dx du dx dy =+1 那么u dx du dx dy =-=1dx u du=+1求得: ()c x u +=+1ln故方程的解为()c x y x +=++1ln 或可写 为xce y x =++1 16.()y e dxdyx -=++211 解:令u e y=- 则u y ln -= ()1211-=+-u dxduu x ()dx x du u u 11121+-=-c x u u ++=-`1112 即方程的解为()c x y x e y+=+218.()0124322=-+dy y x dx y x 解: 将方程变形后得124322-=y x y x dx dy 22223412412y x y x y x y x dy dx -=-= 同除以2x 得:232412yy x dy dx x -=令3x z = 则24323yy z dy dz -= 23223cy y z +=即原方程的解为232323cy y x +=19.X(04)(2)2=+-x dxdyy dx dy 解:方程可化为2y()(24)(,4)()22dxdy x dx dy x y x dxdyx dx dy +=+= 令[][]ce t e t c dt e t y pdx dy e t x t p dy x e dxdyc x y x arctg xdx y x darctg xdx y x xdy ydx xdy y x x y y c y y x c y yy x dyy y y x d dy y y y xdy ydx y dy y xdy ydx dy y x ydx cy y x c y yx y d y x d dy y x ydx xy y e y xy x xy xNy M x x N x y M dy x y xydx dy y x y dx y x cye x c e yxy c e z y y e z y dy dz e z e dy dz y z e e z z e e z z ze e e z dy dx dy e z dx e dy dzy z dy dx yz x z y x dy yxe dx e y p c x y c tg c d c d x d d dy p dy dx y y p dx dy dx dy y x c yc c c x c x x c x x y cx p xdp pdx x y p xdp pdx p dp p x dx p p dp x xp dx p p dp p x x dx p p dx dp p x x p p dx dp p x p dx dp x p p x p x p x p x xp y p dx dy t t tt dx dydy y y xy xzzz z z z z z z z z z z yx y x +-+=++==+====-++===+-=-+-=+=+++-=+=+=-+=-=++-=-=-=-=-+=⎰-=-=-∂∂-∂∂-=∂∂=∂∂=-+=-+=+=+=+-=+-=+++=++-=+--+=+-=-=++====-++±==++=+∂=+∂∂=+∂∂=∂∂=∂∂∂∂=∂==∂==∂-∂===⎥⎦⎤⎢⎣⎡-+=+=+⋅===-±===-=∴=---=+-+-=-+--=--++=+=-==⎰⎰⎰----)1(,0.25.2,0)(.240),()111,1,)1(0)1(.23101,0)3(24282,6,20)3(2032.22)(,)(,ln ln 1,111)1(,)1()1(,0)1()1.(2110,1)sec cos cos cos sin sin 1sin ,cos 11(sin 1,sin 1)(1.20.42,2424,,0,24,040)4()4(0)4()4(,0)22()22(,)22()22(2222,2224,22222222222222322323242234422422322222222222222222222232222得由解:令所以方程的解为解:方程可化为也是解。
习题2.1 1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+cy=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dxdy =yx xy y321++解:原方程为:dx dy =yy 21+31xx +yy 21+dy=31xx +dx两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy =-yx y x +-令xy =u 则dx dy =u+x dxdu 代入有:-112++uu du=x1dxln(u 2+1)x=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy .6. xdxdy -y+22y x -=0解:原方程为:dx dy =xy +x x ||-2)(1xy -则令xy =u dxdy =u+ xdxdu211u- du=sgnx x1dxarcsinxy =sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程为:tgydy =ctgxdx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=xc cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +yexy 32+=0解:原方程为:dxdy =yey2e x 32 ex3-3e2y-=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy lnx y令xy =u ,则dxdy =u+ xdxduu+ xdxdu =ulnuln(lnu-1)=-ln|cx| 1+lnxy =cy.10.dxdy =e y x -解:原方程为:dxdy =e x e y -e y =ce x11dxdy =(x+y)2解:令x+y=u,则dxdy =dxdu -1dxdu -1=u 2211u+du=dxarctgu=x+c arctg(x+y)=x+c12.dxdy =2)(1y x +解:令x+y=u,则dxdy =dxdu -1dxdu -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dxdy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14: dxdy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+解:原方程为:dx dy=(x+4y )2+3 令x+4y=u 则dxdy=41dxdu -4141dx du -41=u 2+3dxdu =4 u 2+13u=23tg(6x+c)-1tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1) y(1+x 2y 2)dx=xdy2) y x dxdy =2222x -2 y x 2y+证明: 令xy=u,则x dxdy +y=dxdu则dxdy =x 1dxdu -2xu ,有:u x dxdu =f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
《常微分方程》作业参考答案一.求解下列方程 1.x c y cos =2.通解为:x x c y sin cos +=3.dx x x dy 122-= ⎰⎰--=122)1(x x d dy 2ln 1y x c =-+ 1)0(==c y 2ln |1|1y x ∴=-+4.'(1)ln(1)y y y y x x x -=++ 令xu y x y u =⇔=(1)ln(1)dy duu x u u u dx dx∴=+=+++故 (1)ln(1)du x u u dx=++ (1)ln(1)du dx u u x =++ ln(1)ln(1)d u dx u x +=+ ln ln(1)ln ln u x c ∴+=+ ln(1)u cx += cxe u =+1cxe xy =+∴1 )1(-=cxe x y5. 可分离变量方程,通解为)1)(1(222cx y x =++6.齐次方程,通解为 c x xyx y =++ln 422sin .7.全微分方程,通解为 .64224c y y x x =+- 8..0222=++ydx dy x dx y d 9. 解为.)3(3x x y -= 10. 通解为 .2sin 222c y x y x =++ 1111.方程为.方程为 .011222=+-yx dx dy x dx y d 1212.通解为.通解为).tan(21c x c y +=13. 通解为xCe y =ln14. 通解为22x y Cy -= 15. 方程的通积分为C dy y xydx yx =-+⎰⎰)(2020,即Cy y x =-32316 . 通解为Ce e xy+=17 . 方程的通积分为C ydy dx e yxy=-⎰⎰-002,即C y xe y=--2.18 . 方程通解为x C x y cos sin += 二.1.通解为:cee xy+=2212. 通解为: t t e c c e c z y x 2321123101210⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛- 3.0)0(0==y y 2121x y =52220121x x y +=4. x uN y uM ∂∂=∂∂ x u N x N u y u M y M u ∂∂+∂∂=∂∂+∂∂令 u y x =+22 y u d ud y u 2⋅=∂∂∴ x u d u d x u 2⋅=∂∂u d u d x x N u u d ud yyMu 22+∂∂=+∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-∴y M x N u u d u d x y )(2故满定充要条件的表达式为:)(22y x xy yMxN +=--∂∂∂∂∂ϕ5.)(2122y x v +=)(*dt dv )(22s x +-≤∠0 022≠+s x ∴(∴(0.00.00.0)渐近稳定)渐近稳定6.6.一次近似方程为:一次近似方程为:⎪⎩⎪⎨⎧+=--=y x dtdy yx dt dx32 特征方程为:012=++λλ 3-=∴∆<0P =1>0 ∴)Re(0)Re(21<<λλ, 则(则(0.00.00.0)局部渐过稳定)局部渐过稳定)局部渐过稳定. .7.01032=--λλ 5,221=-=λλx B x B x A x A y o 2sin )(2cos )(101*1+++=为x x y y y 2cos 10'3"=-- 之特解之特解,,±2λ不是特征根5=a 是特征方程的单根 x o e c x c x c x y 52122)(++=∴*故其通解为:2152211y y ec e c y xx +++=-8.特征根为:2.1.1321==-=λλλ11-=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛-=532α12=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛=111β13=λ所属的特征向量为:γ⎪⎪⎪⎭⎫ ⎝⎛=101通解为:tt t e c e c e c z y x 2321101111531⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-9.0:)0(=oy y 2121x y = 52220121x x y -=10.10.特征方程为:特征方程为:01072=++λλ07>=p 010>=g 0>∆故 (0.0)(0.0)为稳定结点为稳定结点11.1.1.一次近似方程为:一次近似方程为:⎪⎩⎪⎨⎧-=--=y x y x t d yd dt x d 0222=++∴λλ 0)Re(1<λ 0)Re(2<λ ∴(∴(0.00.00.0)为局部渐近稳定)为局部渐近稳定 2.)(2122y x v +=. )1)((2222)(-++=*y x y x l dt dv故122<+y x 0<∴dtdv故(故(0.00.00.0)局部渐近稳定)局部渐近稳定)局部渐近稳定. . 12.1.,00=y ,31),(3020001x dx x dx y x f y y xx==+=⎰⎰ .63131)91(),(730620102x x dx x x dx y x f y y xx+=+=+=⎰⎰2.,),(22y x y x f += ∴ ,5),(max ),(==∈y x f M D y x ,42max max ),(),(L y y f D y x D y x ===∂∂∈∈ .5252,1min ,min =⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=m b a h 则 .7564)52(32145)()(322=⋅⋅⋅≤-x y x y13. 系数阵为 ,110111110⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡- 特征方程为.0)1()det(2=--=-λλλE A E A λ-的初等因子为 2)1(,-λλ,通解为 .101010101112321t t e t c e c c z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛14.14.证:设证:设[).),0()(..,0+∞∈∀≤>∃x M x f t s M .则[)+∞∈∀,0x ,有 .)1()(0)(0000M y e M y ds e Me y x y x x xx s x +≤-+=+≤--⎰ []),,0()(0x C x y ∈ ∴ [].,0,)(..,00x x M x y t s M ∈≤>∃令 {},,max 0M y M K += ∴[).,0,)(+∞∈∀≤x K x y 15.15.通解为通解为 .)21(221x x e x x x c e c y -++=1616..,2=α 特解为 ,1x y= 通解为).ln 21(221x x x c x c y +-+= 17. 解:先解齐次方程.2xy dx dy -=,通解为2x Cey -=.用常数变易法用常数变易法,,令非齐次方程通解为2)(x e x C y -=.代入原方程代入原方程,,化简后可得24)('x xe x C =,积分得到C e x C x+=22)(.代回后即得原方程通解为22x Ce y +=.注:在求解线性方程时在求解线性方程时,,即可以直接套用公式求解即可以直接套用公式求解,,也可以用常数变异法推出也可以用常数变异法推出,,但我们鼓励使用常数变异法鼓励使用常数变异法. .18..18..解解:由通解公式dx e y Cy y C y dx x p )(2111*1-⎰+=,此处1)(,1--==x xx p x y . 所以 x x xdx x x e C x C Ce x C xe C C x dx ey Cy y C y 21**12111*)(1-=-=-=+=--⎰19. 解 302022010311)1(1))((1)(,1)(x x d d x x xx⎰⎰-+=-+=-+==ξξξξξϕϕϕ,5分7542643020212631152611)91323221())((1)(x x x x x d d x xx +--++=+--+=-+=⎰⎰ξξξξξξξξϕϕ20.20.解解:显然0=y 是方程的解当0≠y 时,两端同除以5y ,得x y dx dy y +=4511令z y =41,代入有x z dxdz+=-4,它的解为x Ce x z 441-++-=.于是原方程的解为xCe x y 44411-++-=及0=y .21.21.解解:由通解公式dxe y Cy y C y dx x p ⎰+=-⎰)(2111*1,)ln 1(1)(,ln 1x x x p x y -==, x C x C x C C y dx x x C C y dx e x C C y dx e y Cy y C y dxx x dxx p 212112*1)ln 1(12*1)(2111*ln )ln 1()(ln 1ln )(ln 11+=+=⎥⎦⎤⎢⎣⎡-+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+=⎰+=⎰⎰⎰---22. 解:方程组的系数阵为⎥⎦⎤⎢⎣⎡=4312A .特征方程为 0)5)(1(4312)det(=--=--=-λλλλλE A ,特征根为5,121==λλ. 当11=λ 时,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡b a e y x t 11,其中b a ,满足03311)(=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-b a b a E A λ,则有0=+b a ,取1,1-==b a ,则的一特解 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1111t e y x . 同理同理,,当52=λ时,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡31522t e y x ,所以方程组的解为⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t t t t e e C e e C t y t x 55213)()(。
习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy令xy =u ,则dx dy =u+ x dx du u+ xdx du =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
国家开放大学电大本科《常微分方程》网络课形考任务1和任务2试题及答案国家开放大学电大本科《常微分方程》网络课形考任务1和任务2试题及答案形考任务1题目1本课程的教学内容共有五章,其中第三章的名称是().选择一项:A.一阶线性微分方程组B.定性和稳定性理论简介C.初等积分法D.基本定理题目2本课程安排了6次形成性考核任务,第2次形成性考核作业的名称是().选择一项:A.第一章至第四章的单项选择题B.第二章基本定理的形成性考核书面作业C.初等积分法中的方程可积类型的判断D.第一章初等积分法的形成性考核书面作业题目3网络课程主页的左侧第3个栏目名称是:().选择一项:A.课程公告B.自主学习C.课程信息D.系统学习题目4网络课程的“系统学习”栏目中第一章初等积分法的第4个知识点的名称是().选择一项:A.一阶隐式微分方程B.分离变量法C.全微分方程与积分因子D.常数变易法题目5网络课程的“视频课堂”栏目中老师讲课的电视课共有()讲.选择一项:A.18B.20C.19D.17题目6网络课程主页的左侧“考试复习”版块中第二个栏目名称是:().选择一项:A.考核说明B.复习指导C.模拟测试D.各章练习汇总题目7请您按照课程的学习目标、学习要求和学习方法设计自己的学习计划,并在下列文本框中提交,字数要求在100—1000字.答:常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函数的导数的方程叫做微分方程。
满足微分方程的函数叫做微分方程的解,含有独立的任意常数的解称为微分方程的通解。
确定通解中任意常数后所得的解称为该方程的特解。
一阶微分方程的初等解法中把微分方程的求解问题化为了积分问题,这类初等解法是,与我们生活中的实际问题密切相关的值得我们好好探讨。
在高阶微分方程中我们学习的线性微分方程,作为研究线性微分方程的基础,它在物理力学和工程技术,自然科学中时存在广泛运用的,对于一般的线性微分方程,我们又学习了常系数线性微分变量的方程,其中涉及到复值与复值函数问题,相对来说是比较复杂难懂的。
《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、422⎪⎭⎫ ⎝⎛+=dx dy x dx dyx y解:令p dxdy =,则422p x xp y +=,两边对x 求导,得dxdp px xpdxdp xp p 3244222+++=()02213=⎪⎭⎫⎝⎛++p dx dpxxp 从0213=+xp 得 0≠p 时,2343,21py px -=-=;从02=+p dxdp x得 222,c pc y pc x +==,0≠p 为参数,0≠c 为任意常数.经检验得⎪⎪⎩⎪⎪⎨⎧+==222c p c y p c x ,(0≠p )是方程奇解.2、2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp p p 21+=pp dxdp 21-=,解之得 ()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2,且y=x+1也是方程的解,但不是奇解. 3、21⎪⎭⎫ ⎝⎛++=dx dy dxdy xy解:这是克莱洛方程,因此它的通解为21c cx y ++=,从⎪⎩⎪⎨⎧=+-++=01122c cx c cx y 中消去c, 得到奇解21x y -=.4、02=-+⎪⎭⎫⎝⎛y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=,从⎩⎨⎧=++=022c x c cx y 中消去c, 得到奇解 042=+y y . 5、022=-+⎪⎭⎫⎝⎛y dx dy xdx dy 解:令p dxdy =,则22p xp y +=,两边对x 求导,得 dxdp pdxdp xp p 222++=22--=x pdpdx ,解之得 232-+-=cpp x ,所以 1231-+-=cpp y ,可知此方程没有奇解. 6、0123=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛dx dy y dx dy x解:原方21⎪⎭⎫⎝⎛-=dx dy dxdy xy ,这是克莱罗方程,因此其通解为21ccx y -=,从⎪⎩⎪⎨⎧=+-=-02132c x c cx y 中消去c ,得奇解042732=+y x .7、21⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=dx dy dx dy x y解:令p dxdy =,则()21p p x y =+=,两边对x 求导,得 22+-=-p ce x p , 所以 ()212+-+=-p e p c y p , 可知此方程没有奇解. 8、()022=--⎪⎭⎫ ⎝⎛a x dx dy x解:()xa x dx dy 22-=⎪⎭⎫ ⎝⎛xa x dxdy -±=dx x a x dy ⎪⎪⎭⎫⎝⎛-±= ⎪⎪⎭⎫ ⎝⎛-±=2123232axx y ()()22349a x x c y -=+可知此方程没有奇解. 9、3312⎪⎭⎫⎝⎛-+=dx dy dx dyx y解:令p dxdy =,则3312p p x y -+=, 两边对x 求导,得 dxdp pdxdp p 22-+=212pp dxdp --=解之得 ()c p p x +--+-=2ln 3222,所以 c p p p p y +------=2ln 6433123, 且 322-=x y 也是方程的解,但不是方程的奇解.10、()012=-++⎪⎭⎫⎝⎛y dx dy x dx dy 解:2⎪⎭⎫⎝⎛++=dx dy dx dydx dyx y这是克莱罗方程,因此方程的通解为2c c cx y ++=, 从⎩⎨⎧++++=cx c c cx y 212中消去c, 得方程的奇解()0412=++y x .(二)求下列曲线族的包络. 1、2c cx y +=解:对c 求导,得 x+2c=0, 2x c -=, 代入原方程得,442222xxxy -=+-=,经检验得,42xy -=是原方程的包络.2、0122=-+cx y c解:对c 求导,得 yxc x yc 2,0222-==+,代入原方程得0124424=--yxy yx,即044=+y x ,经检验得044=+y x 是原方程的包络. 3、()()422=-+-c y c x解:对c 求导,得 –2(x-c)-2(y-c)=0, 2y x c +=,代入原方程得()82=-y x .经检验,得 ()82=-y x 是原方程的包络.4、()c y c x 422=+-解:对c 求导,得 -2(x-c)=4, c=x+2,代入原方程得()2442+=+x y ,()142+=x y , 经检验,得()142+=x y 是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以X 、Y 表坐标系,则曲线上任一点(x,y(x))的切线方程为()()()()x X x y x y Y -'=-,它与X 轴、Y 轴的截距分别为y y x X '-=,y x y Y '-=,按条件有 a y x y y y x ='-+'-,化简得y y a y x y '-'-'=1,这是克莱洛方程,它的通解为一族直线cac cx y --=1,它的包络是()⎪⎪⎩⎪⎪⎨⎧----=--=21101c acc a x c ac cx y ,消去c 后得我们所求的曲线()24a y x ax +-=.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从()()⎩⎨⎧'+=+=c f x c f cx y 0 中消去p 后而得的曲线;c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程()()⎩⎨⎧'+=+=c f x c f cx y 0中消去c 而得的曲线, 显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解. 习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。
习题 1.21. dy=2xy, 并满足初始条件: x=0,y=1 的特解。
dx2特解为 y= e x.22. y 2dx+(x+1)dy=0 并求满足初始条件: x=0,y=1 的特解。
2dy 1 解: y dx=-(x+1)dy 2 dy=- dx y x 11两边积分 : -=-ln|x+1|+ln|c|y特解: y=ln |c(x 1)|2 3.dy 1 y 2 3dx1 y 2dy=dy=4. (1+x)ydx+(1-y)xdy=01 y x 1 解:原方程为: dy=- dxyx两边积分: ln|xy|+x-y=c 另外 x=0,y=0 也是原方程的解。
5.( y+x ) dy+(x-y)dx=0y x解: 原方程为:dy =1 y2 dxy两边积分: x(1+x 2)(1+y 2)= 2cx解: dy =2xdxy2 两边积分有: ln|y|=x 2+cx 2cy=e +e =cex另外 y=0 也是原方程的解, c=0 时, y=0原方程的通解为 y= cex 2 ,x=0 y=1 时 c=1y=ln |c(x 1)|另外 y=0,x=-1 也是原方程的解 x=0,y=1 时 c=e3xy x y 13 dxx解:原方程为:dx x yu 1 1- 2du= dxu2 1 x22ln(u +1)x =c-2arctgu即ln(y 2+x 2)=c-2arctg y2.x2dy du=u+ xdx dx1du=sgnx dxxyarcsin =sgnx ln|x|+cx7. tgydx-ctgxdy=0两边积分:1siny=ccosx cosx所以原方程的通解为sinycosx=c.y2 3xdy e8 + =0dx y解:原方程为:dy=dx e y y3x e3x y22 e -3e=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dy=y ln y令y =u 则dy=u+x dudx dx 代入有:6. x dydx-y+ x2y2=0解:原方程为:dy=y+|x|dx x x 1 ( y)x则令y=u x11 u2解: 原方程为:dy dxtgy ctgxln|siny|=-ln|cosx|-ln|c|c另外y=0 也是原方程的解,而c=0 时,y=0.dx x xduu+ x =ulnudxln(lnu-1)=-ln|cx|y1+ln =cy.x10. dy=e x y dx解:原方程为:e y=cexdu 2-1=udx12du=dx1 u2arctgu=x+c arctg(x+y)=x+c解:令x+y=u, 则dy=du-1 dx dx du 1-1=dx -1=u2u-arctgu=x+c y-arctg(x+y)=c.13.dy=2x y 1 dx x 2y 1解: 原方程为: ( x-2y+1 ) dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 22 dxy-d(y -y)-dx +x=c22xy-y +y-x -x=cdy x y 5dx x y 2解:原方程为: (x-y-2 ) dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0令y=u ,则dyx dxdu=u+ xdx12.dy=1dx =(x y) 2dy x y=e edx11 dy 2ddyx=(x+y)解:令x+y=u, 则dy du= -1dx dx14:1 2 1 2 dxy-d( y +2y)-d( x +5x)=02222y +4y+x +10x-2xy=c.15: dy=(x+1) 2+(4y+1) 2+8xy 1 dx解:dy 2原方程为:=( x+4y ) +3dx令x+4y=u 则dy= 1 du- 1dx 4 dx 4 1 du 1 2- =u +34 dx 4du 2=4 u 2+133u= 2tg(6x+c)-12tg(6x+c)= (x+4y+1).316: 证明方程x dy=f(xy), 经变换xy=u 可化为变量分离方程,并由此求下列方程:y dx221) y(1+x y )dx=xdyx dy 2 x 2y2 y dx 2-x 2 y2证明:令 xy=u, 则 x dy+y=du dx dx 则dy=1 du- u2,有:dx x dx x2 x du =f(u)+1 u dx11 du= dx u( f(u) 1) x所以原方程可化为变量分离方程。
《常微分方程》作业参考答案一.求解下列方程1.x c y cos =2.通解为:x x c y sin cos +=3.dx x x dy 122-= ⎰⎰--=122)1(xx d dy 2ln 1y x c =-+ 1)0(==c y 2ln |1|1y x ∴=-+4.'(1)ln(1)y yyy x x x -=++ 令 xuy x yu =⇔= (1)ln(1)dyduu x u u u dx dx ∴=+=+++故 (1)ln(1)dux u u dx =++(1)ln(1)du dx u u x =++ ln(1)ln(1)d u dxu x +=+ln ln(1)ln ln u x c ∴+=+ ln(1)u cx +=cx e u =+1 cx e x y=+∴1 )1(-=cx e x y5. 可分离变量方程,通解为.)1)(1(222cx y x =++6.齐次方程,通解为 c x x yx y =++ln 422sin .7.全微分方程,通解为 .64224c y y x x =+-8..0222=++y dx dyx dx y d9. 解为 .)3(3x x y -=10. 通解为 .2sin 222c y x y x =++11.方程为 .011222=+-y x dx dyx dx y d12.通解为 ).tan(21c x c y +=二.1.通解为:c e e x y +=2212. 通解为: t t e c c e c z y x 2321123101210⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-3.0)0(0==y y 2121x y =52220121x x y += 4. x uN y uM ∂∂=∂∂ xu N x N u y u M y M u ∂∂+∂∂=∂∂+∂∂ 令 u y x =+22 y u d u d y u 2⋅=∂∂∴ x ud u d x u 2⋅=∂∂ u d u d x x N u u d u d y y M u 22+∂∂=+∂∂ ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-∴y M x N u u d u d x y )(2故满定充要条件的表达式为:)(22y x xy y M xN +=--∂∂∂∂ϕ 5.)(2122y x v +=)(*dtdv)(22s x +-≤∠0 022≠+s x ∴(0.0)渐近稳定 6.一次近似方程为:⎪⎩⎪⎨⎧+=--=y x dtdy y x dt dx 32 特征方程为:012=++λλ 3-=∴∆<0 P =1>0 ∴0)Re(0)Re(21<<λλ, 则(0.0)局部渐过稳定. 7.01032=--λλ 5,221=-=λλx B x B x A x A y o 2sin )(2cos )(101*1+++=为x x y y y 2cos 10'3"=-- 之特解,±2λ不是特征根5=a 是特征方程的单根 x o e c x c x c x y 52122)(++=∴*故其通解为: 215221y y e c ec y x x +++=-8.特征根为:2.1.1321==-=λλλ 11-=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛-=532α12=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛=111β13=λ所属的特征向量为:γ⎪⎪⎪⎭⎫ ⎝⎛=101通解为:t t t e c e c e c z y x 2321101111531⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-9.0:)0(=o y y 2121x y =52220121x x y -= 10.特征方程为:01072=++λλ07>=p 010>=g 0>∆故 (0.0)为稳定结点11.1.一次近似方程为:⎪⎩⎪⎨⎧-=--=yx y x t d y d dt x d 0222=++∴λλ0)Re(1<λ 0)Re(2<λ ∴(0.0)为局部渐近稳定 2.)(2122y x v +=. )1)((2222)(-++=*y x y x l dt dv 故122<+y x 0<∴dtdv 故(0.0)局部渐近稳定. 12. 1.,00=y ,31),(3020001x dx x dx y x f y y x x==+=⎰⎰ .63131)91(),(730620102x x dx x x dx y x f y y x x+=+=+=⎰⎰ 2. ,),(22y x y x f += ∴ ,5),(max ),(==∈y x f M Dy x ,42max max ),(),(L y y f D y x D y x ===∂∂∈∈ .5252,1min ,min =⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=m b a h则 .7564)52(32145)()(322=⋅⋅⋅≤-x y x y 13. 系数阵为 ,110111110⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡- 特征方程为 .0)1()det(2=--=-λλλE A E A λ-的初等因子为 2)1(,-λλ,通解为.101010101112321t t e t c e c c z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛14.证:设 [).),0()(..,0+∞∈∀≤>∃x M x f t s M .则[)+∞∈∀,0x ,有 .)1()(0)(0000M y e M y ds e Me y x y x x xx s x+≤-+=+≤--⎰[]),,0()(0x C x y ∈ ∴ [].,0,)(..,00x x M x y t s M ∈≤>∃令 {},,max 0M y M K += ∴ [).,0,)(+∞∈∀≤x K x y15.通解为 .)21(221xx e x x x c e c y -++=16.,2=α 特解为 ,1x y = 通解为 ).ln 21(221x x x c x c y +-+=。
第三章 二阶线性常系数微分方程1.考虑两个参数的线性方程组.Y a b b a dt dY ⎪⎪⎭⎫⎝⎛= 若)0,0(分别是鞍点、汇、源,试在平面上确定出相应的区域。
解:方程的特征方程为0)(2222=-+-b a a λλ. 解得特征根为b a b a ±=±=22,1λ。
需分类讨论:(I )当0>b 时,知b a b a +=<-=21λλ。
(i )当0<+<-b a b a ,即b a -<时,)0,0(是汇。
(ii )当b a b a +<<-0,即b a b <<-时,)0,0(是鞍点。
(ii )当b a b a +<-<0,即b a >时,)0,0(是源。
(II )当0<b 时,知b a b a +=>-=21λλ。
(i )当0<-<+b a b a ,即b a <时,)0,0(是汇。
(ii )当b a b a -<<+0,即b a b -<<时,)0,0(是鞍点。
(ii )当b a b a -<+<0,即b a ->时,)0,0(是源。
图3-12.求解下列给定二阶微分方程的通解:(1)07622=--y dtdydt y d 解:方程的特征方程为0762=--λλ. 解得特征根为1,721-==λλ. 因此,tte t y e t y -==)(,)(271 为齐次方程的两个解。
设21,k k 为常数,使得 0271≡+-ttek e k 。
将上式两端求导得 07271≡-tte k e k 。
令0=t 得⎩⎨⎧=-=+.07,02121k k k k 由此得021==k k 。
因此,t e t y 71)(=与t e t y -=)(2线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为tte c e c t y -+=271)(。
(2)09622=++y dtdydt y d 解:特征方程:0962=++λλ. 解得特征根为321-==λλ. 因此,t tte t y et y 3231)(,)(--== 为齐次方程的两个解。
设21,k k 为常数,使得 03231≡+--t tte k ek 。
将上式两端求导得 03)3(32312≡----t tte k ek k 。
令0=t ,得021==k k 。
因此,te t y 31)(-=与ttet y 32)(-=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t tte c e c t y 3231)(--+=。
(3)025822=++y dtdydt y d 解:特征方程:02582=++λλ. 解得特征根为.34,3421i i --=+-=λλ. 因此,t e t y t et y t t3sin )(,3cos )(4241--== 为齐次方程的两个解。
设21,k k 为常数,使得 03sin 3cos 4241≡+--t e k t ek t t。
将上式两端求导得 03sin )43(3cos )34(421421≡--++--t e k k t ek k t t。
令0=t 得021==k k 。
因此,t et y t3cos )(41-=与t e t y t 3sin )(42-=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t e c t ec t y t t3sin 3cos )(4241--+=。
(4)012722=++y dtdydt y d 解:特征方程:01272=++λλ. 解得特征根为4,321-=-=λλ. 因此,t te t y et y 4231)(,)(--== 为齐次方程的两个解。
设21,k k 为常数,使得 04231≡+--t te k e k 。
将上式两端求导得 0434231≡----t te k ek 。
令0=t ,得⎩⎨⎧=--=+.043,02121k k k k 由此得021==k k 。
因此,t e t y 31)(-=与t e t y 42)(-=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t te c ec t y 4231)(--+=。
(5)0922=+y dtyd解:特征方程:092=+λ. 解得特征根为i 321-==λλ.因此,t t y t t y 3sin )(,3cos )(21== 为齐次方程的两个解。
设21,k k 为常数,使得 03sin 3cos 21≡+t k t k 。
将上式两端求导得 03cos 3sin 321≡+-t k t k 。
令0=t ,得021==k k 。
因此,t t y 3cos )(1=与t t y 3sin )(2=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t c t c t y 3sin 3cos )(21+=。
(6)010222=+-y dtdydt y d 解:特征方程:01022=+-λλ. 解得特征根为i i 31,3121-=+=λλ.因此,t e t y t e t y tt 3sin )(,3cos )(21== 为齐次方程的两个解。
设21,k k 为常数,使得 03sin 3cos 21≡+t e k t e k tt。
将上式两端求导得 03sin )3(3cos )3(1221≡-++t e k k t e k k tt。
令0=t ,得021==k k 。
因此,t e t y t3cos )(1=与t e t y t3sin )(2=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t e c t e c t y tt3sin 3cos )(21+=。
3.求解下列初值问题:(1)⎪⎩⎪⎨⎧-===-+.2)0(',6)0(,03222y y y dtdydt y d 解:特征方程:0322=-+λλ. 解得特征根为1,321=-=λλ. 因此,t te t y et y ==-)(,)(231 为齐次方程的两个解。
设21,k k 为常数,使得 0231≡+-t te k e k 。
将上式两端求导得 03231≡+--t te k ek 。
令0=t ,得⎩⎨⎧=+-=+.03,02121k k k k 由此得021==k k 。
因此,t e t y 31)(-=与t e t y =)(2线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t te c e c t y 231)(+=-。
由已知初值条件,则有⎩⎨⎧-=+-=+.23,62121c c c c 由此得⎩⎨⎧==.4,221c c则原方程满足初值条件的特解为t te e t y 42)(3+=-。
(2)⎪⎩⎪⎨⎧-===+-.4)0(',1)0(,013422y y y dtdydt y d 解:特征方程:01342=+-λλ. 解得特征根为.32,3221i i -=+=λλ. 因此,t e t y t e t y tt3sin )(,3cos )(2221== 为齐次方程的两个解。
设21,k k 为常数,使得 03sin 3cos 2221≡+t e k t e k tt 。
将上式两端求导得 03sin )32(3cos )32(212221≡-++t e k k t e k k tt。
令0=t ,得021==k k 。
因此,t e t y t3cos )(21=与t e t y t3sin )(22=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t e c t e c t y tt3sin 3cos )(2221+=。
由已知初值条件,则有⎩⎨⎧-=+=.432,1211c c c 由此得⎩⎨⎧-==.2,121c c则原方程满足初值条件的特解为t e t e t y tt3sin 23cos )(22-=。
(3)⎪⎩⎪⎨⎧===+-.11)0(',3)0(,016822y y y dtdydt y d解:特征方程:01682=+-λλ. 解得特征根为421==λλ. 因此,ttte t y e t y 4241)(,)(== 为齐次方程的两个解。
设21,k k 为常数,使得 04241≡+ttte k e k 。
将上式两端求导得 0)4(4421≡++ttte e k k 。
令0=t ,得021==k k 。
因此,te t y 41)(=与tte t y 42)(=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为 t tte c e c t y 4241)(+=。
由已知初值条件,则有⎩⎨⎧=+=.114,3211c c c 由此得⎩⎨⎧-==.1,321c c则原方程满足初值条件的特解为t tte et y 443)(-=。
(4)⎪⎩⎪⎨⎧-===++.1)0(',1)0(,06522y y y dtdydt y d解:特征方程:0652=++λλ. 解得特征根为3,221-=-=λλ. 因此,t te t y et y 3221)(,)(--== 为齐次方程的两个解。
设21,k k 为常数,使得 03221≡+--t te k e k 。
将上式两端求导得 0323221≡----t te k e k 。
令0=t ,得⎩⎨⎧=--=+.032,02121k k k k 由此得021==k k 。
因此,t e t y 21)(-=与te t y 32)(-=线性无关。
则由二阶齐次常系数微分方程解的线性原理知,原方程的通解为t te c e c t y 3221)(--+=。
由已知初值条件,则有⎩⎨⎧-=--=+.132,12121c c c c 由此得⎩⎨⎧-==.1,221c c则原方程满足初值条件的特解为t te et y 322)(---=。
(5)⎪⎩⎪⎨⎧===+-.2)0(',1)0(,018922y y y dtdydt y d 解:特征方程:01892=+-λλ. 解得特征根为.33,3321i i -=+=λλ. 因此,t e t y t e t y tt3sin )(,3cos )(3231== 为齐次方程的两个解。
设21,k k 为常数,使得 03sin 3cos 3231≡+t e k t e k tt。
将上式两端求导得 03sin )33(3cos )33(212321≡-++t e k k t e k k tt。
令0=t ,得021==k k 。
因此,t e t y t3cos )(31=与t e t y t3sin )(32=线性无关。