一元二次方程常见题型总结
- 格式:docx
- 大小:119.73 KB
- 文档页数:5
一元二次方程的实际应用题型总结【一】一元二次方程的定义与解【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a -1)x |a|+1+2x -7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a -1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x -2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x -1)+1=2x 2C. x 2+3x=2xD. ax 2+bx+c -0 2、已知关于x 的方程mx 2+(m -1)x -1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a -2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x -1)2-3x (x -2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a -2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a≠0)中,abc 满足a+b+c=0和a -b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx -40=0的一个解,且a≠b ,求2222a b a b--的值【二】一元二次方程的解法一、直接开平方法1、下列方程能用直接开平方法求解的是( )A. 5x 2+2=0B. 4x 2-2x -1=0C. 12(x -2)2=4 D. 3x 2+4=2 2、若关于x 的一元二次方程5x 2-k=0有实数根,则k 的取值范围是_________3、已知(a 2+b 2-1)2=9,则a 2+b 2=_________4、已知一元二次方程ax 2+bx+c=0的一个根是1,且a ,b 满足等式4,求方程13y 2-2c=0的根5、用开平方法解下列方程(1)2 9(x 1)25-= (2)()26x 181-= (3)(x -1)2=(3x -4)2二、配方法1、(1)x 2--____)2 (2)3x 2+12x+____=3(x+____)2 (3)12x 2-5x+____=12(x -____)2 2、若x 2+ax+9是关于x 的完全平方式,则常数a 的值是__________3、多项式4x 2+1加上一个单项式后,成为一个整式的完全平方,那么加上的这个单项式可以是4、一元二次方程x 2-px+1=0配方后为(x -q)2=15,那么一元二次方程x 2-px -1=0配方后为( )A. (x -4)2=17B. (x+4)2=15C. (x+4)2=17D. (x -4)2=17或(x+4)2=175、若x 为任意实数,则x 2+4x+7的最小值为__________★★★★当x=_______时,代数式3x 2-2x+1有最_______(填大或小)值为_______6、用配方法证明:关于x 的方程(m 2-12m+37)x 2+3mx+1=0,无论m 为何值,此方程都是一元二次方程。
一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。
完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
人教版九年级数学上册一元二次方程应用题题型总结经典营户希望每天能够获得至少100元的利润。
求该经营户应该将价格降低多少元/千克才能达到目标利润,以及此时每天的销售量是多少千克。
一元二次方程应用题题型总结一、增长率问题增长率问题是一种常见的应用题型,其中涉及到变化前数量、变化后数量以及变化率等概念。
一般情况下,我们可以使用如下公式来解决这类问题:变化前数量×(1±x)n=变化后数量例如,某商场在十月份的销售额下降了20%,但在十一月份开始加强管理,改善经营,使得十二月份的销售额达到了193.6万元。
现在要求这两个月的平均增长率,我们可以使用上述公式进行计算。
另外,还有一些涉及到商品价格变化的增长率问题。
例如,某种商品原价为50元,1月份降价10%后,从2月份开始又开始上涨,3月份的售价为64.8元。
要求2、3月份价格的平均增长率,我们同样可以使用上述公式进行计算。
二、商品销售问题商品销售问题是另一种常见的应用题型,其中涉及到售价、进价、利润、销售量、销售额等概念。
一般情况下,我们可以使用如下公式来解决这类问题:售价-进价=利润单件利润×销售量=总利润单价×销售量=销售额例如,某商店购进一种商品,进价为30元。
若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?我们可以使用上述公式进行计算。
另外,还有一些涉及到生产成本、售价、销售量等的商品销售问题。
例如,某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出。
现在要求当日产量为多少时每日获得的利润为1750元,或者当可获得的最大利润为1950元时,日产量应为多少。
我们同样可以使用上述公式进行计算。
除此之外,还有一些涉及到涨价、销售量等的商品销售问题。
例如,某水果批发商场经销一种高档水果,若每千克涨价1元,日销售量将减少20千克。
现在要求每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元。
一元二次方程实际问题常见题型1. 概述一元二次方程是高中数学中常见的一个重要知识点。
它不仅是数学理论的重要组成部分,更是解决实际问题的有效工具。
本文将围绕一元二次方程实际问题常见题型展开探讨,帮助读者更好地理解和应用这一知识点。
2. 垂直抛物线问题垂直抛物线问题是一元二次方程实际问题中的常见题型之一。
一架飞机从高空垂直向下抛出一个物体,根据物体运动的时间和速度等因素,可以建立相应的一元二次方程模型。
通过解方程,可以求解物体的运动轨迹、最大高度、落点坐标等相关问题。
3. 开口方向问题开口方向问题也是一元二次方程实际问题中的重要内容。
在现实生活中,有许多与开口方向相关的问题,如抛物线运动、水流喷射等。
通过构建一元二次方程模型,并结合相关的条件和约束条件,可以有效地解决这类问题。
4. 面积最大最小值问题求取一元二次方程的最值是解决实际问题的重要应用之一。
在求解面积最大最小值的问题中,一元二次方程的应用十分广泛。
求解围墙围成的最大面积、矩形花坛的最大面积等问题,都可以通过建立一元二次方程模型,并求解其最值来得到最优解。
5. 个人观点和理解一元二次方程实际问题常见题型是数学与实际问题相结合的典型案例,深入理解和掌握这些题型对于培养学生的数学建模能力和解决实际问题的能力具有重要意义。
通过这些题型的学习和实践,学生可以更好地理解数学知识与实际问题的联系,培养批判性思维和创新能力。
6. 总结通过以上的讨论,我们对一元二次方程实际问题常见题型有了更加全面、深入的理解。
这些题型的学习不仅有助于提高学生的数学水平,更能够培养学生解决实际问题的能力,从而更好地应对未来的学习和工作挑战。
文章总结大致如上,希望对您有所帮助。
一元二次方程实际问题常见题型涉及各个领域,从物理学到经济学,从工程学到生物学,都有着广泛的应用。
在实际问题中,一元二次方程常常用来描述抛物线运动、最大最小值、面积和体积等问题。
下面将围绕这些内容展开更具体的讨论。
元二次方程专题复习考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是.2,这样的③整式方程 就是一元二次方程。
⑵一般表达式:ax 2 bx c 0(a 0) ⑶难点:如何理解 “未知数的最高次数是 2”: ① 该项系数不为“ 0” ; ② 未知数指数为“ 2”; ③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题: 例1、下列方程中是关于 x 的一元二次方程的是( 12) 1 —2 x C 变式:当 2ax 例2、方程m针对练习: ★ 1、方程8x 2时,关于2 X 冋 3mxbx 7的一次项系数是 - m 1 2 x D x 2的方程kx 2 2x x 21-2 x2x x 2 1 3是一元二次方程。
0是关于x 的一元二次方程,则 m 的值为,常数项是 ★ 2、若方程 m ⑴求m 的值;⑵写岀关于x ★★ 3、若方程 m 1 x 2 ★★★ 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( 0是关于x 的一元一次方程, 的一元一次方程。
j m ? X 1是关于x 的一元二次方程,则 m 的取值范围是 ) A.m=n=2 B.m=2 ,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值; 典型例题: 1、 已知2y 2 y 3的值为2,则4y 22、 关于x 的一元二次方程 a3、已知关于x 的一元二次方程2 2 x 2 x ax 2 bx 2y 2a 1的值为 例 则m 的值为 针对练习: 4、已知a,b 是方程x 4x m 0的两个根, 4 0的一个根为0,贝U a 的值为 ________________ 。
0 a 0的系数满足ac b ,则此方程必有一根为2b,c 是方程y 8y 5m 0的两个根,★ 1、已知方程 x 2kx 10 0的一根是2,则k 为 ★ 2、已知关于 x 的方程x 2 kx 2 0的一个解与方程 ______ ,另一根是 _ x 1 -3的解相同。
九年级上 专题复习之实际问题与一元二次方程【一、面积问题】【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2【题型二 矩形中通道】 【例2】如图,要设计一副宽20cm 、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?【题型三边框设计】【例3】如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5【针对练习1】1.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm2.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.3.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.4.如图,利用一面墙(墙的长度为20m ),用34m 长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m 宽的门,设AB 的长为xm .(1)若两个鸡场总面积为96m 2,求x ;(2)若两个鸡场总面积和为Sm 2,求S 关于x 的关系式;(3)两个鸡场面积和S 有最大值吗?若有,最大值是多少?【二、循环向题、增长率问题、传染等问题】1.n 支球队参加单循环比赛、一共赛12n (n -1)场;n 支球队参加双循环比赛,一共赛n (n -1)场; 2.基数A 经过两轮增长(下降),平均增长(下降)率为x ,两轮后结果为A (1±x )2; 3.一人感冒,经过两轮传染,平均每人传染x 人,两轮后感冒人数为(1+x )2【题型一 循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x 名学生,根据题意列出方程为________.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.102.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________3.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.84.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________6.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.【三、利润问题】【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【针对练习3】1.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x元(x≥100).(1)每天有游客居住的房间数为(用x表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w(元)最大?(3)宾馆某天统计结果显示,该天利润为1870元,请求出这天每间房的定价x(元)的值。
第一部分:定义定义:...只含有一个未知数........,并且未知数的最高次数是.........2.这样的整式方程....就是一元二次方程。
一般表达式:)0(02≠=++a c bx ax 注意: 1:a ≠02:未知数的最高次数是2 3:要为整式方程4:化简后再判断(看2x 是否会被抵消)题型一:一元二次方程判断1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x2.(2016•凉山州模拟)下列方程中,一元二次方程共有( )个 ①x 2﹣2x ﹣1=0;②ax 2+bx+c=0;③+3x ﹣5=0;④﹣x 2=0;⑤(x ﹣1)2+y 2=2;⑥(x ﹣1)(x ﹣3)=x 2.A .1B .2C .3D .4题型二:一元二次方程定义求参3.关于x 的方程(m ﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣14.当k 时,关于x 的方程3222+=+x x kx 一元二次方程。
5.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
第二部分:方程的根x 的一元二次方程()04222=-++-a x x a 的一0,则a 的值为 。
0102=-+kx x 的一根是2,则k 为 x 的方程022=-+kx x 的一个解与方程3=的解相同,求k 的值; m 是方程012=--x x 的一个根,则代数式=m 3 。
a 是0132=+-x x 的根,则=a 6 。
1与2为根的一元二次方程式。
1与-2为根的一元二次方程式。
13.写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:14.写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:题型五:已知特征式求根16.已知一元二次方程ax 2+bx+c=0,若a+b+c=0,则该方程一定有一个根为( )A .0B .1C .﹣1D .2 17.已知一元二次方程ax 2+bx+c=0,若4a-2b+c=0,则该方程一定有一个根为( )A .0B .1C .﹣1D .218、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。
一元二次方程与实际问题题型归纳在我们的数学学习中,一元二次方程是一个非常重要的知识点,它不仅在理论上有着重要的地位,而且在解决实际问题中也有着广泛的应用。
接下来,让我们一起来归纳一下一元二次方程在实际问题中的常见题型。
一、增长率问题增长率问题是一元二次方程在实际生活中常见的应用之一。
例如,某公司去年的利润为 100 万元,今年的利润比去年增长了 20%,明年预计在今年的基础上再增长 10%,求明年的利润。
设明年的利润为 x 万元,今年的利润为 100×(1 + 20%)= 120 万元,明年的利润为 120×(1 + 10%)= x 万元,整理可得方程:\\begin{align}120×(1 + 10%)&=x\\120×11&=x\\132&=x\end{align}\在这类问题中,通常设原来的量为 a,平均增长率为 x,增长后的量为 b,经过 n 次增长后的公式为:\(b = a(1 + x)^n\);若为平均降低率,则公式为:\(b = a(1 x)^n\)。
二、面积问题面积问题也是常见的题型之一。
比如,要在一块长方形的土地上建造一个花园,已知长方形的长比宽多 10 米,面积为 2400 平方米,求长方形的长和宽。
设长方形的宽为 x 米,则长为(x + 10)米,根据长方形面积公式可得方程:\\begin{align}x(x + 10)&=2400\\x^2 + 10x 2400&=0\\(x 40)(x + 60)&=0\end{align}\解得\(x = 40\)或\(x =-60\)(舍去),所以长方形的宽为 40 米,长为 50 米。
解决面积问题时,关键是要根据图形的形状和面积公式,找出等量关系,列出方程。
三、销售利润问题销售利润问题常常涉及到商品的进价、售价、销售量和利润等因素。
例如,某商品的进价为每件 20 元,售价为每件 30 元,每天可卖出 100 件。
一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。
答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。
题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。
答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。
1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。
一元二次方程题型总结题型一:一元二次方程的判断1.下列方程中,是关于x的一元二次方程的是()a.3?x?1?2?3?x?1?b.1x2?1x?2?0c.ax2?bx?c?0d.x2?2x?x2?12.下列方程,是一元二次方程的是()①3x2?x?20,②2x2?3xy?4?0,③x2?1x?4,④x2?0,⑤x2?x3?3?0a.①②b.①④c.①④⑤d.①②④⑤3.已知关于x的方程?m2?1?x2??m?1?x?m?2?0,当_____时,方程为一元二次方程;当______时,方程就是一元一次方程。
4.关于x的一元二次方程?m?1?xm2?1?4x?2?0的解为题型二:一元二次方程的木1.关于x的一元二次方程x2?x?k?0有两个不相等的实数根,则k的取值范围是2.如果关于x的方程x2?2x?a?0存有两个成正比的实数根,那么a=________3.如果关于的一元二次方程存有实数根,谋的取值范围.4.若一元二次方程?k?1?x2?4x?5?0存有两个不成正比实数根,则k的值域范围为_________。
5.方程x2?2x?0的根是()a.x?2b.x?0c.x1??2,x2?0d.x1?2,x2?06.方程x?x?2??x?2?0的解是7.一元二次方程x2?kx?3?0的一个根就是x?1,则另一个根就是8.未知x?1就是方程x2?ax?2?0的一个根,则方程的另一个根为()a.2b.?2c.3d.?39.若关于x的方程x2?3x?a?0有一个根为-1,则另一个根为10.已知x??2是方程x2?mx?6?0的一个根,则方程的另一个根是,m?。
11.关于x的一元二次方程?a?1?x2?ax?a2?1?0的一个根是0,则a的值为_________。
12.若x??2是关于x的一元二次方程x2?5ax?a2?0的一个根,则2a的值为13.未知方程2x2?3x?4?0的两根为x1,x222,那么x1?x2=.14.未知一元二次方程3?m?1?x2?5mx?3m?2的两根互为相反数,则m的值为_________.题型三:一元二次方程的对数求解1.根据下列表格的对应值,判断方程ax2?bx?c?0(a?0,a、b、c为常数)一个解的范围是()x3.233.243.253.26ax2?bx?c-0.06-0.020.030.09a.3?x?3.23b.3.23?x?3.24c.3.24?x?3.25d.3.25?x?3.262.观察下列表格,一元二次方程x2?x?1.1的一个近似解是()x1.11.21.31.41.51.61.71.81.9x2?x0.110.240.390.560.750.961.191.441.71a.0.11b.1.6c.1.7d.1.19题型四:配方法1.用分体式方法求解一元二次方程,配方后的方程为2.一元二次方程2x2?3x?1?0化成?x?a?2?b的形式,恰当的就是()222a、x?3?216b、2x?3?41?3?116c、??x?416d、以上都不对题型五:解方程解下列方程(1)2x?4x?1?0(分体式方法)(2)x?x?1?0(公式法)(7)x?4x?8?0(用分体式方法求解)(8)?x?3??x?62222(3)5x?x?3??6?2x(因式分解法)(5)x2?4x?3?0;4)?2x?1?2?96)?x?3?2?2x?3?x?;(9)?x?5??x?1??12(11)3x2?6x?1?0(用配方法解)10)(x?1)2?2x(x?1)?0(((题型六:增长率问题1.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,题型八:应用题题型1---面积相关1.例如图,松省为22米的篱笆,一面利用墙(墙的最小需用长度为14米),围站如果平均值每月增长率为x,则由题意列方程应属()a.200?1?x?2?1000b.200?200?2x?1000c.200?200?3x?1000d.200?1??1?x1?x?2??10002.为全面落实“两宽免一迁调”政策,某市2021年资金投入教育经费2500万元,预计2021年必须资金投入教育经费3600万元,未知2021年至2021年的教育经费资金投入以相同的百分率逐年快速增长,则这个快速增长的百分率为_________。
二次函数与一元二次方程、不等式常见题型总结题型一:不含参数的一元二次不等式的解法 1.不等式3x 2-2x +1>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <1 C .∅ D .R2.不等式3+5x -2x 2≤0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >3或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥3或x ≤-12 D .R3.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠-13B.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13 C .∅ D.⎩⎨⎧⎭⎬⎫x ⎪⎪x =-13 4.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤-1或x ≥92 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤-92或x ≥1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -92≤x ≤1 5.不等式⎝⎛⎭⎫12-x ⎝⎛⎭⎫13-x >0的解集是( D )A.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <13D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >12 6.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .{x |0<x <2}B .{x |-2<x <1}C .{x |x <-2或x >1}D .{x |-1<x <2}7.(多选)下列不等式的解集为R 的有( )A .x 2+x +1≥0B .x 2-25x +5>0C .x 2+6x +10>0D .2x 2-3x +4<1 8.解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0. 9.解下列不等式:(1)x 2-5x -6>0; (2)(2-x )(x +3)<0.题型二:含参数的一元二次不等式的解法1.设m +n >0,则关于x 的不等式(m -x )(n +x )>0的解集是( )A .{x |x <-n 或x >m }B .{x |-n <x <m }C .{x |x <-m 或x >n }D .{x |-m <x <n }2.(多选)已知关于x 的一元二次不等式ax 2-(2a -1)x -2>0,其中a <0,则该不等式的解集可能是( )A .∅B.⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1a<x <2 3.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________________. 4.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为________. 5.若关于x 的不等式x 2-mx <0恰有一个整数解1,则m 的取值范围为________.6.已知二次函数y =ax 2+bx +c 的图象与x 轴交于(1,0)与(3,0)两点,当a =________时,不等式ax 2+bx +c >0的解集为________.(写出a 的一个值即可)7.解关于x 的不等式ax 2-2≥2x -ax (x ∈R ,a ≥0).8.解关于x 的不等式ax 2-2≥2x -ax (x ∈R ,a <0).9.解关于x 的不等式x 2+(1-a )x -a <0.10.已知关于x 的不等式x 2-(a +1)x +a <0.(1)当a =2时,解上述不等式;(2)当a ∈R 时,解上述关于x 的不等式. 11.解关于x 的不等式x 2-2ax +2≤0. 题型三:三个“二次”关系的应用1.已知关于x 的不等式ax 2+bx +c >0的解集为{x |-2<x <1},那么关于x 的不等式cx 2-ax +b >0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x <1 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <12 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >12 2.若关于x 的不等式ax -1x +b >0的解集是{x |-1<x <3},则关于x 的不等式2ax +12x -b <0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-32或x >12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x <32D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-12或x >323.若关于x 的不等式ax -b ≤0的解集为{x |x ≥2},则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )A .{x |x <-3或x >2}B .{x |-3<x <2}C .{x |x <-2或x >3}D .{x |-2<x <3}4..已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值的和是( )A .13B .18C .21D .265.(多选)若关于x 的不等式ax 2-bx +c >0的解集是{x |-1<x <2},则下列选项正确的是( )A .b <0且c >0B .a -b +c >0C .a +b +c >0D .不等式ax 2+bx +c >0的解集是{x |-2<x <1}6..若关于x 的不等式x -ax +1>0的解集为{x |x <-1或x >4},则实数a =________.7.写出一个一元二次方程ax 2+2x +1=0(a ≠0)有一个正实数根和一个负实数根的充分不必要条件________.8..已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12.(1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.9.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}, (1)求关于x 的不等式cx 2+bx +a <0的解集; (2)求关于x 的不等式cx 2-bx +a >0的解集.10.已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.题型四:分式不等式的解法 1.不等式x -2x +1≤0的解集是( )A .{x |x <-1或-1<x ≤2}B .{x |-1≤x ≤2}C .{x |x <-1或x ≥2}D .{x |-1<x ≤2}2.若p :x -52-x≥0,q :x 2-7x +10<0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.不等式3x -12-x≥1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2或x ≤34 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥34 4.不等式x -1x +2<0的解集为( )A .{x |x >1}B .{x |x <-2}C .{x |-2<x <1}D .{x |x <-2或x >1}5.不等式1x <12的解集是( )A .{x |x <2}B .{x |x >2}C .{x |0<x <2}D .{x |x <0或x >2} 6.解下列不等式:(1)x +12x -1<0; (2)1-x 3x +5≥0; (3)x -1x +2>1. 7.解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3. 题型五:高次不等式的解法解下列不等式(1) 6x 2-17x +122x 2-5x +2≥0 (2)(x +2)(x 2-x -12)>0 (3)(x 2+2x -3)(x -1)(-8x +24)≤0(4)0322322<--+-x x x x (5)62323+>+x x x (6)0)2)(54(22<++--x x x x 题型六:与一元二次不等式有关的恒成立问题1.一元二次不等式ax 2+bx +c <0的解集为全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0D.⎩⎪⎨⎪⎧a <0,Δ<02.若关于x 的不等式-x 2+mx -1≥0有解,则实数m 的取值范围是( )A .{m |m ≤-2或m ≥2}B .{m |-2≤m ≤2}C .{m |m <-2或m >2}D .{m |-2<m <2}3.已知关于x 的不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( )A .{a |-4≤a ≤4}B .{a |-4<a <4}C .{a |a ≤-4或a ≥4}D .{a |a <-4或a >4}4.已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}5.对任意实数x ,不等式3x 2+2x +2x 2+x +1>k 恒成立,则正整数k 的值为( )A .1B .2C .3D .46.(多选)不等式ax 2-2x +1<0的解集非空的一个必要不充分条件是( )A .a <1B .a ≤1C .a <2D .a <07.已知不等式x 2+x +k >0恒成立,则k 的取值范围为________.8.若一元二次不等式2kx 2+kx -38 <0对一切实数x 都成立,则k 的取值范围为________.9.已知不等式mx 2-2x +m -2<0.若对于任意x ∈R ,不等式恒成立,则m 的取值范围为________.10.若对于任意实数x ,不等式mx 2-mx -1<-m +5恒成立,求实数m 的取值范围. 11.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围. 题型七:一元二次不等式与实际问题1.某地每年销售木材约20万立方米,每立方米价格为2 400元,为了减少木材消耗,决定按销售收入的t %征收木材税,这样每年的木材销售量减少52 t 万立方米.为了既减少木材消耗又保证税金收入每年不少于900万元,则t 的取值范围是( )A .{t |1≤t ≤3}B .{t |3≤t ≤5}C .{t |2≤t ≤4}D .{t |4≤t ≤6}2.一个容积为1 000 mL 的容器里盛满浓度为80 %的酒精.第一次倒出若干毫升后,用水加满;第二次又倒出同样毫升数的溶液,再用水加满.要使这时容器内的酒精浓度不大于20 %.则每次至少倒出溶液( )A .200 mLB .500 mLC .1 000 mLD .1 500 mL3.若产品的总成本y (万元)与产量x (台)之间的关系式是y =3 000+20x -x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是________台.4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,为了使这批台灯每天获得400元以上(不含400元)的销售收入,则这批台灯的销售单价(单位:元)的取值范围是________.5.一辆汽车总质量为ω,时速为v (km/h),设它从刹车到停车行走的距离L 与ω,v 之间的关系式L =k v 2ω(k 是常数).这辆汽车空车以每小时50 km 行驶时,从刹车到停车行进了10 m ,求该车载有等于自身质量的货物行驶时,若要求司机在15 m 距离内停车(包含15 m),并且司机从得到刹车指令到实施刹车时间为 1 s,汽车允许的最大时速是多少?(结果精确到1 km/h)6.国家原计划以2 400元/吨的价格收购某种农产品m吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的取值范围,使税率调低后,国家此项税收总收入不低于原计划的78%.7.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开启报警提醒,等于危险距离时就自动刹车.某种算法(如图所示)将报警时间划分为4段,分别为准备时间t0、人的反应时间t1、系统反应时间t2、制动时间t3,相应的距离分别为d0,d1,d2,d3,当车速为v(米/秒),且0≤v≤时,通过大数据统计分析得到下表(其中系数k随地面湿滑程度等路面情况而变化,且≤k≤0.9).警距离,仍以此速度行驶,则汽车撞上固定障碍物的最短时间;(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/时?。
一元二次方程知识题型总结一、知识与技能的总结(一)概念一元二次方程--“整式方程”;“只含一个未知数,且未知数的最高次数是2".一元二次方程的一般形式-—,按未知数x降幂排列方程的根(解)—-是使方程成立的未知数的取值,了解一元二次方程的根的个数.(二)一元二次方程的解法-—把一元二次方程降次为一元一次方程求解1.直接开平方法-—适用于的方程.2.配方法——适用于所有的一元二次方程;(1)“移项”-—使得(2)“系数化1”——使得(3)“配方”——使得(4)“求解”—-利用解方程3.公式法—-适用于的方程.反映了一元二次方程的根与系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数a、b、c;(2)先求出的值,若,则代入公式.若,则;4.因式分解法--适用于的方程.用因式分解法解一元二次方程的依据是:.通过将二次三项式化为两个一次式的乘积,从而达到降次的目的,将一元二次方程转化为求两个方程的解.(三)其它知识方法1.根的判别式: ,(1)若,则方程有解;(2)若,则方程有解;(3)若,则方程有解;2.换元法(1);(2)(3).3.可化为一元二次方程的分式方程解方程二、典型题型的总结(一)一元二次方程的概念1.(一元二次方程的项与各项系数)把下列方程化为一元二次方程的一般形式:(1);(2);(3);(4) ;(5);2.(应用一元二次方程的定义求待定系数或其它字母的值)(1)= 时,关于的方程是一元二次方程。
(2)若分式,则3.(由方程的根的定义求字母或代数式值)(1)关于的一元二次方程有一个根为0,则(2)已知关于的一元二次方程有一个根为1,一个根为,则,(3)已知2是关于的方程的一个根,则的值是(4)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,则方程的根为,c=(二)一元二次方程的解法4.开平方法解下列方程:(1)(2)(3) (4)(5);(6);(7).(8)5.用配方法解下列各方程:(1); (2);(3) (4)(5);(6).6.用公式法解下列各方程:(1); (2);(3);(4).(5)(6)(7)(8)(9)7.用因式分解法解下列各方程:(1);(2)(3)(4)(5) (6)(7);(8).(9)(10)(11)8.用适当方法解下列方程(解法的灵活运用):(1)(2)(3)(4)(5)9.解关于x的方程(含有字母系数的方程):(1)(2)(3)()(4)(三)一元二次方程的根的判别式10.不解方程,判别方程根的情况:(1)4 —-(2)-—(3)—-11.为何值时,关于x的二次方程(1)满足时,方程有两个不等的实数根(2)满足时,方程有两个相等的实数根(3)满足时,方程无实数根12.已知关于的方程,如果,那么此方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定13.关于的方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定14.已知关于的方程有实根,则的取值范围是().A.B.且C.D.15.已知,且方程有两个相等实根,那么的值等于().A.B.C.3或D.316.若关于的方程有实根,则的非负整数值是().A.0,1 B.0,1,2 C.1 D.1,2,317.已知关于x的方程有两个相等的实数根.求m的值和这个方程的根.18.方程有实数根,求正整数a.19.对任意实数m,求证:关于x的方程无实数根。
一元二次方程题型归纳总结一元二次方程是高中数学中的重要内容,其解题过程繁多且多样化,掌握不同的题型和解题方法对于学生来说至关重要。
在本文中,我们将对一元二次方程的常见题型进行归纳总结,并提供相应的解题思路和解法。
通过学习和掌握这些题型,相信同学们能够在解题过程中更加灵活和准确地运用相关知识。
1. 完全平方公式题型完全平方公式是解一元二次方程的一种重要方法,其形式为:$a^2+2ab+b^2=(a+b)^2$,常用于完全平方形式的方程解题中。
在解答这类题目时,我们可以先判断方程形式是否符合完全平方形式,若是,则使用完全平方公式进行求解。
例题:已知 $x^2+6x+9=0$,求解方程的根。
解答过程:首先,我们可以观察到该方程是完全平方形式的,其形式为$(a+b)^2$,其中 $a=x$,$b=3$。
接下来,应用完全平方公式,我们可以得到 $(x+3)^2=0$。
由完全平方公式可知,$(x+3)^2=0$ 的解为 $x=-3$。
因此,方程的根为 $x=-3$。
2. 因式分解题型因式分解是解一元二次方程的常见方法之一,其基本思路是将方程展开为多个因式的积,并根据乘法的逆运算,求解出方程的根。
在解答因式分解题型时,我们首先要将方程化简为标准的一元二次方程,然后通过因式分解的方法解方程。
例题:已知 $2x^2-7x+3=0$,求解方程的根。
解答过程:首先,我们观察到该方程可以进行因式分解为 $(2x-1)(x-3)=0$ 。
根据乘法的逆运算,我们可以得出 $(2x-1)(x-3)=0$ 的解为$x=\frac{1}{2}$ 和 $x=3$。
因此,方程的根为 $x=\frac{1}{2}$ 和 $x=3$。
3. 二次函数图像题型对于某些问题,我们可以通过绘制二次函数的图像来解决。
在解答二次函数图像题型时,我们首先根据题目中给出的条件,确定二次函数的相关参数,然后绘制函数图像,最后通过图像来确定题目所要求的解。
实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)审:审清题意,弄清已知量与未知量;(2)找:找出等量关系;(3)设:设未知数,有直接和间接两种设法,因题而异;(4)列:列出一元二次方程;(5)解:求出所列方程的解;(6)验:检验方程的解是否正确,是否符合题意;(7)答:作答。
二、典型题型1.数字问题例1、有两个连续整数,它们的平方和为25,求这两个数。
例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练习:1、两个连续的整数的积是156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25B. 36C. 25或36D. -25或-362.传播问题:公式:(a+x)n=M其中a为传染源(一般a=1),n为传染轮数,M 为最后得病总人数例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3.相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题1n(口-1),双循环问题n(n-1).2例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?(2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了 182件,设全组有x个同学,则根据题意列出的方程是( ) A. x(x +1)= 182 B. x(x -1)= 182 C. 2x Q +1)= 182 D. x Q-1)= 182 x 2练习:1、甲A联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110 场,则联赛中共有多少个队参加比赛?2、参加一次聚会的每两人都握了一次手,所有人共握手 15次,有多少人参加聚会?3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?4.平均增长率问题:b=a(1±x)n,n为增长或降低次数,b为最后产量,a为基数,x为平均增长率或降低率例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
一元二次方程解析版1、 考纲解读(1) 理解一元二次方程的定义;(2) 会利用公式法、配方法、因式解法解一元二次方程(3) 会根据根的判别式来判定方程根的个数以及掌握根与系数的关系.常考题型:选择题、填空题和解答题.占分比重3到6分.二、考点梳理2.1. 一元二次方程的概念.只含有一个未知数,未知数的最高次数是2,且系数不为0的方程叫一元二次方程。
注意:①一般形式是:ax 2+bx+c=0(a ≠0);②判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
2.2. 一元二次方程的解法.①直接开平方法②配方法:当二次项系数为1时,应该加上一次项系数一半的平方可以配成完全平方公式。
③公式法:求根公式为224(40)2b b ac x b ac a-±-=-≥ ④因式分解法:方程两边绝不能随便约去含有未知数的代数式.例如:5(x +2)2=10(x +2)中,不能随便约去x +2。
注意:一元二次方程解法的优先选择顺序:①直接开方法;②因式分解法;③公式法或者配方法。
2.3. 一元二次方程的判别式.一元二次方程()0a 0c bx ax 2≠=++根的判别式 △=ac 4b 2-运用根的判别式,不解方程,就可以判定一元二次方程的根的情况:△=ac 4b 2->0⇒方程有两个不相等的实数根;△=ac 4b 2-=0⇒方程有两个相等的实数根;△=ac 4b 2-<0⇒方程没有实数根;注意:利用根的判别式判定一元二次方程根的情况时一定要先把一元二次方程化为一般形式。
2.4. 韦达定理.对于方程ax 2+bx+c=0(a ≠0)来说,1212;bcx x x x a a +=-•=注意:常用变形:①22212121222121212()2()()4x x x x x x x x x x x x ⎧+=+-⎪⎨-=+-⎪⎩ ②在一元二次方程的解答题时涉及到分式时要记得通分,例12121211x x x x x x ++=三、题型讲解3.1解题技巧归纳3.1.1归纳1例1、一元二次方程y 2﹣y ﹣34=0配方后可化为( )A .(y+12)2=1B .(y ﹣12)2=1 C .(y+12)2=34 D .(y ﹣12)2=34答案:B 。
一元二次方程常见题型总结
题型1 一元二次方程的概念(后面附答案)
1. 若方程()02312=+--x x a 是关于x 的一元二次方程,则a 的取值范围为【 】 (A )0≠a (B )0>a (C )1≠a (D )1>a
2. 若31-是方程022=+-c x x 的一个根,则c 的值为 【 】 (A )2- (B )234- (C )33- (D )31+
3. 已知关于x 的一元二次方程()0433422=-++++k k x x k 的一个根为0,且k 的值.
题型2 一元二次方程的解法
4. 一个等腰三角形的底边长是6,腰长是一元二次方程01272=+-x x 的一个根,则此三角形的周长是 【 】 (A )12 (B )13 (C )14 (D )12或14
5. 方程()()3532
+=+x x 的解为__________.
6. 用适当的方法解下列方程:
(1)014442=-x ; (2)3322=+x x ;
(3)25122=+-x x ; (4)()10452-=-x x x .
题型3 一元二次方程根的判别式及根与系数的关系定理
7. 已知c b a ,,为常数,点()c a P ,在第二象限,则关于x 的方程02=++c bx ax 的根的情况是 【 】 (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )无法判断
8. 若关于x 的一元二次方程()011222=-+-+k x k x 没有实数根,则k 的取值范围为__________.
9. 已知关于x 的一元二次方程()01222=+++k x k x ①有两个不相等的实数根. (1)求k 的取值范围;
(2)设方程①的两个实数根分别为21,x x ,当1=k 时,求2221x x +的值.
10. 若21,x x 是一元二次方程0142=+-x x 的两个实数根,求()⎪
⎪⎭⎫ ⎝⎛+÷+212
2111x x x x 的值.
C
Q B P
A
题型4 一元二次方程的应用
11. 收发微信红包是现在人们沟通感情的一种方式,已知小明2016年收到微信红包的金额为300元,2018年收到微信红包的金额为675元,若这两年小明收到微信红包的金额的年平均增长率为x ,则根据题意可列方程为 【 】 (A )()67521300=+x (B )()67513002=+x (C )()67513002
=+x (D )6753002=+x
12. 如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
13. 如图,在△ABC 中,6,90=︒=∠AB B cm,12=BC cm,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动;点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.
(1)如果P 、Q 同时出发,几秒钟后△PBQ 的面积等于8 cm 2 (2)在(1)中,△PBQ 的面积能否等于10 cm 2说明理由.
一元二次方程常见题型总结答案
1. C
2. A
3. 解:把0=x 代入原方程得:0432=-+k k 解之得:4,121-==k k
∵该方程是关于x 的一元二次方程 ∴4,04-≠≠+k k ∴1=k .
4. C
5. 2,321=-=x x
6.解:(1)014442=-x
6,362±==x x ,∴6,621-==x x ;
(2)3322=+x x
()333243,033222=-⨯⨯-=∆=-+x x 4333±-=
x ,∴4
33
3,433321--=+-=x x ;
(3)25122=+-x x
()51,2512±=-=-x x
∴51=-x 或51-=-x ,∴4,621-==x x ; (4)()10452-=-x x x
()()()()0252,52252=---=-x x x x x
∴052=-x 或02=-x ,∴2,2
5
21==x x . 7. B 8. 4
5>
k 9. 解:(1)∵方程()01222=+++k x k x 有两个不相等的实数根 ∴()041222
>-+=∆k k
解之得:4
1
->k ;
(2)当1=k 时,原方程为:0132=++x x
由根与系数的关系定理可知:1,32121=⋅-=+x x x x ∴()()72322
212
212221=--=-+=+x x x x x x .
10.解:由根与系数的关系定理可知:
1,42121=⋅=+x x x x
∴()()()44111212121212
2121221=⨯=+=+⋅+=⎪⎪⎭⎫ ⎝⎛+÷+x x x x x x x x x x x x x x . 11. C
12. 解:(1)设配色条纹的宽度为x 米,由题意可列方程为:
4580
17
442522⨯⨯=
-⨯+⨯x x x 解之得:4
17
,4121==x x (不符合题意,舍去)
答:配色条纹的宽度为41
米;
(2)条纹造价:850200458017
=⨯⨯⨯(元)
其余部分造价:15751004580171=⨯⨯⨯⎪⎭
⎫
⎝⎛-(元)
∴总造价为:24251575850=+(元) 答:地毯的总造价为2425元.
13. 解:(1)设x s 后△PBQ 的面积等于8 cm 2,则有:
()8262
1
=⨯-⨯x x 解之得:4,221==x x
答:2 s 或4 s 后△PBQ 的面积等于8 cm 2; (2)设y s 后△PBQ 的面积等于10 cm 2,则有:
()10262
1
=⨯-⨯y y ,整理得:01062=+-y y ∵()0410462
<-=⨯--=∆
∴原方程无实数根,∴△PBQ 的面积能否等于10 cm 2.。