最新必修2平抛运动的典型计算例题
- 格式:doc
- 大小:65.50 KB
- 文档页数:5
平抛运动典型例题(习题)平抛运动运动性质的理解1、做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同2、把物体以一定速度水平抛出。
不计空气阻力,g取10,那么在落地前的任意一秒内()A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m3、对于一个做平抛运动的物体,它在从抛出开始的四段连续相等的时间内,在水平方向和竖直方向的位移之比,下列说法正确的是()A.1:2:3:4;1:4:9:16 B.1:3:5:7;1:1:1:1C.1:1:1:1;1:3:5:7 D.1:4:9:16;1:2:3:4平抛运动的基本计算题类型4、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是()A. B.C. D.5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。
物体与斜面接触时速度与水平方向的夹角满足()A.tanφ=sinθB. tanφ=cosθC. tanφ=tanθD. tanφ=2tanθ6、两个物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面高度之比为A.1∶2 B.1∶ C.1∶4 D.4∶17、以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是()A.此时小球的竖直分速度大小等于水平分速度大小 B.此时小球的速度大小为C.小球运动的时间为 D.此时小球速度的方向与位移的方向相8、如图所示,足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v0抛出,落到斜面上所用时间为t2,则t1 : t2为()A.1 : 1 B.1 : 2 C.1 : 3 D.1 : 49、如图所示的两个斜面,倾角分别为37°和53°,在顶点两个小球A、B以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球平抛运动时间之比为()A.1:1B.4:3C.16:9D.9:110、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是()A.s B.s C.s D.2s11、如图所示,高为h=1.25 m的平台上,覆盖一层薄冰,现有一质量为60 kg的滑雪爱好者,以一定的初速度v向平台边缘滑去,着地时的速度方向与水平地面的夹角为45°(取重力加速度g=10 m/s2).由此可知正确的是()A.滑雪者离开平台边缘时的速度大小是5.0 m/sB.滑雪者着地点到平台边缘的水平距离是2.5 mC.滑雪者在空中运动的时间为0.5 sD.滑雪者着地的速度大小为5 m/s12、将物体在h=20m高处以初速度v0=10m/s水平抛出,不计空气阻力(g取10m/s2),求:(1)物体的水平射程(2)物体落地时速度大小13、如图所示,一条小河两岸的高度差是h,河宽是高度差的4倍,一辆摩托车(可看作质点)以v0=20m/s的水平速度向河对岸飞出,恰好越过小河。
高一物理必修二第五章平抛运动及其规律基础练习题(带参考答案)高一物理第五章一、研究要点平抛运动及其规律1.会用运动合成和分解的方法分析平抛运动。
2.掌握平抛运动的规律,会分析解决生活中的平抛运动问题。
二、研究内容一)平抛运动基本知识1.平抛运动的特征初速度方向,只受重力,属于抛体曲线运动。
2.平抛运动的分解水平方向:匀速直线运动,竖直方向:自由落体运动。
问题1:平抛运动是什么性质的运动?例1:(多选题)关于平抛运动,下列说法正确的是()A.是匀变速运动 B.是变加速运动C.任意两段时间内速度改变不一定相等 D.任意相等时间内的速度改变一定相等练1:(多选题)物体在做平抛运动的过程中,以下的物理量不变的是()A.物体的速度 B.物体的加速度C.物体竖直方向的分速度 D.物体水平方向的分速度问题2:如何研究平抛运动?例2:为了研究平抛物体的运动,可以概括为两点:①水平方向作匀速运动;②竖直方向作自由落体运动。
为了研究平抛物体的运动,可以进行如图1所示的实验。
1)把两个小铁球分别吸在电磁铁C、D上,切断电源,使两个小铁球以相同的初速度从轨道A、B射出,两小铁球能够在轨道B上相碰,这可以说明水平方向作匀速运动。
2)把两个小铁球分别吸在电磁铁C、E上,切断电磁铁C的电源,使一只小球从轨道A射出时碰撞开关S,使电磁铁E断电释放它吸着的小球,两个小球可以在空中相碰。
这可以说明竖直方向作自由落体运动。
练2:如图2所示,在光滑的水平面上有一小球a以初速度v运动,同时刻在它的正上方有小球b也以初速度水平v抛出,并落于c点,则()A.小球a先到达c点B.小球b先到达c点C.两小球同时到达c点D.不能确定二)平抛运动规律1.平抛运动的速度及其方向水平速度vx初速度vx竖直速度vy初速度vygt;合速度v=√(vx²+vy²),速度与水平方向的夹角θ,tanθ=v yvxgt/vx2.平抛运动的位移及其方向水平位移x=vxt;竖直位移y=vyt-1/2gt²;合位移s=√(x²+y²),运动方向与初速度方向相同。
新部编版高三物理必修2平抛运动的规律及应用专项练习(带答案与解析)的正确答案、解答解析、考点详解姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分1.【题文】如图为一网球场长度示意图,球网高为h=“0.9” m,发球线离网的距离为x=“6.4” m,某一运动员在一次击球时,击球点刚好在发球线上方H=“1.25” m高处,设击球后瞬间球的速度大小为v0=“32” m/s,方向水平且垂直于网,试通过计算说明网球能否过网?若过网,试求网球的直接落地点离对方发球线的距离L?(不计空气阻力,重力加速度g取10 m/s2)【答案】能过网 3.2 m【解析】网球在水平方向通过网所在处历时为t1==“0.2” s (2分)下落高度h1=gt12=“0.2” m (2分)因h1H-h=“0.35” m,故网球可过网.网球到落地时历时(2分)水平方向的距离s=v0t=“16” m (2分)所求距离为L=“s-2x=3.2” m (2分)2.【题文】(2010·北京高考)如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=“50” kg.不计空气阻力.(取sin37°=0.60,cos37°=0.80;g取10 m/s2)求:评卷人得分(1)A点与O点的距离;(2)运动员离开O点时的速度大小;(3)运动员落到A点时的动能.【答案】(1) 75 m(2)(3) 32 500 J【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有Lsin37°=L==“75” m (4分)(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即Lcos37°=v0t解得(6分)(3)由机械能守恒,取A点为重力势能零点,运动员落到A点的动能为EkA=mgh+mv02=“32” 500 J (6分)3.【题文】(2011·广东理综·T17)如图6所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是A.球的速度v等于LB.球从击出至落地所用时间为C.球从击球点至落地点的位移等于LD.球从击球点至落地点的位移与球的质量有关【答案】选A.B.【解析】由平抛运动规律知,在水平方向上有:,在竖直方向上有:,联立解得,,所以A.B正确;球从击球点至落地点的位移为,C,D错误。
人教版物理必修二 5.2平抛运动计算题类型总结【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度v0;(2)平抛运动的时间;(3)平抛时的高度.2.从离地高80 m处水平抛出一个物体,3 s末物体的速度大小为50 m/s,取g=10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?4.如图所示,从高为h的斜面顶端A点以速度v0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;(2)小球落到B点时的速度大小.【类型2】斜抛运动的规律应用5.从某高处以6 m/s的初速度、以30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求:(1)石子在空中运动的时间;(2)石子的水平射程;(3)抛出点离地面的高度.(忽略空气阻力,g取10 m/s2)【类型3】平抛运动规律的综合应用6.将某一物体以一定的初速度水平抛出,在某1 s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1 s内下落的高度是多少?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,结果保留两位有效数字)7.如图所示,水平台面AB距地面的高度h=0.8 m.有一滑块从A点以初速度v0在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度v B水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0 m.已知AB=2.2 m.不计空气阻力,g取10 m/s2.求:(1)滑块从B点飞出时的速度大小;(2)滑块在A点的初速度v0的大小.8.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【类型4】平抛运动结合斜面综合应用10.如图为湖边一倾角为θ=37°的大坝的横截面示意图,水面与大坝的交点为O.一人(身高忽略不计)站在A点处以速度v0沿水平方向扔小石子,已知AO=50 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则:(1)若要求小石子能直接落到水面上,v0最小是多少?(2)若小石子不能直接落到水面上,落到斜面时速度方向与水平面夹角的正切值是多少?11.女子跳台滑雪等6个新项目已加入2014年冬奥会.如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡底的B点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t.(2)A、B间的距离s.12.如图所示,设一位运动员由A点沿水平方向跃出,到B点着陆,测得AB间距离L=75 m,山坡倾角α=37°(取sin 37°=0.6,cos 37°=0.8),试计算:(不计空气阻力,g取10 m/s2)(1)运动员在空气中飞行的时间t;(2)他起跳时的速度;(3)落地前瞬间速度的大小.13.如图所示,以9.8 m/s的水平速度v0抛出的物体,飞行一段时间后与斜面呈60°撞在倾角θ=30°的斜面上,求:(1)物体做平抛运动所用的时间;(2)物体撞在斜面时的合速度大小;(3)物体的水平位移、竖直位移和合位移;(4)物体的合位移方向.【类型5】平抛运动双边临界位移问题15.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图所示,试计算说明:(1)此球能否过网?(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)【类型6】平抛运动两物体相遇问题21.如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑,当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角为θ=30°.不计空气阻力,g取10 m/s2.求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.22.如图所示,可视为质点的滑块B放在水平面上,在其正上方离水平面高h=0.8 m处有一可视为质点的小球A,某时刻小球A以v1=5 m/s的初速度开始向右做平抛运动,同时滑块B以v2=3 m/s 的初速度开始向右做匀加速直线运动,小球A恰好能击中滑块B,求B运动的加速度a的大小.(g =10 m/s2)【类型7】类平抛运动24.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平射入时的初速度v0;(3)物块离开Q点时速度的大小v.人教版物理必修二 5.2平抛运动计算题类型总结(参考答案)【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度v0;(2)平抛运动的时间;(3)平抛时的高度.【答案】(1)5m/s(2)1.5 s(3)11.25 m【解析】(1)假定轨迹上A、B两点是落地前1 s内的始、终点,画好轨迹图,如图所示.对A点:tan 30°=①对B点:tan 60°=②t′=t+1 s.③由①②③解得t=s,v0=5m/s.④(2)运动总时间t′=t+1 s=1.5 s.(3)高度h=gt′2=11.25 m.2.从离地高80 m处水平抛出一个物体,3 s末物体的速度大小为50 m/s,取g=10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.【答案】(1)40 m/s(2)4 s(3)160 m【解析】(1)由平抛运动的规律知v=3 s末v=50 m/s,v y=gt=30 m/s解得v0=v x=40 m/s(2)物体在空中运动的时间t′==s=4 s(3)物体落地时的水平位移x=v0t′=40×4 m=160 m.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?【答案】(1)600 m (2)在空中排列成一条竖直线 (3)间距相等均为50 m【解析】(1)根据得,t==s=12 s.则水平距离x=v0t=50×12 m=600 m.(2)这些炸弹在空中排列成一条竖直线.因为从飞机上落下的每一颗炸弹都具有和飞机一样的水平速度,它们在落地前总位于飞机的正下方.(3)因为飞机在水平方向做匀速直线运动,在相等时间内通过的水平位移相等,所以炸弹落地点是等间距的,Δx=vΔt=50×1 m=50 m.4.如图所示,从高为h的斜面顶端A点以速度v0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;(2)小球落到B点时的速度大小.【答案】(1)(2)【解析】(1)解决平抛运动的方法是通常把平抛运动分解到水平方向和竖直方向去研究,水平方向做匀速直线运动,竖直方向做自由落体运动,两个方向上运动的时间相同.设小球飞行时间为t,根据平抛运动的规律,可得竖直方向上有解得:(2)设小球落到B点时的竖直速度为v y,则竖直方向上根据平行四边形定则得:小球落到B点时的速度大小为.【类型2】斜抛运动的规律应用5.从某高处以6 m/s的初速度、以30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求:(1)石子在空中运动的时间;(2)石子的水平射程;(3)抛出点离地面的高度.(忽略空气阻力,g取10 m/s2)【答案】(1)1.2 s(2)6.2 m(3)3.6 m【解析】(1)如图所示:石子落地时的速度方向和水平线的夹角为60°,则=tan 60°=即:v y=v x=v0cos 30°=×6×m/s=9 m/s取竖直向上为正方向,落地时竖直方向的速度向下,则-v y=v0sin 30°-gt,得t=1.2 s(2)石子在水平方向上做匀速直线运动:x=v0cos 30°·t=6××1.2 m 6.2 m(3)由竖直方向位移公式:h=v0sin 30°t-gt2=(6××1.2-×10×1.22) m=-3.6 m,负号表示落地点比抛出点低.【类型3】平抛运动规律的综合应用6.将某一物体以一定的初速度水平抛出,在某1 s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1 s内下落的高度是多少?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,结果保留两位有效数字)【答案】17m/s18m【解析】解法一:如图甲所示小球经过A点时v A与水平方向的夹角为37°,经过B点时v B与水平方向的夹角为53°.设从初始位置到A点经历时间t,则到B点共经历t+1 s.v yA=gt=v0tan 37°,v yB=g(t+1 s)=v0tan 53°.由以上两式解得初速度v0≈17 m/s,且t=s在这1 s内下落的高度Δh=yB-yA=g(t+1)2-gt2=×10×2m-×10×2m≈18 m.解法二:如图乙所示,由几何关系可得Δv=gΔt=v0tan 53°-v0tan 37°,解得v0=≈17 m/s根据推导公式有Δh==≈18 m.7.如图所示,水平台面AB距地面的高度h=0.8 m.有一滑块从A点以初速度v0在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度v B水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0 m.已知AB=2.2 m.不计空气阻力,g取10m/s2.求:(1)滑块从B点飞出时的速度大小;(2)滑块在A点的初速度v0的大小.【答案】(1)5 m/s(2)6 m/s【解析】(1)平抛运动:,s=v B t,解得:v B=5 m/s.(2)由牛顿第二定律:μ m g=m a,运动学公式v B2﹣v02=﹣2a sAB,解得:v0=6m/s.8.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【答案】(1)小球飞出的速度为;(2)小球落在C点时的竖直分速度大小为,合速度的大小为,速度与水平方向的正切值为2tanθ.【解析】(1)根据h=得,t=,则小球飞出的初速度.(2)小球落在C点时的竖直分速度.根据平行四边形定则知,合速度大小.设速度方向与水平方向的夹角为α,【类型4】平抛运动结合斜面综合应用10.如图为湖边一倾角为θ=37°的大坝的横截面示意图,水面与大坝的交点为O.一人(身高忽略不计)站在A点处以速度v0沿水平方向扔小石子,已知AO=50 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则:(1)若要求小石子能直接落到水面上,v0最小是多少?(2)若小石子不能直接落到水面上,落到斜面时速度方向与水平面夹角的正切值是多少?【答案】(1)16.33m/s(2)1.5【解析】(1)若小石子恰能落到O点,v0最小,有AO cosθ=v0t,AO sinθ=gt2,解得v0≈16.33m/s.(2)斜面与水平方向夹角θ=37°,若小石子落到斜面上时,设速度方向与水平面的夹角为α,则tanθ==,tanα=,所以tanα=2tanθ=1.5.11.女子跳台滑雪等6个新项目已加入2014年冬奥会.如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡底的B点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t.(2)A、B间的距离s.【答案】(1)3 s(2)75 m【解析】(1)运动员由A点到B点做平抛运动,则水平方向的位移x=v0t竖直方向的位移y=gt2又=tan 37°,联立以上三式得t==3 s(2)由题意知sin 37°==得A、B间的距离s==75 m.12.如图所示,设一位运动员由A点沿水平方向跃出,到B点着陆,测得AB间距离L=75 m,山坡倾角α=37°(取sin 37°=0.6,cos 37°=0.8),试计算:(不计空气阻力,g取10 m/s2)(1)运动员在空气中飞行的时间t;(2)他起跳时的速度;(3)落地前瞬间速度的大小.【答案】(1)运动员在空气中飞行的时间t为3 s;(2)他起跳时的速度为30 m/s;(3)落地前瞬间速度的大小为.【解析】(1)根据L sin 37=gt2得,t=3 s(2)起跳的速度(3)落地时竖直分速度v y=gt=30 m/s,则落地的速度13.如图所示,以9.8 m/s的水平速度v0抛出的物体,飞行一段时间后与斜面呈60°撞在倾角θ=30°的斜面上,求:(1)物体做平抛运动所用的时间;(2)物体撞在斜面时的合速度大小;(3)物体的水平位移、竖直位移和合位移;(4)物体的合位移方向.【答案】(1)物体做平抛运动所用的时间为(2)物体撞在斜面时的合速度大小为11.3 m/s;(3)物体的水平位移为5.7 m、竖直位移为1.6 m和合位移为5.9 m;(4)物体的合位移与水平方向的夹角为.【解析】(1)小球与斜面呈60°撞在倾角θ=30°的斜面上,根据几何关系知,小球的速度与水平方向的夹角为30°,.(2)根据平行四边形定则知,小球撞在斜面上的合速度大小(3)水平位移.竖直位移.合位移.(4)设合位移与水平方向的夹角为α,因为速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,=.【类型5】平抛运动双边临界位移问题15.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图所示,试计算说明:(1)此球能否过网?(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)【答案】(1)能过网(2)落在对方界外【解析】(1)当排球在竖直方向下落Δh=(3.04-2.24) m=0.8 m时,所用时间为t1,满足Δh=gt,x=v0t1.解以上两式得x=10 m>9 m,故此球能过网.(2)当排球落地时h=gt,x′=v0t2.将h=3.04 m代入得x′≈19.5 m>18 m,故排球落在对方界外.16.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s(2)5m/s【解析】(1)设小球恰好落到空地的右侧边缘时的水平初速度为v01,则小球的水平位移:L+x=v01t1小球的竖直位移:H=gt解以上两式得v01=(L+x)=13 m/s设小球恰好越过围墙的边缘时的水平初速度为v02,则此过程中小球的水平位移:L=v02t2小球的竖直位移:H-h=gt解以上两式得:v02=5 m/s小球抛出时的速度大小为5 m/s≤v0≤13 m/s(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在空地上时,落地速度最小.竖直方向:v=2gH又有:v min=解得:v min=5m/s【类型6】平抛运动两物体相遇问题21.如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑,当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角为θ=30°.不计空气阻力,g取10 m/s2.求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.【答案】(1)1s(2)【解析】(1)设小球p从斜面上下滑的加速度为a,根据牛顿第二定律a==g sinθ①下滑所需时间为t1,根据运动学公式得l=②由①②得t1=③代入数据得t1=1s(2)小球q运动为平抛运动,水平方向做匀速直线运动,设抛出速度为v0.则x=l cos30°=v0t2④依题意得:t2=t1⑤由③④⑤得22.如图所示,可视为质点的滑块B放在水平面上,在其正上方离水平面高h=0.8 m处有一可视为质点的小球A,某时刻小球A以v1=5 m/s的初速度开始向右做平抛运动,同时滑块B以v2=3 m/s 的初速度开始向右做匀加速直线运动,小球A恰好能击中滑块B,求B运动的加速度a的大小.(g =10 m/s2)【答案】10 m/s2【解析】设经时间t,小球A击中滑块B,则对小球A由平抛运动的规律得:h=gt2小球A在水平方向上的位移为x,则:x=v1t滑块B在时间t内的位移也为x,则:x=v2t+at2联立以上各式解得:a=10 m/s2【类型7】类平抛运动24.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平射入时的初速度v0;(3)物块离开Q点时速度的大小v.【答案】(1)(2)b(3)【解析】(1)沿斜面向下的方向有mg sinθ=ma,l=at2联立解得t=.(2)沿水平方向有b=v0tv0==b.(3)物块离开Q点时的速度大小v=。
通用版带答案高中物理必修二第五章抛体运动微公式版典型例题单选题1、如图所示,某同学用一个小球在O点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是v1、v2、v3,不计空气阻力。
打在挡板上的位置分别是B、C、D,且AB:BC:CD=1:3:5。
则v1、v2、v3之间的正确关系是()A.v1:v2:v3=3:2:1B.v1:v2:v3=5:3:1C.v1:v2:v3=6:3:2D.v1:v2:v3=9:4:1答案:C三个小球做平抛运动,水平位移相同,由x=vt可得v=x t竖直方向有y1=AB=12gt12y 2=AB +BC =12gt 22y 3=AB +BC +CD =12gt 32解得t 1=√2AB gt 2=√2(AB +BC )gt 3=√2(AB +BC +CD )g所以v 1:v 2:v 3=1t 1:1t 2:1t 3√AB √AB +BC √AB +BC +CD =1:12:13=6:3:2 故选C 。
2、“幸得有你,山河无恙。
千里驰援,勇士凯旋”,2020年4月10日,载着最后一批广东援鄂医疗队英雄的客车返回。
假设某车在水平公路上转弯,沿曲线MPN 行驶,速度逐渐减小,v 是汽车经过P 点时的速度。
图中分别画出了汽车转弯时所受合力F 的四种方向,其中可能正确的是( )A .B .C .D .答案:CAD .汽车在水平公路上转弯,汽车沿曲线由M 向P 行驶,汽车所受合力F 的方向指向运动轨迹的凹侧,故AD 错误;BC .汽车的速度在减小,则合力在做负功,合力的方向与速度方向的夹角大于90°,故B 错误,C 正确。
故选C 。
3、小船保持船头始终垂直于对岸方向渡河。
若船相对于水面的速率恒定,河水流速变化对其渡河产生的影响是( )A .流速越小,渡河位移越大B .流速越小,渡河位移越小C .流速越大,渡河时间越短D .流速越大,渡河时间越长 答案:BCD .船头垂直河岸行驶时t =d v 0渡河时间只与河宽d 和小船的速度v 0有关,不受河水流速影响,CD 错误; AB .船实际的速度v =√v 02+v 水2实际位移x =vt =√v 02+v 水2⋅dv 0河水流速越小,渡河位移越小,A 错误,B 正确。
5.3 实验:探究平抛运动的特点基础知识梳理一、抛体运动和平抛运动1.抛体运动:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受作用的运动.2.平抛运动:初速度沿方向的抛体运动.3.平抛运动的特点:(1)初速度沿水平方向;(2)只受作用.二、实验:探究平抛运动的特点【实验思路】(1)基本思路:根据运动的分解,把平抛运动分解为不同方向上两个相对简单的运动,分别研究物体在这两个方向的运动特点.(2)平抛运动的分解:可以尝试将平抛运动分解为方向的分运动和方向的分运动.【进行实验】方案一:频闪照相(或录制视频)的方法(1)通过频闪照相(或视频录制),获得小球做平抛运动时的频闪照片(如图所示);(2)以抛出点为原点,建立直角坐标系;(3)通过频闪照片描出物体经过时间间隔所到达的位置;(4)测量出经过T,2T,3T,…时间内小球做平抛运动的位移和位移,并填入表格;(5)分析数据得出小球水平分运动和竖直分运动的特点.方案二:分别研究水平和竖直方向分运动规律步骤1:探究平抛运动竖直分运动的特点图2(1)如图2所示,用小锤击打弹性金属片后,A球做运动;同时B球被释放,做运动.观察两球的运动轨迹,听它们落地的声音.(2)改变小球距地面的高度和小锤击打的力度,即改变A球的初速度,发现两球同时落地,说明平抛运动在竖直方向的分运动为运动.步骤2:探究平抛运动水平分运动的特点1.装置和实验(1)如图所示,安装实验装置,使斜槽M末端水平,使固定的背板竖直,并将一张白纸和复写纸固定在背板上,N为水平装置的可上下调节的向背板倾斜的挡板.(2)让钢球从斜槽上某一高度滚下,从末端飞出后做平抛运动,使小球的轨迹与背板.钢球落到倾斜的挡板N上,挤压复写纸,在白纸上留下印迹.(3) 调节挡板N,进行多次实验,每次使钢球从斜槽上同一位置由静止滚下,在白纸上记录钢球所经过的多个位置.(4)以斜槽水平末端端口处小球球心在木板上的投影点为坐标原点O,过O点画出竖直的y轴和水平的x轴.(5)取下纸,用平滑的曲线把这些印迹连接起来,得到钢球做平抛运动的轨迹.(6)根据钢球在竖直方向是自由落体运动的特点,在轨迹上取竖直位移为y、4y、9y…的点,即各点之间的时间间隔,测量这些点之间的水平位移,确定水平方向分运动特点.(7)结论:平抛运动在相等时间内水平方向相等,平抛运动水平方向为运动.2.注意事项:(1)实验中必须调整斜槽末端的(将小球放在斜槽末端水平部分,若小球静止,则斜槽末端水平).(2)背板必须处于,固定时要用铅垂线检查坐标纸竖线是否竖直.(3)小球每次必须从斜槽上由静止释放.(4)坐标原点不是槽口的端点,应是小球出槽口时钢球球心在木板上的投影点.(5)小球开始滚下的位置高度要适中,以使小球做平抛运动的轨迹由坐标纸的一直到达为宜.【参考答案】重力水平重力直线水平竖直平抛自由落体自由落体平行上下坐标 相等 位移 匀速直线 切线水平 竖直面内 同一位置 左上角 右下角考点一:平抛运动概念、性质、条件、特征【例1】2022年2月15日,北京冬奥会单板滑雪男子大跳台决赛中,中国选手苏翊鸣夺得冠军。
人教版高中物理必修2第五章曲线运动 第四节研究平抛运动典型例题分析知识点1、平抛运动的分解(如图所示)注意:平抛运动的飞行时间、水平位移和落地速度等方面的注意问题:(1)物体做平抛运动时在空中运动的时间g ht 2=,其值由高度h 决定,与初速度无关。
(2)它的水平位移大小为x= v0g h2,与水平速度v0及高度h 都有关系。
(3)落地瞬时速度的大小22yx t v v v +==220)(gt v +=ghv 220+,由水平初速度v0及高度h 决定。
(4)落地时速度与水平方向夹角为θ,tan θ= gt/ v0,h 越大空中运动时间就越大,θ就越大。
(5)落地速度与水平水平方向夹角θ,位移方向与水平方向夹角α,θ与α是不等的。
注意不要混淆。
(6)平抛物体的运动中,任意两个相等的时间间隔的速度变化量△v=g △t ,都相等且△v 方向怛为竖直向下。
(7)平抛运动的偏角与水平位移和竖直位移之间的关系:如右图所示,平抛运动的偏角θ即为平抛运动的速度与水平方向的夹角,所以有:tan θ=22121020x y t v gt v gt ==tan θ=2xy 常称为平抛运动的偏角公式,在一些些问答题中可直接应用该结论分析解答。
(8)以抛点为原点,取水平方向为x 轴,正方向与初速度v0方向相同,竖直方向为y 轴,正方向竖直向下,物体做平抛运动的轨迹上任意一点A (x ,y )的速度方向的反向延长线交于x 轴上的B 点。
B 点的横坐标xB=x/2。
(9)平抛运动中,任意两个连续相等时间间隔内在竖直方向上分位移之差△h=gT2都相等。
(10)平抛物体的位置坐标:以抛点为坐标原点,竖直向下为y 轴正方向,沿初速度方向为x 轴正方向,建立直角坐标系(如图所示),据平抛运动在水平方向上是匀速直线运动和在竖直方向上自由落体运动知: 水平分位移x= v0t ,竖直分位移y=gt2/2,t 时间内合位移的大小22y x s +=设合位移s 与水平位移x 的夹角为α,则tan α=y/x=( gt2/2)/ v0t =gt/ 2v0。
处越过A的壕沟,沟面如图1所示,某人骑摩托车在水平道路上行驶,要在[例1],摩托车的速度至少要有多大?对面比A处低图1解析:在竖直方向上,摩托车越过壕沟经历的时间在水平方向上,摩托车能越过壕沟的速度至少为2. 从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在为的斜面上。
可知物体完成这段飞行的时间是(倾角)D.B.A.C.图2和竖直分速度(如图解析:2先将物体的末速度乙所示)。
分解为水平分速度根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与间的夹角等于斜面的倾角与水平面垂直,所以。
再根据平抛运动的斜面垂直、与分解可知物体在竖直方向做自由落体运动,那么我们根据了。
则就可以求出时间所以根据平抛运动竖直方向是自由落体运动可以写出所以所以答案为C。
3. 从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)点,以水平速度向斜面下方抛出一个物体,落在斜面上在倾角为的斜面上的P[例3]点物体速度Q的Q点,证明落在。
,所用时间为点的位移是P运动到斜面上的Q,则由“分解设物体由抛出点解析:位移法”可得,竖直方向上的位移为;水平方向上的位移为。
又根据运动学的规律可得,竖直方向上水平方向上,则点的速度所以Q所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右4] 如图3[例,小球均落在坡面上,两侧斜坡的倾角分别为若不计空气和,抛出两个小球A和B 两小球的运动时间之比为多少?B阻力,则A和图3和都是物体落在斜面上后,解析:位移与水平方向的夹角,则运用分解位移的方法可以得到所以有.同理则4. 从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
选择题一物体以初速度v₀水平抛出,经过时间t后,其总速度的大小为:A. v₀B. gtC. √(v₀² + (gt)²)(正确答案)D. v₀ + gt小球从高度h处以速度v₀水平抛出,落地时总速度与水平方向的夹角为θ,则总速度大小为:A. v₀/cosθB. v₀/sinθC. v₀√(1 + tan²θ)(正确答案)D. v₀tanθ一物体做平抛运动,初速度为v₀,竖直方向下落距离h后,总速度大小为:A. √(2gh)B. √(v₀² + 2gh)(正确答案)C. v₀ + √(2gh)D. √(v₀² - 2gh)质点从某高度以初速度v₀水平抛出,经时间t后,其总速度与竖直方向的夹角α的正切值为:A. tanα = v₀/gt(正确答案)B. tanα = gt/v₀C. tanα = v₀/2gtD. tanα = 2gt/v₀物体从高度h做平抛运动,初速度v₀,落地时总速度v与初速度v₀的关系是:A. v = v₀B. v > v₀(正确答案)C. v < v₀D. 无法确定一小球从高度h水平抛出,初速度v₀,落地时竖直方向分速度为v_y,则总速度v为:A. v = v₀ + v_yB. v = √(v₀² - v_y²)C. v = √(v₀² + v_y²)(正确答案)D. v = |v₀ - v_y|物体做平抛运动,初速度v₀,经过时间t,其总速度v与重力加速度g的关系是:A. v = gtB. v = v₀ + gtC. v = √(v₀² + (gt)²)(正确答案)D. v = v₀ - gt质点从高度h以速度v₀水平抛出,落地时总速度v与下落高度h的关系是(忽略空气阻力):A. v与h成正比B. v与√h成正比(正确答案)C. v与h²成正比D. v与h无关一物体做平抛运动,初速度为v₀,落地时竖直方向分速度等于初速度,则总速度v为:A. v = v₀B. v = √2v₀(正确答案)C. v = 2v₀D. v = √3v₀。
习题课1 平抛运动规律的综合应用第1练基础强化练1.(2021·浙江柯桥中学高一月考)滑雪运动员在训练过程中,从斜坡顶端以5.0 m/s 的速度水平飞出,落在斜坡上,然后继续沿斜坡下滑。
已知斜坡倾角为45°,空气阻力忽略不计,g 取10 m/s 2,则他在该斜坡上方平抛运动的时间为( )A .0.5 sB .1.0 sC .1.5 sD .5.0 s解析:B 滑雪运动员做平抛运动,在水平方向有x =v 0t ,在竖直方向有y =12gt 2 根据题意有tan 45°=y x =12gt 2v 0t解得t =1.0 s ,故选B 。
2.(多选)(2021·温州市高一期中)如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O 点将一小球以速度v 0=3 m/s水平抛出,经过一段时间后,小球垂直斜面打在P 点处(小球可视为质点,不计空气阻力,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8),则( )A .小球击中斜面时的速度大小为4 m/sB .小球击中斜面时的速度大小为5 m/sC .小球做平抛运动的水平位移是1.6 mD .小球做平抛运动的竖直位移是0.8 m解析:BD 小球打在P 点处的速度方向与斜面垂直,根据平行四边形定则有tan 37°=v 0v y ,解得v y =4 m/s ,小球击中斜面时的速度大小v =v 02+v y 2 =5 m/s ,故A 错误,B正确;小球运动的时间t =v y g =0.4 s ,可知水平位移x =v 0t =1.2 m ,竖直位移y =12gt 2=0.8 m ,故C 错误,D 正确。
3.一个晴朗无风的冬日,滑雪运动员从雪坡上以v 0的水平速度滑出,落在雪坡下面的水平面上,运动员在空中保持姿势不变。
当v 0增大时( )A .落地时间增大B .飞出的水平距离增大C .落地时速度减小D .落地时速度方向不变解析:B 设运动员下落的高度为h ,根据位移与时间关系可得h =12 gt 2,解得t =2h g,可知落地时间与初速度v 0无关,故落地时间不变,A 错误;根据x =v 0t 可知,t 不变,当v 0增大时飞出的水平距离增大,故B 正确;落地时速度v =v 02+v y 2 =v 02+2gh ,g 、h 不变,故当v 0增大时落地时的速度增大,C 错误;设落地时速度方向与水平方向的夹角为θ,根据速度的合成与分解可得tan θ=v y v 0 =gt v 0,g 、t 不变,当v 0增大时,θ减小,故D 错误。
人教版物理必修二 5.2平抛运动计算题类型总结【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度v0;(2)平抛运动的时间;(3)平抛时的高度.【答案】(1)5m/s(2)1.5 s(3)11.25 m【解析】(1)假定轨迹上A、B两点是落地前1 s内的始、终点,画好轨迹图,如图所示.对A点:tan 30°=①对B点:tan 60°=②t′=t+1 s.③由①②③解得t=s,v0=5m/s.④(2)运动总时间t′=t+1 s=1.5 s.(3)高度h=gt′2=11.25 m.2.从离地高80 m处水平抛出一个物体,3 s末物体的速度大小为50 m/s,取g=10 m/s2.求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.【答案】(1)40 m/s(2)4 s(3)160 m【解析】(1)由平抛运动的规律知v=3 s末v=50 m/s,v y=gt=30 m/s解得v0=v x=40 m/s(2)物体在空中运动的时间t′==s=4 s(3)物体落地时的水平位移x=v0t′=40×4 m=160 m.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?【答案】(1)600 m (2)在空中排列成一条竖直线 (3)间距相等均为50 m【解析】(1)根据得,t==s=12 s.则水平距离x=v0t=50×12 m=600 m.(2)这些炸弹在空中排列成一条竖直线.因为从飞机上落下的每一颗炸弹都具有和飞机一样的水平速度,它们在落地前总位于飞机的正下方.(3)因为飞机在水平方向做匀速直线运动,在相等时间内通过的水平位移相等,所以炸弹落地点是等间距的,Δx=vΔt=50×1 m=50 m.4.如图所示,从高为h的斜面顶端A点以速度v0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;(2)小球落到B点时的速度大小.【答案】(1)(2)【解析】(1)解决平抛运动的方法是通常把平抛运动分解到水平方向和竖直方向去研究,水平方向做匀速直线运动,竖直方向做自由落体运动,两个方向上运动的时间相同.设小球飞行时间为t,根据平抛运动的规律,可得竖直方向上有解得:(2)设小球落到B点时的竖直速度为v y,则竖直方向上根据平行四边形定则得:小球落到B点时的速度大小为.【类型2】斜抛运动的规律应用5.从某高处以6 m/s的初速度、以30°抛射角斜向上抛出一石子,落地时石子的速度方向和水平线的夹角为60°,求:(1)石子在空中运动的时间;(2)石子的水平射程;(3)抛出点离地面的高度.(忽略空气阻力,g取10 m/s2)【答案】(1)1.2 s(2)6.2 m(3)3.6 m【解析】(1)如图所示:石子落地时的速度方向和水平线的夹角为60°,则=tan 60°=即:v y=v x=v0cos 30°=×6×m/s=9 m/s取竖直向上为正方向,落地时竖直方向的速度向下,则-v y=v0sin 30°-gt,得t=1.2 s(2)石子在水平方向上做匀速直线运动:x=v0cos 30°·t=6××1.2 m 6.2 m(3)由竖直方向位移公式:h=v0sin 30°t-gt2=(6××1.2-×10×1.22) m=-3.6 m,负号表示落地点比抛出点低.【类型3】平抛运动规律的综合应用6.将某一物体以一定的初速度水平抛出,在某1 s内其速度方向与水平方向的夹角由37°变成53°,则此物体的初速度大小是多少?此物体在这1 s内下落的高度是多少?(g=10 m/s2,sin 37°=0.6,cos 37°=0.8,结果保留两位有效数字)【答案】17m/s18m【解析】解法一:如图甲所示小球经过A点时v A与水平方向的夹角为37°,经过B点时v B与水平方向的夹角为53°.设从初始位置到A点经历时间t,则到B点共经历t+1 s.v yA=gt=v0tan 37°,v yB=g(t+1 s)=v0tan 53°.由以上两式解得初速度v0≈17 m/s,且t=s在这1 s内下落的高度Δh=yB-yA=g(t+1)2-gt2=×10×2m-×10×2m≈18 m.解法二:如图乙所示,由几何关系可得Δv=gΔt=v0tan 53°-v0tan 37°,解得v0=≈17 m/s根据推导公式有Δh==≈18 m.7.如图所示,水平台面AB距地面的高度h=0.8 m.有一滑块从A点以初速度v0在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后以速度v B水平飞出,且测出滑块落地点到平台边缘的水平距离s=2.0 m.已知AB=2.2 m.不计空气阻力,g取10m/s2.求:(1)滑块从B点飞出时的速度大小;(2)滑块在A点的初速度v0的大小.【答案】(1)5 m/s(2)6 m/s【解析】(1)平抛运动:,s=v B t,解得:v B=5 m/s.(2)由牛顿第二定律:μ m g=m a,运动学公式v B2﹣v02=﹣2a sAB,解得:v0=6m/s.8.如图所示,ABC是固定的倾角为θ的斜面,其高AB=h,在其顶端A点,有一个小球以某一初速度水平飞出(不计空气阻力),恰好落在其底端C点.已知重力加速度为g,求:(1)小球飞出的初速度;(2)小球落在C点时的竖直分速度大小、合速度大小及其方向正切值.【答案】(1)小球飞出的速度为;(2)小球落在C点时的竖直分速度大小为,合速度的大小为,速度与水平方向的正切值为2tanθ.【解析】(1)根据h=得,t=,则小球飞出的初速度.(2)小球落在C点时的竖直分速度.根据平行四边形定则知,合速度大小.设速度方向与水平方向的夹角为α,【类型4】平抛运动结合斜面综合应用10.如图为湖边一倾角为θ=37°的大坝的横截面示意图,水面与大坝的交点为O.一人(身高忽略不计)站在A点处以速度v0沿水平方向扔小石子,已知AO=50 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.则:(1)若要求小石子能直接落到水面上,v0最小是多少?(2)若小石子不能直接落到水面上,落到斜面时速度方向与水平面夹角的正切值是多少?【答案】(1)16.33m/s(2)1.5【解析】(1)若小石子恰能落到O点,v0最小,有AO cosθ=v0t,AO sinθ=gt2,解得v0≈16.33m/s.(2)斜面与水平方向夹角θ=37°,若小石子落到斜面上时,设速度方向与水平面的夹角为α,则tanθ==,tanα=,所以tanα=2tanθ=1.5.11.女子跳台滑雪等6个新项目已加入2014年冬奥会.如图所示,运动员踏着专用滑雪板,不带雪杖在助滑路上(未画出)获得一速度后水平飞出,在空中飞行一段距离后着陆.设一位运动员由斜坡顶的A点沿水平方向飞出的速度v0=20 m/s,落点在斜坡底的B点,斜坡倾角θ=37°,斜坡可以看成一斜面,不计空气阻力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t.(2)A、B间的距离s.【答案】(1)3 s(2)75 m【解析】(1)运动员由A点到B点做平抛运动,则水平方向的位移x=v0t竖直方向的位移y=gt2又=tan 37°,联立以上三式得t==3 s(2)由题意知sin 37°==得A、B间的距离s==75 m.12.如图所示,设一位运动员由A点沿水平方向跃出,到B点着陆,测得AB间距离L=75 m,山坡倾角α=37°(取sin 37°=0.6,cos 37°=0.8),试计算:(不计空气阻力,g取10 m/s2)(1)运动员在空气中飞行的时间t;(2)他起跳时的速度;(3)落地前瞬间速度的大小.【答案】(1)运动员在空气中飞行的时间t为3 s;(2)他起跳时的速度为30 m/s;(3)落地前瞬间速度的大小为.【解析】(1)根据L sin 37=gt2得,t=3 s(2)起跳的速度(3)落地时竖直分速度v y=gt=30 m/s,则落地的速度13.如图所示,以9.8 m/s的水平速度v0抛出的物体,飞行一段时间后与斜面呈60°撞在倾角θ=30°的斜面上,求:(1)物体做平抛运动所用的时间;(2)物体撞在斜面时的合速度大小;(3)物体的水平位移、竖直位移和合位移;(4)物体的合位移方向.【答案】(1)物体做平抛运动所用的时间为(2)物体撞在斜面时的合速度大小为11.3 m/s;(3)物体的水平位移为5.7 m、竖直位移为1.6 m和合位移为5.9 m;(4)物体的合位移与水平方向的夹角为.【解析】(1)小球与斜面呈60°撞在倾角θ=30°的斜面上,根据几何关系知,小球的速度与水平方向的夹角为30°,.(2)根据平行四边形定则知,小球撞在斜面上的合速度大小(3)水平位移.竖直位移.合位移.(4)设合位移与水平方向的夹角为α,因为速度方向与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍,=.【类型5】平抛运动双边临界位移问题15.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图所示,试计算说明:(1)此球能否过网?(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)【答案】(1)能过网(2)落在对方界外【解析】(1)当排球在竖直方向下落Δh=(3.04-2.24) m=0.8 m时,所用时间为t1,满足Δh=gt,x=v0t1.解以上两式得x=10 m>9 m,故此球能过网.(2)当排球落地时h=gt,x′=v0t2.将h=3.04 m代入得x′≈19.5 m>18 m,故排球落在对方界外.16.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s(2)5m/s【解析】(1)设小球恰好落到空地的右侧边缘时的水平初速度为v01,则小球的水平位移:L+x=v01t1小球的竖直位移:H=gt解以上两式得v01=(L+x)=13 m/s设小球恰好越过围墙的边缘时的水平初速度为v02,则此过程中小球的水平位移:L=v02t2小球的竖直位移:H-h=gt解以上两式得:v02=5 m/s小球抛出时的速度大小为5 m/s≤v0≤13 m/s(2)小球落在空地上,下落高度一定,落地时的竖直分速度一定,当小球恰好越过围墙的边缘落在空地上时,落地速度最小.竖直方向:v=2gH又有:v min=解得:v min=5m/s【类型6】平抛运动两物体相遇问题21.如图所示,斜面体ABC固定在地面上,小球p从A点静止下滑,当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角为θ=30°.不计空气阻力,g取10 m/s2.求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.【答案】(1)1s(2)【解析】(1)设小球p从斜面上下滑的加速度为a,根据牛顿第二定律a==g sinθ①下滑所需时间为t1,根据运动学公式得l=②由①②得t1=③代入数据得t1=1s(2)小球q运动为平抛运动,水平方向做匀速直线运动,设抛出速度为v0.则x=l cos30°=v0t2④依题意得:t2=t1⑤由③④⑤得22.如图所示,可视为质点的滑块B放在水平面上,在其正上方离水平面高h=0.8 m处有一可视为质点的小球A,某时刻小球A以v1=5 m/s的初速度开始向右做平抛运动,同时滑块B以v2=3 m/s 的初速度开始向右做匀加速直线运动,小球A恰好能击中滑块B,求B运动的加速度a的大小.(g =10 m/s2)【答案】10 m/s2【解析】设经时间t,小球A击中滑块B,则对小球A由平抛运动的规律得:h=gt2小球A在水平方向上的位移为x,则:x=v1t滑块B在时间t内的位移也为x,则:x=v2t+at2联立以上各式解得:a=10 m/s2【类型7】类平抛运动24.如图所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(1)物块由P运动到Q所用的时间t;(2)物块由P点水平射入时的初速度v0;(3)物块离开Q点时速度的大小v.【答案】(1)(2)b(3)【解析】(1)沿斜面向下的方向有mg sinθ=ma,l=at2联立解得t=.(2)沿水平方向有b=v0tv0==b.(3)物块离开Q点时的速度大小v=。
平抛运动典型例题(习题)专题一:平抛运动轨迹问题——认准参考系1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动专题二:平抛运动运动性质的理解——匀变速曲线运动(a→)2、把物体以一定速度水平抛出。
不计空气阻力,g取10,那么在落地前的任意一秒内()A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须()A.甲先抛出球B.先抛出球C.同时抛出两球D.使两球质量相等4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是()A.同时抛出,且v1< v2B.甲后抛出,且v1> v2C.甲先抛出,且v1> v2D.甲先抛出,且v1< v2专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系①基本公式、结论的掌握5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( )A .B .C .D .6、作平抛运动的物体,在水平方向通过的最大距离取决于( )A.物体所受的重力和抛出点的高度B.物体所受的重力和初速度C.物体的初速度和抛出点的高度D.物体所受的重力、高度和初速度7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。
人教版物理必修二 5.2平抛运动计算题类型总结【类型1】平抛运动的时间、速度和位移1.物体做平抛运动,在它落地前的 1 s内它的速度与水平方向夹角由30°变成60°,取g=10 m/s2.求:(1)平抛运动的初速度V。
;(2)平抛运动的时间;⑶平抛时的高度.2.从离地高80 m处水平抛出一个物体, 3 s末物体的速度大小为50 m/s,取g= 10 m/s2求:(1)物体抛出时的初速度大小;(2)物体在空中运动的时间;(3)物体落地时的水平位移.3.一架轰炸机在720 m的高空以50 m/s的速度匀速飞行,要轰炸地面上某一固定目标,取g=10 m/s2,求:(1)飞机应在离目标水平距离多少米处投弹?(2)若飞机每隔1 s的时间投出一颗炸弹,这些炸弹在空中如何排列?(3)炸弹落地点间的间距怎样?4.如图所示,从高为h的斜面顶端A点以速度V0水平抛出一个小球,小球落在斜面底端B点(已知重力加速度大小为g,不计空气阻力),求:(1)小球从抛出到落到B点所经过的时间;滑块从B 点飞出时的速度大小;即JZL8.如图所示,ABC 是固定的倾角为 。
的斜面,其高 AB=h ,在其顶端 A 点,有一个小球以某一初速 度水平飞出(不计空气阻力),恰好落在其底端 C 点.已知重力加速度为 g,求:(1)小球飞出的初速度;(2)小球落在C 点时的竖直分速度大小、合速度大小及其方向正切值.(2)小球落到B 点时的速度大小 【类型2】斜抛运动的规律应用5 .从某高处以6 m/s 的初速度、以 30 °抛射角斜向上抛出一石子,落地时石子的速度方向和水平线 的夹角为60。
,求: (1)石子在空中运动的时间; (2)石子的水平射程;⑶抛出点离地面的高度.(忽略空气阻力,g 取10 m/s 2) 【类型3】平抛运动规律的综合应用 6 .将某一物体以一定的初速度水平抛出,在某 则此物体的初速度大小是多少?此物体在这 1 s 内其速度方向与水平方向的夹角由37°变成53°,1 s 内下落的高度是多少? (g= 10 m/s 2, sin 37° = 0.6,cos 37 = 0.8,结果保留两位有效数字)7 .如图所示,水平台面 AB 距地面的高度 h=0.8 m.有一滑块从 A 点以初速度vo 在台面上做匀变速 直线运动,滑块与平台间的动摩擦因数 且测出滑块落地点到平台边缘的水平距离 户0.25 .滑块运动到平台边缘的B 点后以速度V B 水平飞出,s=2.0 m.已知 AB=2.2 m.不计空气阻力,g 取10m/s 2. 求:(2) 滑块在A 点的初速度vo 的大小.10 .如图为湖边一倾角为。
[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大?图1解析:在竖直方向上,摩托车越过壕沟经历的时间在水平方向上,摩托车能越过壕沟的速度至少为2. 从分解速度的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。
[例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。
可知物体完成这段飞行的时间是()A. B. C. D.图2解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。
根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。
再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。
则所以根据平抛运动竖直方向是自由落体运动可以写出所以所以答案为C。
3. 从分解位移的角度进行解题对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)[例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。
解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。
又根据运动学的规律可得竖直方向上,水平方向上则,所以Q点的速度[例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?图3解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到所以有同理则4. 从竖直方向是自由落体运动的角度出发求解在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。
抛体运动的规律计算练习 一.计算题1.军事演习中,在M 点的正上方离地2000m H =高处,一架蓝军飞机以水平速度10.9km/s v =发射一颗炮弹1,欲轰炸地面目标P ,红军的地面拦截系统同时在M 点右方水平距离1500m s =的地面上的N 点,以速度2v 发射拦截炮弹2,如图所示,若不计空气阻力(210m/s g =):(1)求目标P 离M 点的水平距离0s ;(2)红军欲拦截成功,沿竖直向上发射拦截炮弹2的速度2v 的大小应为多少?(3)若2v 的大小等于1v 的大小,红军欲拦截成功,问发射拦截炮弹2的速度2v 的方向如何调整(图示位置沿竖直向上偏右或偏左发射)?2.如图所示,以一定初速度作平抛运动的物体,在P 点时,其速度方向与水平方向成夹角30°,在Q 点时其速度方向与水平方向成夹角60°,已知从P 点至Q 点用时1s ,g 取210m s /,求:(1)物体的水平初速度0v ;(2)物体由抛出点至P 点的运动时间t ;(3)P 、Q 两点的竖直高度h 。
3.如图所示,做平抛运动的一小球,经过t=2s刚好垂直落到倾角为θ=45°的斜面上,取g=10m/s2,求:(1)小球做平抛运动上的初速度v0;(2)小球落到斜面上时的速度大小v;(3)小球从抛出点到落点间的距离s。
4.某人在离地面h=20m高的平台处做实验,松开压缩的弹簧后,小球以水平速度v0=20m/s离开平台,不计空气阻力,g取10m/s2。
求:(1)小球在空中飞行的时间;(2)小球落地点离抛出点的水平位移;(3)小球落地点时的速度与水平面之间的夹角。
5.中国的面食文化博大精深,其中“山西刀削面”堪称一绝。
如图所示,面团到锅上边沿的竖直距离0.8m h =,最近的水平距离0.6m L =,用刀削下面片,面片以03m/s v =的水平速度飞向锅中。
已知锅的直径0.4m d =,重力加速度210m/s g =,不计空气阻力,面片可视作质点。
2023人教版带答案高中物理必修二第五章抛体运动微公式版经典大题例题单选题1、如图所示,一质点做平抛运动,落地时速度大小为20m/s,速度方向与水平地面夹角为60°,则水平分速度大小是()A.10m/sB.10√3m s⁄C.20m/sD.20√3m s⁄答案:A根据题意可知,落地速度与水平分速度的关系,如图所示由几何关系可得v x=vcos60°=10m/s故选A。
2、质量为1kg的物体在一平面内做曲线运动,相互垂直的x、y方向上的速度图像如图所示。
下列说法正确的是()A.物体的初速度为5m/sB.物体所受的合外力为3NC.2s末物体速度大小为7m/sD.2s末物体速度方向与y方向成53°角答案:DA.由图可知x方向初速度为4m/s,y方向初速度为0,则物体的初速度大小为4m/s,故A错误;B.物体在x方向加速度为零,只有y方向有加速度,由vy-t图像的斜率读出物体的加速度a=ΔvΔt=32m/s2=1.5m/s2根据牛顿第二定律可得物体所受的合外力为F=ma=1.5N故B错误;C.根据图像可知2s末时vx=4m/s、vy=3m/s,则物体的速度为v=√v x2+v y2=5m/s 故C错误;D.设2s末物体速度方向与y方向的夹角为θ,有tanθ=v xv y=43解得θ=53°,故D 正确。
故选D 。
3、如图所示,x 轴在水平地面上,y 轴在竖直方向。
图中画出了从y 轴上不同位置沿x 轴正向水平抛出的三个小球a 、b 和c 的运动轨迹。
小球a 从(0,2L )抛出,落在(2L ,0)处;小球b 、c 从(L ,0)抛出,分别落在(2L ,0)和(L ,0)处。
不计空气阻力,下列说法正确的是( )A .a 和b 初速度相同B .b 和c 运动时间不同C .b 的初速度是c 的两倍D .a 运动时间是b 的两倍答案:CBD .由平抛运动规律得L =12gt b 2=12gt c 2 解得b 和c 运动时间t b =t c =√2L g 同理可得t a =2√L gt a=√2t b所以b、c的运动时间相同,a的运动时间是b运动时间的√2倍,故B、D错误;A.因为a的飞行时间长,但是水平位移相同,根据x=v0t可知,a的水平速度小于b的水平速度,故A错误;C.b、c的运动时间相同,b的水平位移是c的水平位移的两倍,则b的初速度是c的初速度的两倍,故C正确。
平抛运动典型例题(习题)
平抛运动运动性质的理解
1、做平抛运动的物体,每秒的速度增量总是()
A.大小相等,方向相同B.大小不等,方向不同
C.大小相等,方向不同D.大小不等,方向相同
2、把物体以一定速度水平抛出。
不计空气阻力,g取10,那么在落地前的任意一秒内()
A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10
C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m
3、对于一个做平抛运动的物体,它在从抛出开始的四段连续相等的时间内,在水平方向和竖直方向的位移之比,下列说法正确的是()
A.1:2:3:4;1:4:9:16 B.1:3:5:7;1:1:1:1
C.1:1:1:1;1:3:5:7 D.1:4:9:16;1:2:3:4
平抛运动的基本计算题类型
4、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是()A. B.C. D.
5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。
物体与斜面接触时速度与水平
方向的夹角满足()
A.tanφ=sinθ
B. tanφ=cosθ
C. tanφ=tanθ
D. tanφ=2tanθ
6、两个物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面高度之比为A.1∶2 B.1∶ C.1∶4 D.4∶1
7、以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是()
A.此时小球的竖直分速度大小等于水平分速度大小 B.此时小球的速度大小为
C.小球运动的时间为 D.此时小球速度的方向与位移的方向相
8、如图所示,足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v0抛出,落到斜面上所用时间为t2,则t1 : t2为()
A.1 : 1 B.1 : 2 C.1 : 3 D.1 : 4
9、如图所示的两个斜面,倾角分别为37°和53°,在顶点两个小球A、B以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球平抛运动时间之比为()
A.1:1
B.4:3
C.16:9
D.9:1
10、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,
可知物体完成这段飞行的时间是()
A.s B.s C.s D.2s
11、如图所示,高为h=1.25 m的平台上,覆盖一层薄冰,现有一质量为60 kg的滑雪爱好者,以一定的初速度v向平台边缘滑去,着地时的速度方向与水平地面的夹角为45°(取重力加速度g=10 m/s2).由此可知正确的是()
A.滑雪者离开平台边缘时的速度大小是5.0 m/s
B.滑雪者着地点到平台边缘的水平距离是2.5 m
C.滑雪者在空中运动的时间为0.5 s
D.滑雪者着地的速度大小为5 m/s
12、将物体在h=20m高处以初速度v0=10m/s水平抛出,不计空气阻力(g取10m/s2),求:
(1)物体的水平射程(2)物体落地时速度大小
13、如图所示,一条小河两岸的高度差是h,河宽是高度差的4倍,一辆摩托车(可看作质点)以v0=20m/s的水平速度向河对岸飞出,恰好越过小河。
若g=10m/s2,求:
(1)摩托车在空中的飞行时间(2)小河的宽度
14、跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动。
运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆。
如图所示,设某运动员从倾角为θ=37°的坡顶A点以速度v0=20m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以看成一个斜面。
(g=10m/s2,sin37º=0.6,cos37º=0.8)求:
(1)运动员在空中飞行的时间t;(2)AB间的距离s.
15、如图所示,从倾角为θ的斜面上的M点水平抛出一个小球,小球的初速度为v0,最后小球落在斜面上的N 点,求
(1)小球的运动时间;
(2)小球到达N点时的速度.
16、如图所示,一小球自平台上水平抛出,恰好落在临近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8m,g=10m/s2,sin53°=0.8,cos53°=0.6,则
(1)小球水平抛出的初速度υ
0是多少?
(2)斜面顶端与平台边缘的水平距离s是多少?
17、在冬天,高为h=1.25m的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=24m处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为
,取重力加速度g=10m/s2。
求:
(1)滑动者着地点到平台边缘的水平距离是多大;
(2)若平台上的冰面与雪撬间的动摩擦因数为,则滑雪者的初速度是多大?
18、如图所示,一小球从距水平地面h高处,以初速度v0水平抛出。
(1)求小球落地点距抛出点的水平位移
(2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。
(不计空气阻力)
19、如图所示,一小球自倾角θ=37°的斜面顶端A以水平速度v0=20m/s抛出,小球刚好落到斜面的底端B(空气阻力不计),求小球在平抛运动过程中离开斜面的最大高度.。