轴心受压构件的强度计算
- 格式:ppt
- 大小:523.50 KB
- 文档页数:19
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
钢结构强度稳定性计算书计算依据:1、《钢结构设计规范》GB50017-2003一、构件受力类别:轴心受压构件。
二、强度验算:1、轴心受压构件的强度,可按下式计算:σ = N/A n≤ f式中N──轴心压力,取N= 10 kN;A n──净截面面积,取A n= 298 mm2;轴心受压构件的强度σ= N / A n = 10×103 / 298 = 33.557 N/mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;由于轴心受压构件强度σ= 33.557 N/mm2≤承载力设计值f=205 N/mm2,故满足要求!2、摩擦型高强螺栓连接处的强度,按下面两式计算,取最大值:σ = (1-0.5n1/n)N/A n≤ f式中N──轴心压力,取N= 10 kN;A n──净截面面积,取A n= 298 mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;n──在节点或拼接处,构件一端连接的高强螺栓数目,取n = 4;n1──所计算截面(最外列螺栓处)上高强螺栓数目;取n1 = 2;σ= (1-0.5×n1/n)×N/A n=(1-0.5×2/4)×10×103/298=25.168 N/mm2;σ = N/A ≤ f式中N──轴心压力,取N= 10 kN;A──构件的毛截面面积,取A= 354 mm2;σ=N/A=10×103/354=28.249 N/mm2;由于计算的最大强度σmax = 28.249 N/mm2≤承载力设计值=205 N/mm2,故满足要求!3、轴心受压构件的稳定性按下式计算:N/φA n≤ f式中N──轴心压力,取N= 10 kN;l──构件的计算长度,取l=5000 mm;i──构件的回转半径,取i=23.4 mm;λ──构件的长细比, λ= l/i= 5000/23.4 = 213.675;[λ]──构件的允许长细比,取[λ]=250 ;构件的长细比λ= 213.675 ≤[λ] = 250,满足要求;φ──轴心受压构件的稳定系数, λ=l/i计算得到的构件柔度系数作为参数查表得φ=0.165;A n──净截面面积,取A n= 298 mm2;f──钢材的抗压强度设计值,取f= 205 N/mm2;N/(φA n)=10×103/(0.165×298)=203.376 N/mm2;由于σ= 203.376 N/mm2≤承载力设计值f=205 N/mm2,故满足要求!。
4.1.1在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗弯强度应按下列规定计算:`(M_x)/(γ_xW_(nx))+(M_y)/(γ_xW_(ny))≤f`(4.1.1)式中M x、M y——同一截面处绕x轴和y轴的弯矩(对工字形截面:x轴为强轴,y轴为弱轴);Wnx、Wny——对x轴和y轴的净截面模量;γx、γy——截面塑性发展系数;对工字形截面γy=1.20;对箱形截面,γX=Y y=1.05;对其他截面,可按表5.2.1采用;f——钢材的抗弯强度设计值。
当梁受压翼缘的自由外伸宽度与其厚度之比大于13`sqrt(235//f_y)`而不超过15`sqrt(235//f_y)`时,γx=1.0。
f y应取为钢材牌号所指屈服点。
对需要计算疲劳的梁,宜取γx=γy=1.0。
4.1.2在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其抗剪强度应按下式计算:`τ=(VS)/(It_w)`(4.1.2)式中V——计算截面沿腹板平面作用的剪力;S——计算剪应力处以上毛截面对中和轴的面积矩;I——毛截面惯性矩;t w——腹板厚度;fv——钢材的抗剪强度设计值。
4.1.3当梁上翼缘受有沿腹板平面作用的集中荷载、且该荷载处又未设置支承加劲肋时,腹板计算高度上边缘的局部承压强度应按下式计算:`σ_c=(varphiF)/(t_wl_z)≤f`(4.1.3-1)式中F——集中荷载,对动力荷载应考虑动力系数;ψ——集中荷载增大系数;对重级.工作制吊车梁ψ=1. 35;对其他梁,ψ=1.0;l z——集中荷载在腹板计算高度上边缘的假定分布长度,按下式计算:l2=a+5h y+2h R ( 4.1.3-2 )a——集中荷载沿梁跨度方向的支承长度,对钢轨上的轮压可取50mm;h y——自梁顶面至腹板计算高度上边缘的距离;h R——轨道的高度,对梁顶无轨道的梁h R=0;f——钢材的抗压强度设计值。
轴心受力构件的强度和刚度计算1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。
轴心受力构件的强度计算公式为f A Nn≤=σ (4-1) 式中: N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。
因此,验算最外列螺栓处危险截面的强度时,应按下式计算:f A N n≤='σ (4-2)'N =)5.01(1nn N - (4-3)式中: n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数; 0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度f AN≤=σ (4-4)式中: A ——构件的毛截面面积。
2.轴心受力构件的刚度计算为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。
轴心受力构件的刚度是以限制其长细比来保证的,即][λλ≤ (4-5)式中: λ——构件的最大长细比;[λ]——构件的容许长细比。
3. 轴心受压构件的整体稳定计算《规范》对轴心受压构件的整体稳定计算采用下列形式:f AN≤ϕ (4-25)式中:ϕ——轴心受压构件的整体稳定系数,ycrf σϕ=。
整体稳定系数ϕ值应根据构件的截面分类和构件的长细比查表得到。
构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件⎭⎬⎫==y y y x x x i l i l //00λλ(4-26)式中:x l 0,y l 0——构件对主轴x 和y 的计算长度;x i ,y i ——构件截面对主轴x 和y 的回转半径。
双轴对称十字形截面构件,x λ或y λ取值不得小于5.07b/t (其中b/t 为悬伸板件宽厚比)。
轴心受压件的设计
1.轴心受力构件常用的截面形式:型钢截面、实腹式组合截面和格构式组合截面;
2.设计时应满足强度、刚度、整体稳定性和局部稳定性的要求:1)强度计算:σ=N/A n≤f;
2)刚度计算:只需控制构件的计算长细比在允许的长细比限值之内即可满足要求
λ=ι0
i ≤[λ];i=√I
A
ι0——相应方向的构件计算长度,详见各类构件取值规定
i——构件截面的回转半径
I——构件截面惯性矩
A——构件截面面积
3)整体稳定性计算:N/(Aφ)≤f
φ——轴心受压构件的稳定系数,φ=N u
Aσs =σu
σy
;
4)局部稳定性计算:
①板的临界应力σcr计算:
根据弹性理论,对四边简支板受均匀压力下,板的屈曲应力σcr为:
σcr=N cr
t =χβ√ηπ2E
12(1−ν2)
(t
b
)
2
β——薄板的稳定性系数,与板的性状、支承条件和受力状况有关,
β=(mb
a +a
mb
)2;
a、b——四边简支板的长度和短边的长度;
m——临界时半波数;
χ——支承边弹性嵌固系数,χ≥1;√η——弹性模量折减系数,η=E t/E;
E t——相应于σcr值的切线模量;t——板的厚度;
ν——钢材的泊松比;
②板件宽厚比限值:
σcr=N cr
t =χβ√ηπ2E
12(1−ν2)
(t
b
)
2
≥φf y;
φ——杆件整体稳定系数;
f y——钢材的屈服强度;。
轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
7 轴心受力构件
7.1 截面强度计算
7.1.1 轴心受拉构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,其截面强度计算应符合下列规定: 1 除采用高强度螺栓摩擦型连接者外,其截面强度应采用下列公式计算:
式中:N ——所计算截面处的拉力设计值(N);
f ——钢材的抗拉强度设计值(N/mm 2
); A ——构件的毛截面面积(mm 2
); A n ——构件的净截面面积,当构件多个截面有孔时,取最不利的截面(mm 2
); f u ——钢材的抗拉强度最小值(N/mm 2
); n ——在节点或拼接处,构件一端连接的高强度螺栓数目;
n 1——所计算截面(最外列螺栓处)高强度螺栓数目。
7.1.2 轴心受压构件,当端部连接及中部拼接处组成截面的各板件都由连接件直接传力时,截面强度应按本标准式(7.1.1-1)计算。
但含有虚孔的构件尚需在孔心所在截面按本标准式(7.1.1-2)计算。
7.1.3 轴心受拉构件和轴心受压构件,当其组成板件在节点或拼接处并非全部直接传力时,应将危险截面的面积乘以有效截面系数η,不同构件截面形式和连接方式的η值应符合表7.1.3的规定。
表7.1.3 轴心受力构件节点或拼接处危险截面有效截面系数。
薄壁型钢构件计算5 构件的计算5.1 轴心受拉构件5.1.1 轴心受拉构件的强度应按下式计算:式中σ——正应力;N——轴心力;A n——净截面面积;f——钢材的抗拉、抗压和抗弯强度设计值。
高强度螺栓摩擦型连接处的强度应按下列公式计算:式中n1——所计算截面(最外列螺栓)处的高强度螺栓数;n——在节点或拼接处,构件一端连接的高强度螺栓数;A——毛截面面积。
5.1.2 计算开口截面的轴心受拉构件的强度时,若轴心力不通过截面弯心(或不通过Z 形截面的扇性零点),则应考虑双力矩的影响。
注:本条规定也适用于轴心受压、拉弯、压弯构件。
5.2 轴心受压构件5.2.1 轴心受压构件的强度应按下式计算:式中:A en——有效净截面面积。
5.2.2 轴心受压构件的稳定性应按下式计算:式中——轴心受压构件的稳定系数,应按本规范表A.1.1-1或表A.1.1-2采用;A e——有效截面面积。
5.2.3 计算闭口截面、双轴对称的开口截面和截面全部有效的不卷边的等边单角钢轴心受压构件的稳定系数时,其长细比应取按下列公式算得的较大值:式中:λx、λy——构件对截面主轴x轴和y轴的长细比;l0x、l0y——构件在垂直于截面主轴x轴和y轴的平面内的计算长度;i x、i y——构件毛截面对其主轴x轴和y轴的回转半径。
5.2.4 计算单轴对称开口截面(如图5.2.4所示)轴心受压构件的稳定系数时,其长细比应取按公式5.2.3-2和下式算得的较大值:式中λω——弯扭屈曲的换算长细比;Iω——毛截面扇性惯性矩;I t——毛截面抗扭惯性矩;e0——毛截面的弯心在对称轴上的坐标;lω——扭转屈曲的计算长度,lω=β·l;l——无缀板时,为构件的几何长度;有缀板时,取两相邻缀板中心线的最大间距;α,β——约束系数,按表5.2.4采用。
表5.2.4 开口截面轴心受压和压弯构件的约束系数图5.2.4 单轴对称开口截面示意图5.2.5 有缀板的单轴对称开口截面轴心受压构件弯扭屈曲的换算长细比λω可按公式5.2.4-1计算,约束系数α、β可按表5.2.4采用,但扭转屈曲的计算长度lω=β·a,a 为缀板中心线的最大间距。
第一节一、普通箍筋柱二、螺旋箍筋柱以承受轴向压力为主的构件称为受压构件。
凡荷载的合力通过截面形心的受压构件称之为轴心受压构件(compression members with axial load at zero eccentricity)。
若纵向荷载的合力作用线偏离构件形心的构件称之为偏心受压构件。
受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。
按箍筋作用的不同,钢筋混凝土轴心受压构件可分为两种基本类型:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另一种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。
一、普通箍筋柱(一)构造要点1、截面形式:正方形、矩形、工字形、圆形;2、截面尺寸:根据正压力、柱身弯距来确定,截面最小边长不宜小于250mm;3、纵筋:(1)纵向受力钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm,根数不少于4根。
(2)构件的全部纵向钢筋配筋率不宜超过5%。
构件的最小配筋率不应小于0.5%,当混凝土强度等级为C50及以上时不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
(3)纵向受力钢筋应伸入基础(foundations)和盖梁(caps),伸入长度不应规定的锚固长度。
4、箍筋:(1)箍筋应做成封闭式,以保证钢筋骨架的整体刚度。
(2)箍筋间距应不大于纵向受力钢筋直径的15倍且不大于构件横截面的较小尺寸(圆形截面采用0.8倍直径)且不大于400mm。
纵向受力钢筋搭接范围的箍筋间距,当绑扎搭接钢筋受拉时不大于主钢筋直径的5倍且不大100mm;当搭接钢筋受压时不大于主钢筋直径的10倍且不大于200mm。
纵向钢筋截面面积大于混凝土截面面积3%时,箍筋间距不应大于纵向钢筋直径的10倍且不大于200mm。
(3)箍筋直径不小于8mm且不小于纵向钢筋直径的1/4。