关于xx和xx2的两个对称不等式的证明
- 格式:docx
- 大小:36.74 KB
- 文档页数:1
高考数学总复习考点知识讲解与提升练习专题9 函数的对称性考点知识1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.知识梳理1.奇函数、偶函数的对称性(1)奇函数关于原点对称,偶函数关于y轴对称.(2)若f(x-2)是偶函数,则函数f(x)图象的对称轴为x=-2;若f(x-2)是奇函数,则函数f(x)图象的对称中心为(-2,0).2.若函数y=f(x)的图象关于直线x=a对称,则f(a-x)=f(a+x);若函数y=f(x)满足f(a-x)=-f(a+x),则函数的图象关于点(a,0)对称.3.两个函数图象的对称(1)函数y=f(x)与y=f(-x)关于y轴对称;(2)函数y=f(x)与y=-f(x)关于x轴对称;(3)函数y=f(x)与y=-f(-x)关于原点对称.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=f(x+1)是偶函数,则函数y=f(x)的图象关于直线x=1对称.(√)(2)函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(1,0)对称.(×)(3)若函数f(x)满足f(x-1)+f(x+1) =0,则f(x)的图象关于y轴对称.(×)(4)若函数f(x)满足f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称.(√)教材改编题1.函数f(x)=x+1x图象的对称中心为()A.(0,0) B.(0,1) C.(1,0) D.(1,1) 答案B解析因为f(x)=x+1x=1+1x,由y=1x向上平移一个单位长度得到y=1+1x,又y=1x关于(0,0)对称,所以f(x)=1+1x的图象关于(0,1)对称.2.已知定义在R上的函数f(x)在[-2,+∞)上单调递减,且f(-2-x)=f(-2+x),则f(-4)与f(1)的大小关系为________.答案f(-4)>f(1)解析∵f(-2-x)=f(-2+x),∴f(x)关于直线x=-2对称,又f(x)在[-2,+∞)上单调递减,∴f(-4)=f(0)>f(1),故f(-4)>f(1).3.偶函数y=f(x)的图象关于直线x=2对称,且当x∈[2,3]时,f(x)=2x-1,则f(-1)=________.答案5解析∵f(x)为偶函数,∴f(-1)=f(1),由f(x)的图象关于x=2对称,可得f(1)=f(3)=2×3-1=5.题型一轴对称问题例1(1)已知定义在R上的函数f(x)是奇函数,对x∈R都有f(x+1)=f(1-x),当f(-3)=-2时,则f(2023)等于()A.-2B.2C.0D.-4答案B解析定义在R上的函数f(x)是奇函数,且对x∈R都有f(x+1)=f(1-x),故函数f(x)的图象关于直线x=1对称,∴f(x)=f(2-x),故f(-x)=f(2+x)=-f(x),∴f(x)=-f(2+x)=f(4+x),∴f(x)是周期为4的周期函数.则f(2023)=f(505×4+3)=f(3)=-f(-3)=2.(2)已知函数f(x)的定义域为R,且f(x+2)为偶函数,f(x)在[2,+∞)上单调递减,则不等式f(x-1)>f(1)的解集为________.答案(2,4)解析∵f(x+2)是偶函数,∴f(x+2)的图象关于直线x=0对称,∴f(x)的图象关于直线x=2对称,又f(x)在[2,+∞)上单调递减,∴f(x)在(-∞,2]上单调递增.又f(x-1)>f(1),∴|x-1-2|<|1-2|,即|x-3|<1,解得2<x<4,∴原不等式的解集为(2,4).思维升华函数y=f(x)的图象关于直线x=a对称⇔f(x)=f(2a-x)⇔f(a-x)=f(a+x);若函数y=f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2成轴对称.跟踪训练1(1)已知函数f(x)=-x2+bx+c,且f(x+1)是偶函数,则f(-1),f(1),f(2)的大小关系是()A.f(-1)<f(1)<f(2)B.f(1)<f(2)<f(-1)C.f(2)<f(-1)<f(1)D.f(-1)<f(2)<f(1)答案D解析因为f(x+1)是偶函数,所以其对称轴为x=0,所以f(x)的对称轴为x=1,又二次函数f(x)=-x2+bx+c的开口向下,根据自变量离对称轴的距离可得f(-1)<f(2)<f(1).(2)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x-1),那么函数f (x )在[-2,0]上的最大值与最小值之和为() A .2B .3C .4D .-1 答案C解析根据f (1+x )=f (-x )可知,f (x )的图象关于x =12对称,那么求函数f (x )在[-2,0]上的最大值与最小值之和,即求函数f (x )在[1,3]上的最大值与最小值之和,因为f (x )=log 2(3x -1)在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,所以最小值与最大值分别为f (1)=1,f (3)=3,f (1)+f (3)=4. 题型二中心对称问题例2(1)(多选)若定义在R 上的偶函数f (x )的图象关于点(2,0)对称,则下列说法正确的是()A .f (x )=f (-x )B .f (2+x )+f (2-x )=0C .f (-x )=-f (x +4)D .f (x +2)=f (x -2) 答案ABC解析因为f (x )为偶函数,则f (x )=f (-x ),故A 正确;因为f (x )的图象关于点(2,0)对称,对于f (x )的图象上的点(x ,y )关于(2,0)的对称点(4-x ,-y )也在函数图象上,即f (4-x )=-y =-f (x ),用2+x 替换x 得到,f [4-(2+x )]=-f (2+x ),即f (2+x )+f (2-x )=0,故B 正确;由f (2+x )+f (2-x )=0,令x =x +2,可得f (x +4)+f (-x )=0,即f (-x )=-f (x +4),故C 正确;由B 知,f (2+x )=-f (2-x )=-f (x -2),故D 错误.(2)已知函数f (x )满足f (x )+f (-x )=2,g (x )=1x+1,y =f (x )与y =g (x )有4个交点,则这4个交点的纵坐标之和为________. 答案4解析因为f (x )+f (-x )=2,所以y =f (x )的图象关于点(0,1)对称, y =g (x )=1x+1的图象也关于点(0,1)对称,则交点关于(0,1)对称,所以4个交点的纵坐标之和为2×2=4.思维升华函数y =f (x )的图象关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔2b -f (x )=f (2a -x );若函数y =f (x )满足f (a +x )+f (b -x )=c ,则y =f (x )的图象关于点⎝⎛⎭⎪⎫a +b 2,c 2成中心对称. 跟踪训练2(1)函数f (x )=e x -2-e 2-x 的图象关于() A .点(-2,0)对称B .直线x =-2对称 C .点(2,0)对称D .直线x =2对称 答案C解析∵f (x )=e x -2-e 2-x ,∴f (2+x )=e 2+x -2-e 2-(2+x )=e x -e -x ,f (2-x )=e 2-x -2-e 2-(2-x )=e -x -e x , 所以f (2+x )+f (2-x )=0,因此,函数f (x )的图象关于点(2,0)对称.(2)(2023·郑州模拟)若函数f (x )满足f (2-x )+f (x )=-2,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案D解析因为f(2-x)+f(x)=-2,所以f(x)关于点(1,-1)对称,所以将f(x)向左平移1个单位长度,再向上平移1个单位长度得到函数y=f(x+1)+1,该函数的对称中心为(0,0),故y=f(x+1)+1为奇函数.题型三两个函数图象的对称例3已知函数y=f(x)是定义域为R的函数,则函数y=f(x+2)的图象与y=f(4-x)的图象()A.关于直线x=1对称B.关于直线x=3对称C.关于直线y=3对称D.关于点(3,0)对称答案A解析设P(x0,y0)为y=f(x+2)图象上任意一点,则y0=f(x0+2)=f(4-(2-x0)),所以点Q(2-x0,y0)在函数y=f(4-x)的图象上,而P(x0,y0)与Q(2-x0,y0)关于直线x=1对称,所以函数y=f(x+2)的图象与y=f(4-x)的图象关于直线x=1对称.思维升华函数y=f(a+x)的图象与函数y=f(b-x)的图象关于直线x=b-a2对称.跟踪训练3设函数y=f(x)的定义域为R,则函数y=f(x-1)的图象与y=f(1-x)的图象()A.关于y轴对称B.关于x轴对称C.关于直线x=1对称D.关于直线y=1对称答案C解析A选项,函数y=f(x-1)关于y轴对称的函数为y=f(-x-1)≠f(1-x),故A错误;B选项,函数y=f(x-1)关于x轴对称的函数为y=-f(x-1)≠f(1-x),故B错误;C选项,函数y=f(x-1)关于直线x=1对称的函数为y=f(2-x-1)=f(1-x),故C 正确;D选项,函数y=f(x-1)关于直线y=1对称的函数为y=2-f(x-1)≠f(1-x),故D 错误.课时精练1.已知函数y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点() A.(-1,2) B.(1,2)C.(-1,-2) D.(-2,1)答案A解析函数y=f(x)与y=-f(-x)的图象关于原点对称,又y=f(x)的图象经过点P(1,-2),则函数y=-f(-x)的图象必过点(-1,2).2.已知函数f(x)=2|x-a|的图象关于直线x=2对称,则a等于()A.1B.2C.0D.-2答案B解析函数y=2|x|的图象关于y轴对称,将函数y=2|x|的图象向右平移2个单位长度可得函数y=2|x-2|的图象,所以函数y=2|x-2|的图象关于直线x=2对称,故a=2.3.已知奇函数f(x)满足f(5)=1,且f(x-2)的图象关于x=3对称,则f(2025)等于()A.-1B.1C.0D.3答案B解析∵函数f(x-2)的图象关于直线x=3对称,∴f(x)的图象关于直线x=1对称,∴f(-x)=f(x+2),∵f(x)为奇函数,∴f(-x)=f(2+x)=-f(x),∴f(x+4)=f(x),∴f(x)是周期为4的周期函数,∴f(2025)=f(1)=f(5)=1.4.(2023·郑州质检)若函数f(x)满足f(-x)+f(x)=2,则下列函数是奇函数的是() A.f(x-1)-1B.f(x+1)+1C.f(x)-1D.f(x)+1答案C解析∵f(-x)+f(x)=2,∴f(x)的图象关于(0,1)对称,将y=f(x)的图象向下平移1个单位长度得函数y=f(x)-1的图象,该图象关于(0,0)对称,∴y=f(x)-1为奇函数.5.已知函数f(x+2)是R上的偶函数,且f(x)在[2,+∞)上恒有f(x1)-f(x2)x1-x2<0(x1≠x2),则不等式f(ln x)>f(1)的解集为()A.(-∞,e)∪(e3,+∞) B.(1,e2)C.(e,e3) D.(e,+∞)答案C解析因为函数f(x+2)是R上的偶函数,所以f(x)的图象关于直线x=2对称,在[2,+∞)上恒有f(x1)-f(x2)x1-x2<0(x1≠x2),当x1<x2时,f(x1)>f(x2),所以f(x)在[2,+∞)上单调递减,f(x)在(-∞,2)上单调递增,不等式f(ln x)>f(1)需满足|ln x-2|<|1-2|⇒1<ln x<3,解得e<x<e3.6.(多选)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,则下列关于f(x)的结论中正确的有()A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上单调递增C.f(x)在[1,2]上单调递减D.f(2)=f(0)答案AD解析根据题意,若f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),即f(x+2)=f(x),f(x)是周期为2的周期函数,则有f(2)=f(0),故D正确;若f(x+2)=f(x),且函数f(x)为偶函数,则有f(x+2)=f(-x),则函数f(x)的图象关于直线x=1对称,故A正确;f(x)在[-1,0]上单调递增,且函数f(x)为偶函数,则函数f(x)在[0,1]上单调递减,故B错误;f(x)在[-1,0]上单调递增,且f(x)是周期为2的周期函数,则函数f(x)在[1,2]上单调递增,故C错误.7.与f(x)=e x关于直线x=1对称的函数是________.答案y=e2-x解析f(x)=e x关于直线x=1对称的是f(2-x)=e2-x,即y=e2-x.8.(2022·江苏七市联考)写出一个同时具有性质①②③的函数f(x)=________.①f(x)是定义域为R的奇函数;②f(1+x)=f(1-x);③f(1)=2.答案2sin π2x(答案不唯一)解析由①②③可知函数f(x)是对称轴为x=1,定义域为R的奇函数,且f(1)=2,可写出满足条件的函数f(x)=2sin π2 x.9.已知函数f(x)=a·2x-2-x2x+2-x是奇函数.(1)求a的值,并解关于x的不等式f(x)>1 3;(2)求函数g(x)=2x+12x+2-x图象的对称中心.解(1)对任意的x∈R,2x+2-x>0,故函数f(x)的定义域为R,又因为函数f(x)=a·2x-2-x2x+2-x为奇函数,则f(0)=a-12=0,解得a=1,所以f(x)=2x-2-x2x+2-x,下面验证函数f(x)=2x-2-x2x+2-x为奇函数,f(-x)=2-x-2x2-x+2x=-f(x),故函数f(x)=2x-2-x2x+2-x为奇函数,由f(x)=2x-2-x2x+2-x=2x(2x-2-x)2x(2x+2-x)=4x-14x+1>13,得2·4x>4,即22x+1>22,所以2x+1>2,解得x>1 2,因此不等式f(x)>13的解集为⎝⎛⎭⎪⎫12,+∞.(2)g(x)=2x+12x+2-x=2·2x2x+2-x,则g(-x)=2·2-x2-x+2x,所以g(x)+g(-x)=2(2x+2-x)2x+2-x=2,因此函数g(x)=2x+12x+2-x图象的对称中心为(0,1).10.函数y =f (x )的图象关于点P (a ,b )成中心对称的充要条件是函数y =f (x +a )-b 为奇函数.(1)若f (x )=x 3-3x 2.求此函数图象的对称中心;(2)类比上述推广结论,写出“函数y =f (x )的图象关于y 轴成轴对称的充要条件是函数y =f (x )为偶函数”的一个推广结论.解(1)设函数f (x )=x 3-3x 2图象的对称中心为P (a ,b ),g (x )=f (x +a )-b , 则g (x )为奇函数,故g (-x )=-g (x ),故f (-x +a )-b =-f (x +a )+b , 即f (-x +a )+f (x +a )=2b ,即[(-x +a )3-3(-x +a )2]+[(x +a )3-3(x +a )2]=2b . 整理得(3a -3)x 2+a 3-3a 2-b =0,故⎩⎨⎧3a -3=0,a 3-3a 2-b =0,解得⎩⎨⎧a =1,b =-2,所以函数f (x )=x 3-3x 2图象的对称中心为(1,-2).(2)推论:函数y =f (x )的图象关于直线x =a 成轴对称的充要条件是函数y =f (x +a )为偶函数.11.(多选)已知函数y =f (x ),x ∈R ,下列4个命题中是真命题的是() A .若y =f (x +1)为偶函数,则f (x )的图象自身关于直线x =1对称 B .函数f (x -1)与f (1-x )的图象关于直线x =1对称C .若f (x )为奇函数,且f (x +2)=-f (x ),则f (x )的图象自身关于点(1,0)对称D .若f (x )为奇函数,且f (x )=f (-x -2),则f (x )的图象自身关于直线x =1对称 答案ABD解析对于A ,若y =f (x +1)为偶函数,其函数图象关于直线x =0对称,故y =f (x +1)的图象向右平移1个单位长度得f (x )的图象,故f (x )的图象自身关于直线x =1对称,正确;对于B ,将f (x )的图象向右平移1个单位长度,可得f (x -1)的图象,将f (x )的图象关于y 轴对称得f (-x )的图象,然后将其图象向右平移1个单位长度得f (1-x )的图象,故f (x -1)与f (1-x )的图象关于直线x =1对称,故正确;对于C ,若f (x )为奇函数,且f (x +2)=-f (x )=f (-x ),故f (x +1)=f (1-x ),所以f (x )的图象自身关于直线x =1对称,故不正确;对于D ,因为f (x )为奇函数,且f (x )=f (-x -2),故f (x +2)=-f (x )=f (-x ),所以f (x )的图象自身关于直线x =1对称,故正确.12.已知函数f (x )满足f (x +2)是偶函数,若函数y =|x 2-4x -5|与函数y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则横坐标之和x 1+x 2+…+x n =________. 答案2n解析因为f (x +2)是偶函数,所以函数f (x +2)的图象关于直线x =0对称, 又因为函数f (x +2)向右平移2个单位长度得到函数f (x )的图象, 所以函数f (x )的图象关于直线x =2对称, 因为y =|x 2-4x -5|=|(x -2)2-9|,所以函数y =|x 2-4x -5|的图象也关于直线x =2对称, 所以x 1+x 2+…+x n =n2·4=2n .13.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x >0,-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有()A .0对B .1对C .2对D .3对 答案B解析作出函数y =f (x )的图象,如图所示,再作出-y =f (-x ),记为曲线C ,由图象可知,满足条件的对称点只有一对,图中的A ,B 就是符合题意的点. 14.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -2-4,x ≤2,2x -2-4,x >2,则满足f (2+log 4x )>f (1-log 4x )的x 的取值范围是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,2 C .(0,2) D .(2,+∞)答案A解析当x ≤2时,f (x )=⎝ ⎛⎭⎪⎫12x -2-4=22-x -4=2|x -2|-4,当x >2时,f (x )=2x -2-4=2|x -2|-4, 所以对任意的x ∈R ,f (x )=2|x -2|-4,则f (4-x )=2|4-x -2|-4=2|x -2|-4=f (x ),所以函数f (x )的图象关于直线x =2对称, 因为函数f (x )在[2,+∞)上单调递增,由f (2+log 4x )>f (1-log 4x )可得|2+log 4x -2|>|1-log 4x -2|,即|log 4x |>|1+log 4x |,不等式|log 4x |>|1+log 4x |两边平方得log 4x <-12,解得0<x <12.。
一个代数不等式的几何证法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。
步骤/方法比较法比较法是证明不等式的最基本方法,具体有作差比较和作商比较两种。
基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。
当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)基准1未知a+b0,澄清:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。
∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证明: =(a-b)2(a+b)又∵(a-b)20(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、br+,且ab,求证:aabbabba分析:由澄清的不等式所述,a、b具备轮休对称性,因此可以在设a0的前提下用做商比较法,作商后同1比较大小,从而达至证明目的,步骤就是:10作商20商形整理30推论为与1的大小证明:由a、b的对称性,不妨解a0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba练习1 已知a、br+,nn,求证(a+b)(an+bn)2(an+1+bn+1)基本不等式法利用基本不等式及其变式证明不等式就是常用的方法,常用的基本不等式及变形存有:(1)若a、br,则a2+b22ab(当且仅当a=b时,取等号)(2)若a、br+,则a+b 2ab (当且仅当a=b时,挑等号)(3)若a、b同号,则 ba+ab2(当且仅当a=b时,取等号)基准3 若a、br, |a|1,|b|1则a1-b2+b1-a21分析:通过观察可直接套用: xyx2+y22证明:∵a1-b2b1-a2a2+(1-b2)2+b2-(1-a2)2=1b1-a2+a1-b21,当且仅当a1+b2=1时,等号成立练2:若 a?b?0,证明a+1(a-b)b3综合法综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。
3_¥)故学敉学2021年第3期例谈题根在数学解题中的应用----以对数均值不等式为例张国治(新疆生产建设兵团第二中学,新疆乌鲁木齐83_2)笔者通过对近几年高考、竞赛试题的研究,有一个很有趣的发现——许多试题来源于 同一个问题.我们可以把这类不断生长的问题 称为“题根题根是一个题族、一个题系中的 源头,也是一个题群中的典例.把握住了一个 题根,叩源推委,便能寻觅到解决问题的“金钥 匙”,进而辐射到一个题族、题群.以题根方式 展开教学,旨在寻找解题思维入口,通过题根 的变式拓展探求不同的解法,帮助学生理解问 题内涵,总结归纳.那么如何寻找“题根”呢? 将源于课本、高考、竞赛的题目进行提炼与升 华形成结论,然后再将其广泛应用于解题实践 中,这便是寻找题源的不二法门.这一过程意 义非凡,因为茫茫题海中很多题目表象不同,但实质一样(可归结于同一个题根或题源).一 个题源加工而成的结论,其功效不亚于教材中 的一个定理,寻找“题根”需要八方联系,浑然一 体.笔者以一道竞赛题为例,探源溯流,给出一类 高考题、竞赛题命题的题根,多题归一,提供一种 高效学习数学的方法,敬请同行指正.[1]题根(2017年全国高中数学联赛湖南省 预赛第15题)[2]已知a、6 e 11且〇 > 0, i > Q,a #b.(i)求证:#(2)如果 a、6 是函数/(a:) = lnx -的两个零点,求证> e2.证法 1:如图 1,设/(*) = e*,x e [m,n],其中双m,0),B(n,0),过点分别作x轴的垂线,交曲线于c、Z)两点.点)处的切线/分别交BC、于点£、f,则f c pJ f=6〒,所以/:7 1梯形从一(j£+J f)=(n-m*n^l)e ,•^曲边梯形A sa) =| g dx =e一 e , *S梯形^ m数感是《义务教育数学课程标准(2011 版)》中的十大核心概念之一,对运算结果的估 计是数感的一种重要体现.估计(估算)在三个 学段都有明确具体的目标要求,其中在第三学 段(7-9年级)的知识技能目标对运算(包括估 算)技能的要求是达到掌握层级.固然,计算的 准确性是数学学科的基本要求之一,运算能力 是典型的数学能力,但其内涵已发生了变化.运 算能力不仅指能够“正确地从事运算”,还包括 借助工具计算和手算,也包括精确计算和估算[2].作为一线的数学教师,应该充分理解课标 的价值理念,在日常的教学中应该给“估算”留一席之地.准确、标准的答案是我们数学人的追求,但“估算”是数学运算中不可或缺的组成部分估算”过程中所体现出的发散式调适与思考,正是学生创新意识形成、创新能力培养的一个有效载体.参考文献[1]中华人民共和国教育部.义务教育数 学课程标准(2011版)[S].北京:北京师范大学出版社,2012.[2]马复,凌晓枚.新版课程标准解析与 教学指导[M].北京:北京师范大学出版社,2012.2021年第3期故学敉学3-41n - m . 、 n — m / m …、 _ ...2 (yA + J b ) = 2 (e + e )•显然有S 梯形y l B E F < $曲边梯形/I B C D < S 梯形A f i C Z ),艮Pm +nr j一)(n - m ) e 2 < en - em < —-—(em + e n),1_•设%> 1,则欲证不等式成立等价于证明21n % < i ---(x > 1).构造函数则e 宁<^<n - m a2,令 en = a ,可得< , , , - ^In a - lno 2证法2:(1)由对称性,不妨设a > 6 > 0,^ a - b a + b a - b a + l 先证^-----TT < —•因为^----— <In a - Ini 2 〇 In a - Ini >2(a - b )^ a ^In a - \nb 2a + ba—+设% = T > 1,则欲证不等式成立等价于〇证明lnx > ^l l (x > 1}.X + l构造函数/(尤)=lnx - ^~~> 1),则作)=(n因为* > 1,所以尸(*) >x(x + 1)0,/(X )在(1,+ =C )上为单调递增函数,由 f i x ) >/〇) = 0,即得lm > 1),即<In a - In 62再证#< , a ~ f -,-.因为# <In a - Ini In a - Inia<=> In a - In 6 <y 〇b<=> In — <g 〇) = 21m -卜 一(% > 1),则g '(x ) =- (% -J )<〇,因此g U )在(1, + 〇〇)上为单调递减函数.办)<g (l ) = 0,即得21n % < (a :---1 (x > 1),即y 〇b <a综上可知,#<In a - Inia -b In a - Ini2以上结论反映了对数平均与算术平均、几何平均的大小关系,我们知道两个正数a 、6的 对数平均定义:L (a , b ) = jlna - ln 6 () ’la(a = b ).则当 a >〇,i >〇,有<In a - Ini—^一,^^<[(16)<-^—(当且仅当〇=6时,等号成立).若令 lna =文!,Ini =%2,贝l j d = e*1,6 = e*2, < —z —等价于^^?J~a b <In a — Ini 2?V 2__*2 丄 ^2‘1—,利用该不等式,可x X pL e - e " e •十 ee 2 < ------- < —-xx - x 2 2以轻松获解该题的第(2)小题:证明:定义域为(〇, +〇〇 ),尸(%) 1 2017 -x2017 2黯•若p2〇17,则/,(,)= 0;若* e (0,2017),则尸〇) >0,函数/(;〇单调递 增;若;c e (2017, + 〇〇 ),则尸(无)< 0,函数3-42故学敉学2021年第3期/(幻单调递减.由对称性,不妨设 a >6> 〇,则可得〇< 6<2017 <a.由条件知,ln a= 且ln6=故 lna- ln6(a-6),即2017由对数均值不等式得2017即a + 6 > 2 x 2017.-bIn a - Inia -bIn a - In6= 2017,<2 ,1iia;,a:2= \nxl+ \nx2= m(x l+ x2)> 2m•— = 2,所以a:丨a:2> e*12.m评注:不难发现,例1第(2)小题是题根第(2)小题的一般情况,事实上,由对数均值不等,______ 1 X] ~X22J x x x2<—=---------------,艮p<m lnxj -m x2-7,可见必有〇< m < i.m e因为lnafc= In a+ In6 =----(a+ 6) >2017 》^x 2x 2017 = 2,所以d> e2.下面举例说明此题根在高考、竞赛、模考中的应用,也进一步洞悉此类问题的编拟奥秘.类型1直接用对数均值不等式例1(2016年全国高中数学联赛湖南省预赛第15题)[3]已知函数/(幻=i l n x-(1)若m =」2时,求函数/(幻的所有零点;(2)若/(4有两个极值点心、巧,且x, < 尤2•求证:丨内> e2.解析:(1)当m =-2时,/(幻=;*111»:+;*:2-x = x( \nx + x -l) (x> 0). i^,p(x)=ln% + x -1(«:> 0),则p'(A〇=丄+ 1> 0,于是p(a〇在X(〇, + «>)上为增函数.又P(1) = 0,所以,当m =-2时,函数/(幻有唯一的零点a; = 1.(2)若/(x)有两个极值点x,、*2,则导函数/'(*)有两个零点h h•由/'U)= In* -m*,可知例2(2018年全国高中数学联赛福建省预赛第14题)[4]已知/U)= e* -似.(1)当x > 0时,不等式Q-2)/(幻+ m*2+ 2> 0恒成立,求实数m的取值范围;(2)若力、*2是/(幻的两个零点,证明:A C, + A;2> 2.解析:(1)略.(2)证明:由题可得/U)= /U2) = 〇,即I e*' = m x., t _x x,x得。
几个重要不等式与不等式的证明蔡玉书(江苏省苏州市第一中学,215006) 收稿日期:2008-09-16 修回日期:2009-02-17 (本讲适合高中)在不等式的证明中,重要不等式的使用是不等式证明的常用方法.1 几个重要不等式这里所说的几个重要不等式是指:均值不等式 设a 1,a 2,…,a n 都是正数.则a 1+a 2+…+a nn≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.柯西不等式 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组实数.则(∑ni =1a 2i)(∑ni =1b 2i)≥(∑ni =1a ib i)2,当且仅当a i =kb i (i =1,2,…,n )时,等号成立.下列柯西不等式的三个变形在解题中有相当大的作用.变形1 设a 1,a 2,…,a n ;b 1,b 2,…,b n 是两组正实数.则∑ni =1a 2ib i≥(∑ni =1a i)2∑ni =1bi.变形2 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a ib i≥(∑ni =1a i )2∑ni =1a i bi.变形3 设a 1,a 2,…,a n ;b 1,b 2,…,b n是两组正实数.则∑ni =1a i·∑ni =1bi≥∑ni =1a ib i .Schur 不等式 设x 、y 、z ≥0,r 是实数.则x r(x -y )(x -z )+y r(y -x )(y -z )+z r(z -y )(z -x )≥0.当r =1时,Schur 不等式有几种变形:(1)x 3+y 3+z 3-(x 2y +xy 2+x 2z +xz 2+y 2z +yz 2)+3xyz ≥0;(2)(x +y +z )3-4(x +y +z )·(yz +zx +xy )+9xyz ≥0;(3)xyz ≥(x +y -z )(y +z -x )(z +x -y ).契比雪夫不等式 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n ,则∑ni =1a i∑ni =1bi≤n∑ni =1a ib i;设a 1≤a 2≤…≤a n ,b 1≥b 2≥…≥b n ,则∑ni =1a i∑ni =1bi≥n∑ni =1a ib i.2 例题选讲在证明不等式时,要特别注意两点:(1)所给条件的综合变形与运用重要不等式的配合;(2)运用其他方法或技巧与运用重要不等式的配合.例1 设a 、b 、c 是正数,且ab +bc +ca =3.求证:11+a 2(b +c )+11+b 2(c +a )+11+c 2(a +b )≤1abc.(2008,罗马尼亚国家集训队试题)证明:依题设,由均值不等式得ab+bc+ca=3≥33(abc)2,即 abc≤1.故11+a2(b+c)≤1abc+a2(b+c)=1a(ab+bc+ca)=13a.同理,11+b2(c+a)≤1 3b,11+c2(a+b)≤1 3c.以上三式相加得11+a2(b+c)+11+b2(c+a)+11+c2(a+b)≤1 31a+1b+1c=ab+bc+ca3abc=1abc.注:本题巧妙地利用已知条件和均值不等式将不等式左边的分母中的1换成较小的abc,实现了转化.例2 设x、y、z是正实数,且x+y+z =3.证明:x3 y3+8+y3z3+8+z3x3+8≥19+227(xy+yz+zx).(2008,伊朗数学奥林匹克)证明:由均值不等式得x3 y3+8+y+227+y2-2y+427≥33x3y3+8·y+227·y2-2y+427=x3.同理,y 3z3+8+z+227+z2-2z+427≥y3,z3 x3+8+x+227+x2-2x+427≥z3.以上三式相加,并注意到x+y+z=3,得x3 y3+8+y3z3+8+z3x3+8≥4 9-127(x2+y2+z2)=19+9-(x2+y2+z2)27=19+(x+y+z)2-(x2+y2+z2)27=19+227(xy+yz+zx).注:本题巧妙地将分母进行了因式分解,并且通过考察不等式等号成立的充要条件,调整因式前面的系数,达到证明的目的.例3 设x、y、z是非负数,且x2+y2+z2=3.证明:xx2+y+z+yy2+z+x+zz2+x+y≤3.(2008,乌克兰数学奥林匹克)证明:由柯西不等式得3(x2+y2+z2)≥(x+y+z)2.因为x2+y2+z2=3,所以,x2+y2+z2≥x+y+z.①由柯西不等式得(x2+y+z)(1+y+z)≥(x+y+z)2.于是,只要证明x1+y+z+y1+z+x+z1+x+yx+y+z≤3.再由柯西不等式得(x1+y+z+y1+z+x+z1+x+y)2=(x·x+xy+zx+y·y+yz+xy+z·z+zx+xy)2≤(x+y+z)[(x+xy+zx)+ (y+yz+xy)+(z+zx+xy)]=(x+y+z)[(x+y+z)+2(xy+yz+zx)]≤(x+y+z)[x2+y2+z2+2(xy+yz+zx)]=(x+y+z)3.故x1+y+z+y1+z+x+z1+x+yx+y+z≤x+y+z.由不等式①得x+y+z≤x2+y2+z2= 3.因此,不等式得证.注:先局部使用柯西不等式,将分母化为相同,再继续使用柯西不等式进行放缩,从而达到证明的目标.例4 设a、b、c∈16,+∞,且a2+b2+c2=1.证明:1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).(2007,乌克兰国家集训队试题)证明:由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥(a+b+c)2,①(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)2≤(1+1+1)[(2a2+3ab-c2)+ (2b2+3bc-a2)+(2c2+3ca-b2)] =3[(a2+b2+c2)+3(ab+bc+ca)].②又由均值不等式得a2+b2+c2≥ab+bc+ca.故4(a+b+c)2≥3(a2+b2+c2)+9(ab+bc+ca).③由式②、③得2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2≤2(a+b+c).④由式①、④得a22a2+3ab-c2+b22b2+3bc-a2+c22c2+3ca-b2≥12(a+b+c).⑤由柯西不等式得(2a2+3ab-c2+2b2+3bc-a2+2c2+3ca-b2)·12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥(1+1+1)2=9.⑥注意到a2+b2+c2=1,由柯西不等式得9=9(a2+b2+c2)≥3(a+b+c)2.⑦由式④、⑥、⑦得12a2+3ab-c2+12b2+3bc-a2+12c2+3ca-b2≥3(a+b+c)2.⑧⑤+⑧得1+a22a2+3ab-c2+1+b22b2+3bc-a2+1+c22c2+3ca-b2≥2(a+b+c).注:将原不等式拆成两个后,分别采用柯西不等式进行处理,恰到好处.例5 已知a、b、c都是正实数.证明:(a+b)3+4c3≥4(a3b3+b3c3+c3a3).(2008,波兰数学奥林匹克)证明:由均值不等式和柯西不等式得(a+b)3+4c3=a3+b3+3a2b+3ab2+4c3=2(a2b+ab2)+(a2+b2)(a+b)+4c3≥4a3b3+(a32+b32)2+4c3≥4a3b3+4c32(a32+b32)=4(a3b3+b3c3+c3a3).注:在使用两个不等式时,应注意保证等号能够成立.证明之雅,使人回味无限.例6 设x、y、z都是正数,且x+y+z≥1.证明:x xy+z+y yz+x+z zx+y≥32.(2003,摩尔多瓦国家集训队试题)证明:由均值不等式得x32+y32+y32≥3x12y,x32+z32+z32≥3x12z.相加得2(x32+y32+z32)≥3x12(y+z).故xy+z≥3x322(x32+y32+z32).同理,yz+x≥3y322(x32+y32+z32),z x +y≥3z322(x 32+y 32+z32).于是,要证明原不等式只要证明x 2+y 2+z2x 32+y 32+z32≥13Ζ3(x 2+y 2+z 2)2≥(x 32+y 32+z 32)2.由柯西不等式得(x 2+y 2+z 2)(x +y +z )≥(x 32+y 32+z 32)2,3(x 2+y 2+z 2)≥(x +y +z )2≥x +y +z .两个不等式相乘即得.注:利用均值不等式将三个式子作对称化处理,为后面巧妙地应用柯西不等式做好了充分的准备.例7 设a 、b 、c 是正数.求证:1+4a b +c 1+4b c +a 1+4c a +b >25.(2008,波斯尼亚数学奥林匹克)证明:注意到1+4a b +c 1+4b c +a 1+4c a +b>25Ζ(b +c +4a )(c +a +4b )(a +b +4c )>25(a +b )(b +c )(c +a )Ζa 3+b 3+c 3+7abc>a 2b +ab 2+b 2c +bc 2+c 2a +ac 2.由Schur 不等式得a 3+b 3+c 3+3abc≥a 2b +ab 2+b 2c +bc 2+c 2a +a 2c .从而,不等式得证.注:在最近几年的数学竞赛中,Schur 不等式已经被普遍使用,希望引起大家的重视.例8 设x 、y 、z 是正实数.求证:xy z +yz x +zxy>23x 3+y 3+z 3.(2008,中国国家集训队测试题)证明:设xy z =a 2,yz x =b 2,zx y=c 2.因为x 、y 、z 是正实数,所以,x =ca ,y =ab ,z =bc .于是,原不等式化为a 2+b 2+c 2>23a 3b 3+b 3c 3+c 3a 3,即 (a 2+b 2+c 2)3>8(a 3b 3+b 3c 3+c 3a 3)Ζa 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2 >8(a 3b 3+b 3c 3+c 3a 3).由Schur 不等式得a 6+b 6+c 6+3a 2b 2c 2>a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4.①由均值不等式得a 4b 2+a 2b 4≥2a 3b 3,b 4c 2+b 2c 4≥2b 3c 3,c 4a 2+c 2a 4≥2c 3a 3.以上三式相加得a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a4≥2(a 3b 3+b 3c 3+c 3a 3).②又a 2b 2c 2>0.③①+4×②+3×③得a 6+b 6+c 6+3(a 4b 2+a 2b 4+b 4c 2+b 2c 4+c 4a 2+c 2a 4)+6a 2b 2c2>8(a 3b 3+b 3c 3+c 3a 3).注:分析法的使用为证明打开了大门,变量代换为Schur 不等式的使用铺平了道路.例9 已知a 、b 、c 是正数,且a +b +c =1.证明:1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731.(2008,克罗地亚数学奥林匹克)证明:注意到1bc +a +1a+1ca +b +1b+1ab +c +1c≤2731Ζ9a 2+9abc +9-31a a 2+abc +1+9b 2+9abc +9-31bb 2+abc +1+9c 2+9abc +9-31c c 2+abc +1≥0.不妨设a ≥b ≥c .显然9(a +b )<31.容易证明9a2+9abc+9-31a≤9b2+9abc+9-31b≤9c2+9abc+9-31c.故a2+abc+1≥b2+abc+1≥c2+abc+1,即 1a2+abc+1≤1b2+abc+1≤1c2+abc+1.由契比雪夫不等式有39a2+9abc+9-31aa2+abc+1+9b2+9abc+9-31bb2+abc+1+9c2+9abc+9-31cc2+abc+1≥[(9a2+9abc+9-31a)+(9b2+9abc+ 9-31b)+(9c2+9abc+9-31c)]·1a2+abc+1+1b2+abc+1+1c2+abc+1.于是,只要证明(9a2+9abc+9-31a)+(9b2+9abc+9-31b)+(9c2+9abc+9-31c)≥0 Ζ9(a2+b2+c2)+27abc+27-31(a+b+c)≥0.又a+b+c=1,只要证明9(a2+b2+c2)+27abc-4≥0Ζ9(a2+b2+c2)(a+b+c)+27abc-4(a+b+c)3≥0Ζ5(a3+b3+c3)-3(a2b+ab2+b2c+bc2+c2a+ac2)+3abc≥0.①由Schur不等式得a3+b3+c3+3abc≥a2b+ab2+b2c+bc2+c2a+a2c.②由均值不等式得a3+b3+c3≥3abc.③②×3+③×2得不等式①.从而,原不等式得证.注:本题难度相当大.首先用分析法将不等式化为等价的不等式进行证明,也为利用契比雪夫不等式做好了充分的准备,Schur不等式和均值不等式的使用为最后的证明锦上添花.例10 已知x、y、z是正数,且x+y+z =1,k是正整数.证明:x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥17.(2007,南斯拉夫数学奥林匹克)证明:不妨设x≥y≥z.则x k≥y k≥z k.由契比雪夫不等式得3(x k+1+y k+1+z k+1)≥(x+y+z)(x k+y k+z k).①因为x≥y≥z,所以,x k+1+y k+z k≤y k+1+z k+x k≤z k+1+x k+y k.事实上,由x≥y≥z,有x k-1≥y k-1≥z k-1,x(1-x)-y(1-y)=x(y+z)-y(z+x)=z(x-y)≥0,即 x(1-x)≥y(1-y).从而,x k(1-x)≥y k(1-y).所以,x k+1+y k+z k≤y k+1+z k+x k.同理,y k+1+z k+x k≤z k+1+x k+y k.故xk+1x k+1+y k+z k≥y k+1y k+1+z k+x k≥z k+1z k+1+x k+y k.由契比雪夫不等式得x k+2x k+1+y k+z k+yk+2y k+1+z k+x k+zk+2z k+1+x k+y k≥13(x+y+z)xk+1x k+1+y k+z k+y k+1y k+1+z k+x k+zk+1z k+1+x k+y k=13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k =13x k+1x k+1+y k+z k+y k+1y k+1+z k+x k+z k+1z k+1+x k+y k·[(x k+1+y k+z k)+(y k+1+z k+x k)+(z k+1+x k+y k)]·1x k+1+y k+1+z k+1+2(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2(x k+y k+z k)=x k+1+y k+1+z k+1x k+1+y k+1+z k+1+2(x+y+z)(x k+y k+z k)≥x k +1+y k+1+z k+1x k+1+y k+1+z k+1+2×3(x k+1+y k+1+z k+1)=1 7 .最后一步用的是不等式①.注:条件x+y+z=1是用来调整不等式的次数的.这里多次采用排序,使用契比雪夫不等式,使得证明完美.练习题1.设x1,x2,…,x n是正实数,n是正整数.证明:∏n i=1(1+x1+x2+…+x i)≥(n+1)n+1x1x2…x n. (2007,俄罗斯数学奥林匹克)(提示:对元素y1=x11+x1,y2=x2(1+x1)(1+x1+x2),y3=x3(1+x1+x2)(1+x1+x2+x3),……y n=x n(1+x1+…+x n-1)(1+x1+…+x n-1+x n),y n+1=11+x1+…+x n-1+x n应用均值不等式.)2.已知a、b、c都是正数,且ab+bc+ca =1.证明:a3+a+b3+b+c3+c≥2a+b+c.(2008,伊朗国家集训队试题)(提示:用条件ab+bc+ca=1将问题化为证明a(a+b)(c+a)+b(a+b)(b+c)+c(c+a)(b+c)≥2(a+b+c)(ab+bc+ca),之后应用柯西不等式和Schur不等式.)3.设a、b、c∈R+,且abc=1.证明:1b(a+b)+1c(b+c)+1a(c+a)≥32.(2008,塔吉克斯坦数学奥林匹克)(提示:先作变换a=xy,b=yz,c=zx,再用柯西不等式和均值不等式.)4.设a、b、c、d是正数,且1a+1b+1c+1d =4.证明:3a3+b32+3b3+c32+3c3+d32+3d3+a32≤2(a+b+c+d)-4.(2007,波兰数学奥林匹克)(提示:先用分析法证明3a3+b32≤a2+b2a+b.再用柯西不等式.)5.设a≥b≥c>0,x≥y≥z>0.证明:a2x2(by+cz)(bz+cx)+b2y2(cz+ax)(cx+az)+c2z2(ax+by)(ay+bx)≥34.(2000,韩国数学奥林匹克)(提示:先用均值不等式,再用柯西不等式和契比雪夫不等式.)6.已知x1,x2,…,x n是正实数,满足∑ni=1x i =∑ni=11x i.证明:∑ni=11n-1+x i≤1.(2007,波兰等国联合数学竞赛)(提示:令yi=1n-1+x i.利用柯西不等式结合反证法加以证明.)欢迎订阅《中等数学》2009年第6期:服务于全国高中数学联赛的专刊。
第2讲 不等式的性质及其解法学校____________ 姓名____________ 班级____________一、知识梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(2)证明不等式还常用综合法、反证法和分析法. 2.不等式的性质 (1)不等式的性质①可加性:a >b ⇔a +c >b +c ; ②可乘性:a >b ,c >0⇒ac >bc ; a >b ,c <0⇒ac <bc ;③传递性:a >b ,b >c ⇒a >c ; ④对称性:a >b ⇔b <a . (2)不等式的推论①移项法则:a +b >c ⇔a >c -b ;②同向不等式相加:a >b ,c >d ⇒a +c >b +d ; ③同向不等式相乘:a >b >0,c >d >0⇒ac >bd ; ④可乘方性:a >b >0⇒a n >b n (n ∈N ,n >1); ⑤可开方性:a >b >0⇒a >b . 3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想. 4.三个“二次”间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图像一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅ ∅5.1212的解集是(x 1,x 2),不等式12)>0的解集是(-∞,x 1)∪(x 2,+∞).6.分式不等式及其解法 (1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 二、考点和典型例题1、不等式的性质【典例1-1】(2022·安徽·芜湖一中高三阶段练习(文))已知0a b c d >>>>,且a d b c +=+,则以下不正确的是( )A .a c b d +>+B .ac bd >C .ad bc <D .a cb d>【典例1-2】(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( )A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>【典例1-3】(2022·重庆八中模拟预测)(多选)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<【典例1-4】(2022·广东汕头·二模)(多选)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0B .c (b -a )<0C .22cb ab <D .ab ac >【典例1-5】(2022·福建三明·模拟预测)(多选)设a b c <<,且0a b c ++=,则( ) A .2ab b <B .ac bc <C .11a c< D .1c ac b-<- 2、不等式的证明和解法【典例2-1】(2021·重庆市涪陵高级中学校高三阶段练习)已知{}{}2|430,||1|1A x x x B x x =-+≤=-≤(1)求集合A 和B ; (2)求A ∪B ,A ∩B ,【典例2-2】(2021·全国·高三专题练习)已知常数a ∈R ,解关于x 的不等式2212x ax a ->.【典例2-3】(2022·全国·高三专题练习)已知0a >,0b >2,求证:(1)2≤; (2)22216a b ≤+<.【典例2-4】(2022·安徽·芜湖一中三模(文))已知函数()12f x x x =---. (1)求函数()f x 的值域;(2)已知0a >,0b >,且221a b +=,不等式()2211422f x a b ≤+恒成立,求实数x 的取值范围. 【典例2-5】(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 不等式的综合应用【典例3-1】(2021·宁夏·青铜峡市宁朔中学高三阶段练习(文))若函数243y kx kx =++对任意x ∈R 有0y >恒成立,则实数k 的取值范围为( )A .30,4⎡⎫⎪⎢⎣⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .30,4⎡⎤⎢⎥⎣⎦【典例3-2】(2022·全国·高三专题练习)若关于x 的不等式()2330-++<x m x m 的解集中恰有3个正整数,则实数m 的取值范围为( ) A .[)2,1--B .()3,4C .(]5,6D .(]6,7【典例3-3】(2022·浙江·高三专题练习)若不等式2430mx mx +-<对任意实数x 恒成立,则实数m 的取值范围为_______.【典例3-4】(2021·福建省南平市高级中学高三阶段练习)命题“x R ∃∈,2290x mx ++<”为假命题,则实数m 的取值范围是___________.【典例3-5】(2021·黑龙江·嫩江市高级中学高三阶段练习(理))已知函数2()2f x x ax =-+-,[1,3]x ∈ (1)若()0f x <恒成立,求a 的范围. (2)求()f x 的最小值()g a .第2讲 不等式的性质及其解法学校____________ 姓名____________ 班级____________一、知识梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b .(2)证明不等式还常用综合法、反证法和分析法. 2.不等式的性质 (1)不等式的性质①可加性:a >b ⇔a +c >b +c ; ②可乘性:a >b ,c >0⇒ac >bc ; a >b ,c <0⇒ac <bc ;③传递性:a >b ,b >c ⇒a >c ; ④对称性:a >b ⇔b <a . (2)不等式的推论①移项法则:a +b >c ⇔a >c -b ;②同向不等式相加:a >b ,c >d ⇒a +c >b +d ; ③同向不等式相乘:a >b >0,c >d >0⇒ac >bd ; ④可乘方性:a >b >0⇒a n >b n (n ∈N ,n >1); ⑤可开方性:a >b >0⇒a >b . 3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图像求解,体现了函数与方程的思想. 4.三个“二次”间的关系判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图像一元二次方程 ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅ ∅5.1212的解集是(x 1,x 2),不等式12)>0的解集是(-∞,x 1)∪(x 2,+∞).6.分式不等式及其解法 (1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. 三、考点和典型例题3、不等式的性质【典例1-1】(2022·安徽·芜湖一中高三阶段练习(文))已知0a b c d >>>>,且a d b c +=+,则以下不正确的是( )A .a c b d +>+B .ac bd >C .ad bc <D .a cb d>【答案】D 【详解】0a b >>,0c d a c b d >>⇒+>+,ac bd >,故A ,B 正确;()()220a d b c a d b c ->->⇒->-,即()()2244a d ad b c bc ad bc +->+-⇒<,故C 正确;对ad bc <两边同除bd 得a cb d<,故D 错误. 故选:D.【典例1-2】(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( ) A .22a b > B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332b a b b --≥+>+=(等号成立的条件是0b =),故D 正确. 故选:D.【典例1-3】(2022·重庆八中模拟预测)(多选)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【详解】对于A ,由3ab a b ++= ,a b +≥ ,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)21212211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误;对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-<,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.【典例1-4】(2022·广东汕头·二模)(多选)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0 B .c (b -a )<0 C .22cb ab < D .ab ac >【答案】BCD 【详解】解:因为a ,b ,c 满足c <a <b ,且ac <0, 所以0,0,0,0,0c a b a c b a <>>->->,所以ac (a -c )<0 ,c (b -a )<0,22cb ab <,ab ac >, 故选:BCD【典例1-5】(2022·福建三明·模拟预测)(多选)设a b c <<,且0a b c ++=,则( ) A .2ab b < B .ac bc < C .11a c< D .1c ac b-<- 【答案】BC 【详解】因为a b c <<,0a b c ++=,所以0<<a c ,b 的符号不能确定, 当0b =时,2ab b =,故A 错误,因为a b <,0c >,所以ac bc <,故B 正确, 因为0<<a c ,所以11a c<,故C 正确, 因为a b <,所以a b ->-,所以0c a c b ->->,所以1c ac b->-,故D 错误, 故选:BC4、不等式的解法【典例2-1】(2021·重庆市涪陵高级中学校高三阶段练习)已知{}{}2|430,||1|1A x x x B x x =-+≤=-≤(1)求集合A 和B ; (2)求A ∪B ,A ∩B ,【答案】(1){}13A x x =≤≤;{}02B x x ≤≤ (2){}03A B x x ⋃=≤≤;{}12A B x x ⋂=≤≤ 【解析】 (1)解:解不等式2430x x -+≤得13x ≤≤,所以{}13A x x =≤≤, 解不等式|1|1x -≤得02x ≤≤,所以{}02B x x ≤≤; (2)解:{}03A B x x ⋃=≤≤,{}12A B x x ⋂=≤≤.【典例2-2】(2021·全国·高三专题练习)已知常数a ∈R ,解关于x 的不等式2212x ax a ->. 【详解】∵2212x ax a ->,22120x ax a ∴-->,即(4)(3)0x a x a +->, 令(4)(3)0x a x a +-=,解得14ax =-,23a x =, ①当0a >时43a a -<,解集为4a xx ⎧<-⎨⎩∣或3a x ⎫>⎬⎭; ②当0a =时,20x >,解集为{xx R ∈∣且0}x ≠; ③当0a <时,43a a ->,解集为3a xx ⎧<⎨⎩∣或4a x ⎫>-⎬⎭. 综上所述:当a >0时,不等式的解集为4a xx ⎧<-⎨⎩∣或3a x ⎫>⎬⎭; 当a =0时,不等式的解集为{xx R ∈∣且0}x ≠; 当a <0时,不等式的解集为3a xx ⎧<⎨⎩∣或4a x ⎫>-⎬⎭. 【典例2-3】(2022·全国·高三专题练习)已知0a >,0b >2,求证:(1)2≤; (2)22216a b ≤+<. 【解析】(1)2,且0,0a b >>,所以20≥>,当且仅当1a b ==时,取“=”,所以01<,所以2==. (2)由2222()2,4a b a b ab a b +=+-+=--所以221642216a b ab ab ab +=--=-222(16)164)162(416ab =--=-=-,01ab <,所以344≤<,所以29(416≤<,所以218232≤<(, 所以22216a b ≤+<.【典例2-4】(2022·安徽·芜湖一中三模(文))已知函数()12f x x x =---. (1)求函数()f x 的值域;(2)已知0a >,0b >,且221a b +=,不等式()2211422f x a b ≤+恒成立,求实数x 的取值范围. 【答案】(1)[]1,1-(2)74⎛⎤-∞ ⎥⎝⎦,【解析】 (1)解:当2x ≥时,()()()12=12=1f x x x x x =------; 当1x ≤时,()()()12=12=1f x x x x x =-----+--;当12x <<时,()()()12=12=23f x x x x x x =----+--,所以 ()()1,1f x ∈-, 综上函数()f x 的值域为[]1,1- (2)因为221a b +=,()22222222111112222222b a a =b a b a b ⎛⎫+⨯+++≥+ ⎪⎝⎭+,当且仅当222222=b a a b ,即=a b 时等号成立,要使不等式()2211422f x a b ≤+恒成立,只需()42f x ≤,即()12f x ≤恒成立,由(1)知当2x ≥时,()()()12=12=1f x x x x x =------不合题意;当1x ≤时,()()()112=122f x x x x x =-----+-≤恒成立;当12x <<时,()()()112=12=232f x x x x x x =----+--≤,解得714x <≤,综上74x ≤,所以x 的取值范围为74⎛⎤-∞ ⎥⎝⎦,.【典例2-5】(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数.(1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c ++≥++. 【解析】(1)因为24a a +24=322a a a ++≥=,当且仅当“2a =”时等号成立, 所以当2a =时,24a a +的最小值为3. (2)因为2bc ac c a b +≥,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a b c ⎛⎫++≥++ ⎪⎝⎭, 所以bc ac ab a b c a b c++≥++,当且仅当“a b c ==”时等号成立 5、不等式的综合应用【典例3-1】(2021·宁夏·青铜峡市宁朔中学高三阶段练习(文))若函数243y kx kx =++对任意x ∈R 有0y >恒成立,则实数k 的取值范围为( )A .30,4⎡⎫⎪⎢⎣⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .(),0-∞D .30,4⎡⎤⎢⎥⎣⎦【答案】A【详解】由题意,函数243y kx kx =++对任意x ∈R 有0y >(1)当0k =时,30y =>成立;(2)当0k ≠时,函数为二次函数,若满足对任意x ∈R 有0y >,则2030161204k k k k >⎧∴<<⎨∆=-<⎩综上:30,4k ⎡⎫∈⎪⎢⎣⎭故选:A 【典例3-2】(2022·全国·高三专题练习)若关于x 的不等式()2330-++<x m x m 的解集中恰有3个正整数,则实数m 的取值范围为( )A .[)2,1--B .()3,4C .(]5,6D .(]6,7【答案】D【详解】因为不等式()2330-++<x m x m 的解集中恰有3个正整数,即不等式()()30x x m --<的解集中恰有3个正整数,所以3m >,所以不等式的解集为()3,m所以这三个正整数为4,5,6,所以67m <≤,即67a <≤故选:D【典例3-3】(2022·浙江·高三专题练习)若不等式2430mx mx +-<对任意实数x 恒成立,则实数m 的取值范围为_______. 【答案】3,04⎛⎤- ⎥⎝⎦【解析】【详解】当m =0时不等式为30-<,显然对于任意实数x 恒成立;当m ≠0时,不等式2430mx mx +-<对任意实数x 恒成立等价于,解得304m -<<, 所以m 的取值范围是3,04⎛⎤- ⎥⎝⎦, 故答案为:3,04⎛⎤- ⎥⎝⎦. 【典例3-4】(2021·福建省南平市高级中学高三阶段练习)命题“x R ∃∈,2290x mx ++<”为假命题,则实数m 的取值范围是___________. 【答案】62,62⎡-⎣【详解】若原命题为假命题,则其否定“x R ∀∈,2290x mx ++≥”为真命题,这等价于2720m =-≤,解得6262m -≤≤故答案为:62,62⎡-⎣.【典例3-5】(2021·黑龙江·嫩江市高级中学高三阶段练习(理))已知函数2()2f x x ax =-+-,[1,3]x ∈ (1)若()0f x <恒成立,求a 的范围.(2)求()f x 的最小值()g a .【答案】(1)22a <(2)3114()34a a g a a a -≤⎧=⎨->⎩.【详解】解:(1)220x ax -+-<,22ax x <+,[1,3]x ∈,22x a x+∴<, 22222x x x x +=+,当且仅当[1,3]x =时成立,∴2min2x x ⎛⎫+=⎪⎝⎭ a ∴<(2)当22a ≤即4a ≤时,min ()(3)311f x f a ==-; 当22a >即4a >时,min ()(1)3f x f a ==-, 综上,3114()34a a g a a a -≤⎧=⎨->⎩.。
高一数学不等式知识点总结及例题一、不等式知识点总结。
(一)不等式的基本性质。
1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
2. 传递性:如果a > b,b > c,那么a > c。
3. 加法单调性:如果a > b,那么a + c>b + c。
- 推论1:移项法则,如果a + b>c,那么a>c - b。
- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。
4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。
- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。
- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。
(二)一元二次不等式及其解法。
1. 一元二次不等式的一般形式。
- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。
2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。
- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。
- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。
一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。
1.已知函数f x =x -lnx -a 有两个不同的零点x 1,x 2x 1<x 21 证明:2<x 1+x 2<2a 2 证明:e 2-2a <x 1x 2<x 1+x 22第一问左侧不等式证明:f 'x =x -1x,在0,1 上f x 单调递减,在1,+∞ 上f x 单调递增所以0<x 1<1<x 2方法一对称构造法要证x 1+x 2>2,即证x 1>2-x 2,当x 2>2时显然成立当1<x 2<2时,证明f x 1 <f 2-x 2等价于证明f x 1 =f x 2 -f 2-x 2 <0设g x =f x -f 2-xg 'x =f 'x +f '2-x =2x -1 2x x -2在1,2 上g x 单调递减,所以g x 2 <g 1 =0所以f x 2 -f 2-x 2 <0,f x 2 =f x 1 <f 2-x 2 ,x 1+x 2>2方法二对称构造的另一种形式构造函数h x =f x +1 -f 1-x ,h 'x =f 'x +1 +f '1-x =2x 2x 2-1h x 在0,1 上单调递减因为0<x 1<1<x 2,所以当x 2>2时,x 1+x 2>2显然成立所以只需证明当1<x 2<2时x 1+x 2>2成立h x 2-1 <h 0 =0,即f x 2 <f 2-x 2 ,即f x 1 <f 2-x 2 ,得x 1+x 2>2方法三,比值换元由f x 1 =f x 2 ,得x 1-lnx 1=x 2-lnx 2,移项可得x 2-x 1=lnx 2-lnx 1,即x 1x 2x 1-1 =ln x 2x 1设t =x 2x 1>1,即x 1=lnt t -1,x 2=tlnt t -1,从而有x 1+x 2=t +1t -1lnt 即证t +1t -1lnt >2,等价于证明lnt >2t -1 t +1,构造函数p x =lnx -2x -1 x +1p 'x =x -1 2x x +1 2>0,所以p x 在1,+∞ 上单调递增,所以p t >p 1 =0lnt >2t -1 t +1⇔x 1+x 2>2方法四,对数均值不等式由f x 1 =f x 2 得x 2-x 1=lnx 2-lnx 1,即1=x 2-x 1lnx 2-lnx 1<x 1+x 22,即x 1+x 2>2下证x 2-x 1lnx 2-lnx 1<x 1+x 22,即证ln x 2x 1>2x 2-x 1 x 2+x 1=2x 2x 1-1 x 2x 1+1,设t =x 2x 1>1即证lnt >2t -1 t +1方法三已证 方法五,同构单调性调整证明:x 1+x 2>2⇔x 1+x 2 x 2-x 1 >2x 2-x 1 ⇔x 22-2x 2>x 12-2x 1即证x 22-2x 2-2x 2-lnx 2 >x 12-2x 1-2x 1-lnx 1 ,其中a =x 1-lnx 1=x 2-lnx 2构造函数H x =x 2-2x -2x -lnx ,H 'x =2x -1 2x>0,H x 单调递增所以H x 2 >H x 1 即x 22-2x 2-2x 2-lnx 2 >x 12-2x 1-2x 1-lnx 1从而x 1+x 2>2方法六,二次拟合构造函数m x =x -lnx -12x -1 2-1,m 'x =-x -1 2x <0,m x 单调递减又m 1 =0,又0<x 1<1<x 2,所以m x 1 >0,m x 2 <0有x 1-lnx 1-12x 1-1 2-1>01x 2-lnx 2-12x 2-1 2-1<02又x 1-lnx 1=x 2-lnx 2,,2-1有x 1+x 2>2第一问右侧不等式证明:证明右侧x1+x2<2a,又2a=x1+x2-lnx1x2,即证lnx1x1<0⇔x1x1<1简单提一下方法和左侧证明同理对称构造f x -f1 x对数均值不等式x1x1<x2-x1lnx2-lnx1=1比值换元t=x2 x1对勾拟合12x+1x第一问右侧不等式同构单调性调整法:证明x1x1<1⇔x1x21x1-1x2<1x1-1x2⇔x2+1x2<x1+1x1x2+1x2-2x2-lnx2<x1+1x1-2x2-lnx2构造函数R x =x+1x-2x-lnx,R'x =-x-12x2<0,R x 单调递减所以R x2<R x1,所以x1x2<1第二问不等式证明:关于第二问的左侧证明,只需取对数证明2-2a<lnx1x1=x1+x2-2a,等价于2<x1+x2,前面已经证明第二问的右侧证明因为x1+x2>2,x1x1<1,所以显然有x1+x22>1>x1x1。
高考数学证明法高二第一篇:高考数学证明法高二數學证明法(高二)明确复习目标1.理解不等式的性质和证明;2.掌握分析法、综合法、比较法证明简单的不等式。
建构知识网络1.比较法证明不等式是最基本的方法也是最常用的方法。
比较法的两种形式:(1)比差法:步骤是:①作差;②分解因式或配方;③判断差式符号;(2)比商法:要证a>b且b>0,只须证 a 1。
b说明:①作差比较法证明不等式时,通常是进行通分、因式分解或配方,利用各因式的符号或非负数的性质进行判断;②证幂、乘积的不等式时常用比商法,证对数不等式时常用比差法。
运用比商法时必须确定两式的符号;2.综合法:利用某些已经证明过的不等式(如均值不等式,常用不等式,函数单调性)作为基础,再运用不等式的性质推导出所要证的不等式的方法。
3.分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
要注意书写的格式, 综合法是分析法的逆过程4.对较复杂的不等式先用分析法探求证明途径,再用综合法,或比较法加以证明。
5.要掌握证明不等式的常用方法,此外还要记住一些常用不等式的形式特点,运用条件,等号、不等号成立的条件等。
经典例题做一做【例1】(1)已知a,b∈R,求证:a2+b2+1>ab+aa22b22(2)设a>0,b>0,求证()+()≥a2+b2.ba【例2】已知a+b+c=0,求证:ab+bc+ca≤0.1111【例3】已知∆ABC的三边长为a,b,c,且m为正数.求证:abc+>.a+mb+mc+m【例4】设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1.a(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,求证x0<x1.2【研讨.欣赏】已知a>1,m>0,求证:loga(a+m)>loga+m (a+2m).提炼总结以为师1.比较法是一种最重要的、常用的基本方法,其应用非常广泛,一定要熟练掌握.步骤是:作差→变形(分解因式或配方)→判断符号.对于积或幂的式子可以作商比较,作商比较必须弄清两式的符号.2.对较复杂的不等式需要用分析法,分析使不等式成立的充分条件,再证这个条件(不等式)成立.3.综合法是最简捷明快的方法,常需用分析法打前站,用分析法找路,综合法写出.有时也需要几种方法综合运用.4.要熟练掌握均值不等式、四种平均值之间的关系,记住一些常用的不等式,记住它们的形式特点、证明方法和内在联系。
关于xx和xx2的两个对称不等式的
证明
今天我们要谈论的是关于xx和xx2的两个对称不等式,如果你是数学爱好者,一定非常熟悉它。
它们分别是 xx 与xx2的不等式。
对称不等式是一种很有趣的数学挑战,也被称为不等式阵列,就是通过调整不
同的变量,使其成立保持原样。
首先,让我们来看看关于xx和xx2的两个对称不等式。
xx与xx2的不等式可
以用如下表达式来描述:
等式一:xx>xx2
等式二:xx2>xx
这两个等式的介绍表明,两边的系数差别只有2。
所以,当我们证明xx与xx2
的不等式时,可以发现,如果xx大于xx2,则xx2也会大于xx,而反之也是如此。
接下来,我们要证明这两个不等式,可以采用证明逻辑(proof logics)方法,即假设xx大于xx2,那么xx2也就大于xx。
用数学语言来表述,假设xx>xx2,即xx-xx2>0,则xx2-xx<0,因此等式一可
以得到证明。
同样地,假设xx2>xx,即xx2-xx>0,则xx-xx2<0,等式二也可以得到证明。
可以看出,xx与xx2的两个对称不等式满足对称条件,从而可以得出最终的
结果。
由于不等式是广泛应用于数学、物理、化学等诸多科学领域,所以只要想了解它,也可以看作是一种娱乐,玩起来完全没有压力。
最重要的是,这种活动可以让我们的大脑得到一定的开阔,给我们的学习生活带来更多的乐趣。