第4章 非稳态导热
- 格式:pdf
- 大小:4.18 MB
- 文档页数:71
非稳态导热的基本特点简介非稳态导热是指热量在物体中传播过程中,温度场随时间发生变化的现象。
相比稳态导热,非稳态导热的特点更加复杂和动态。
基本概念在进一步探讨非稳态导热的基本特点之前,我们先来了解一些相关的基本概念:1.热传导:指物质内部由高温区向低温区传递热量的现象,热能以分子碰撞的方式传导。
2.热扩散:是指物质内部温度差引起的分子的热运动,导致热量向周围传播的过程。
3.热传导方程:描述了非稳态导热的基本规律,形式为∂T(x,t)∂t =α∂2T(x,t)∂x2,其中T(x,t)为温度场,x为空间坐标,t为时间,α为热扩散系数。
非稳态导热的主要特点1. 温度场随时间变化在稳态导热中,物体的温度场是随空间坐标变化而稳定的;而在非稳态导热中,温度场不仅随空间坐标变化,还会随时间发生变化。
这意味着物体的温度分布在传播过程中会发生改变。
2. 传热时间依赖非稳态导热过程中,传热时间不再是一个常数,而是随着时间的推移而改变。
不同部位的温度差越大,传热时间会越短。
这是因为温度差越大,传热速率越快。
3. 初始和边界条件的影响非稳态导热过程中,初始和边界条件起着重要的作用。
初始条件是指导热开始时物体内部温度分布的初始状态,边界条件是指物体表面与外界的热交换情况。
不同的初始条件和边界条件会引起不同的非稳态导热行为。
4. 温度传播的迟滞效应相比稳态导热,在非稳态导热中温度的传播速度较慢。
这是由于热传导所需要的时间,以及物质自身的热容和热传导性质等因素共同作用的结果。
5. 温度波动的存在在非稳态导热过程中,温度场会出现波动现象。
这是由于能量在物体内部的传递是通过分子的热运动实现的,而分子的热运动是随机的,因此温度场会存在一定的波动性。
6. 热传导方程的求解非稳态导热过程可以通过求解热传导方程来描述和预测。
热传导方程是一个偏微分方程,可以通过数值方法或解析方法进行求解。
求解热传导方程可以得到物体中温度场随时间演变的规律。
4. 非稳态导热4.1 知识结构1. 非稳态导热的特点;2. (恒温介质、第三类边界条件)一维分析解求解方法(分离变量,特解叠加)及解的形式(无穷级数求和);3. 解的准则方程形式,各准则(无量纲过余温度、无量纲尺度、傅里叶准则、毕渥准则)的定义式及其物理涵义; 4. 查诺谟图求解方法;5. 多维问题的解(几个一维问题解(无量纲过余温度)的乘积);6. 集总参数法应用的条件和解的形式;7. 半无限大物体的非稳态导热。
4.2 重点内容剖析4.2.1 概述在设备启动、停车、或间歇运行等过程中,温度场随时间发生变化,热流也随时间发生变化,这样的过程称为非稳态导热。
一.过程特点分类1. 周期性非稳态导热(比较复杂,本书不做研究) 如地球表面受日照的情况 (周期为24小时)对于内燃机气缸壁受燃气冲刷的情况,周期为几分之一秒,温度波动只在很浅的表层,一般作为稳态处理。
2. 非周期性非稳态导热:(趋于稳态的过程,非稳态 稳态) 例子:如图4-1,一个无限大平板,初始温度均匀,某一时刻左壁面突然受到一恒温热源的加热,分析平壁内非稳态温度场的变化过程: (1) 存在两个阶段初始阶段:温度变化到达右壁面之前(如曲线A-C-D ),右侧不参与换热,此时物体内分为两个区间,非稳态导热规律控制区A-C 和初始温度区C-D 。
正规状况阶段:温度变化到达右壁面之后,右侧参与换热,初始温度分布的tx1t 0t ABCDEF图4-1 非稳态导热过程的温度变化影响逐渐消失。
(2) 热流方向上热流量处处不等因为物体各处温度随时间变化而引起内能的变化,在热量传递路径中,一部分热量要用于(或来源于)这些内能,所以热流方向上的热流量处处不等。
二. 研究任务1. 确定物体内部某点达到预定温度所需时间以及该期间所需供给或取走的热量,以便合理拟定加热和冷却的工艺条件,正确选择传热工质;2. 计算某一时刻物体内的温度场及温度场随时间和空间的变化率,以便校核部件所承受的热应力,并根据它制定热工设备的快速启动与安全操作规程。
5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT k e w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeE e e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6)2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。
非稳态导热一、基本概念本节基本概念主要包括:对物理问题进行分析,得出其数学描写(控制方程和定解条件);定性画出物体内的温度分布;集总参数法的定性分析;时间常数概念的运用;一维非稳态导热分析解的讨论;对海斯勒图(诺谟图)的理解;乘积解在多维非稳态导热中的应用;半无限大物体的基本概念。
1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。
你认为对吗?答:由于描述一个导热问题的完整数学描写不仅包括控制方程,还包括定解条件。
所以虽然非稳态导热的控制方程只与热扩散率有关,但边界条件中却有可能包括导热系数λ(如第二或第三类边界条件)。
因此上述观点不对。
2、无内热源,常物性二维导热物体在某一瞬时的温度分布为t=2y2cosx。
试说明该导热物体在x=0,y=1处的温度是随时间增加逐渐升高,还是逐渐降低。
答:由导热控制方程,得:当时,,故该点温度随时间增加而升高。
3、两块厚度为30mm的无限大平板,初始温度为20℃,分别用铜和钢制成。
平板两侧表面的温度突然上升到60℃,试计算使两板中心温度均上升到56℃时两板所需时间之比。
铜和钢的热扩散率分别为103×10-6m2/s,12.9×10-6m2/s。
答:一维非稳态无限大平板内的温度分布有如下函数形式:两块不同材料的无限大平板,均处于第一类边界条件(即Bi→∞)。
由题意,两种材料达到同样工况时,Bi 数和相同,要使温度分布相同,则只需Fo数相等,因此:,即,而δ在两种情况下相等,因此:4、东北地区春季,公路路面常出现“弹簧”,冒泥浆等“翻浆”病害。
试简要解释其原因。
为什么南方地区不出现此病害?东北地区的秋冬季节也不出现“翻浆”?答:此现象可以由半无限大物体(地面及地下)周期性非稳态导热现象的温度波衰减及温度波时间延迟特征来解释。
公路路面“弹簧”及“翻浆”病害产生的条件是:地面以下结冰,而地表面已解冻(表面水无法渗如地下)。
东北地区春季地表面温度已高于0℃,但由于温度波的时间延迟,地下仍低于0℃,从而产生了公路路面“弹簧”及“翻浆”等病害。