脉搏测量模块
- 格式:pdf
- 大小:290.77 KB
- 文档页数:1
便携式心率采集系统设计学生:学号:指导教师:助理指导教师:专业:摘要随着生物医学工程技术的开展, 医学信号测量仪器日新月异。
生物医学测量与临床医学和保健医疗的联系日益严密。
通过对人体各种生理信号的检测,能更好的认识人体的生命现象,这其中脉搏信号包含丰富的人体健康状况信息,从中提取的心率值对人体健康有着重要的参考作用。
本文采用光电反射式传感器, 设计了一套便携式可穿戴的获取和保存脉搏信号的系统。
本设计主要是基于STM32L低功耗单片机,利用光电传感器产生脉冲信号,经过放大整形滤波后,输入单片机内AD进展采样并将数字化后的脉搏信号和计算出的心率值保存在SD卡中。
后期通过上位机软件可以观测脉搏信号,对人体健康进展评估,因此该系统适用于保健中心、医院和家庭等场所。
本设计所设计的基于单片机的便携式心率采集系统对推进脉诊技术客观化和HRV研究具有积极的促进作用。
关键词:脉搏,单片机,光电传感器,脉冲信号,便携式ABSTRACTWith the development of the biomedical engineering technology, the medical signal measuring instrument is changing everyday. Biomedical measurement and clinical medicine and health care increasingly close ties. We could better understand the phenomenon of human. life through various physiological signal detection of the human body. Pulse inclusions rich state of the health information, By using optical sensors, With the high development of electronics and puter nowadays, the pulse diagnosing technology should be objective and quantitive. this text access to the pulse signal design methods. This paper mainly introduces the concrete realization method for digital pulse counter, which uses photoelectric sensors to generate pulse signal. The pulse signal is amplified and regenerated to input into MCU to carry out corresponding control, as a result the pulse number per a minute is measured. The use of the pulse counter is quick and convenient. Through observing the pulse signal, human health can be inspected, it is usually used in health care centers and the hospitals. In my design, Portable heart rate measuring instrument based on MCU has a positive role in promoting the objective of the pulse technology.Key words:Pulse, MCU, Photoelectric Sensor, Pulse Signal, Portable目录摘要IABSTRACTIII1 绪论11242 整体系统结构62.1 脉搏测量模块772.1.2 光电式脉搏传感器711131319213 系统软件设计233.1功能配置:233.2硬件相关配置:243.3文件系统配置:24325.总结33参考文献341 绪论随着人们生活水平的提高,地球环境遭到破坏,多种疾病威胁着人们的生命,而心脏病的发作又是人们难以预防的突发致命疾病。
图心电、心音波形图第一心音是当心室收缩时,血液射向主动脉,并因血液相继摆动关闭了房室瓣而产生的,它也源于主动脉根和心室间的血液摆动及血液在主动脉和肺动脉的湍流所引起的振动。
第一心音的分裂是由于二尖瓣和三尖瓣不在同时关闭而产生。
第一心音基本上处在心电图的QRS综合波期间。
第二心音是主动脉和肺动脉内血流减速和反向流动与半月瓣的关闭所伴随产生的一种低频振动,第二心音与心电图中的T波结束同时发生。
第三心音被认为是心房向心室迅速灌注期的突然结束和松弛的心室壁肌肉伴生的振动而产生的低幅、低频率波。
第四心音是当心房收缩而推动血流进入心室时产生的,故亦称心房音。
➢心音的测量方法心音的测量可分为心内心音测量和心外心音测量两种。
心内心音是将微型2.设计要求及提示:(1)心音传感器产生差压信号,脉搏传感器产生电极电压信号;(2)跟随电路:由LF353P构成,起到提高输入阻抗的作用;(3)放大电路:由AD620AN构成差动放大电路,可调放大倍数;(4)驱动电路:由高精度放大器件OP07CP构成。
(5)画出心音/脉搏电路原理图。
3.主要元器件:心音/脉搏模块采用的芯片有:LF353P、AD620AN、OP07CP。
(1)LF353P:用于跟随电路说明:BI-FET双运算放大器。
是高速、高阻抗单片双运算放大器(2)AD620AN:用于差动放大电路说明:放大电路采用专用的仪表放大器AD620,AD620可以取代低价格、分立的双运放或三运放结构仪表放大器的设计方案,并且具有优良的共模抑制、线性度、温度稳定性、可靠性。
根据AD620AN的电路结构,可以得到增益计算公式:G=(R 1 +R 2 )/RG +1,其中内部增益电阻R 1 和R 2 都调整到绝对值25kΩ,所以只需一只外接电阻R G 便可准确调节增益。
其中管脚1、8是外接可调电阻的输入端,管脚5是基准电位(本处接温度补偿电位)。
(1)OP07CP:用于驱动电路说明:精密,低噪声运放。
测量脉搏的实验报告结果实验四脉搏测量实验四脉搏测量一.实验目的1.学会人体脉搏波的测量方法。
2.观察脉搏波与心电波的区别及相互关系。
3.观察运动对脉搏的影响。
二.实验原理1.传感器:是由无源的精密压力换能器和一个指套组成,通过绑在手指上可测量脉搏。
2.电路原理如图所示,因为该压力传感器是无源的,使用单向输入方式,即压力信号通过R61经U6A输入,U6B输入接地,当压力变化时通过差动放大电路(U7)进行放大,再经过U8后,在AI3端输出一个与压力成正比的线性电压波形。
三.实验步骤1.接线:将传感器通过JP01连接至测量电路,将AI3和GND 连接至labjack的接口AI3和GND处。
2.通过调节电位器RP6来改变差动放大倍数(顺时针大),在U8输出端得到放大信号。
3.最终结果是:在U8的输出端得到一个放大后的信号,该信号特点是:当有脉搏时(压力增大)时,该信号曲线显示增大的信息;当无脉搏时(压力减小)时,该信号曲线幅度也响应减小。
四.实验内容1.测量脉搏波的变化情况,同时计算脉搏频率。
2.与心电测量一起显示计算,观察两个波型的特点及相互关系。
五、实验结果实验中通过将传感器绕着人体手指,开始测量并记录数据,用matlab程序处理过后,得到以下图像:根据图像,可以数出10秒内脉搏跳动次数约为14次,所以可计算得出人体脉搏约为84次/min。
六、实验总结在前面实验的基础上,脉搏的测量实验相对简单。
在连接好电路图后,装上脉搏测量传感器,缠绕手指过后,开始测量。
然后设置好相应的参数,采样率及采样时间,保存好数据并记录。
在实验过程中,示波器上的波形显示不明显,可以通过改变横轴的时间长度,便可以清晰看到波形显示。
回来便是数据处理,程序同呼吸测量实验中对数据的处理,要进行滤波处理,呈现出较为清晰的波形。
篇二:数电实验报告--电子脉搏计题目:电子脉搏计设计一、设计任务与要求设计一个电子脉搏计,要求: 1.实现在15S内测量1min的脉搏数;2.用数码管将测得的脉搏数用数字的形式显示;3.测量误差小于±4次/min。
基于单片机人体脉搏测量仪的设计与实现随着健康意识的普及和人们对身体健康的关注度的提高,人体脉搏测量仪成为了一款非常受欢迎的健康监测设备。
本文将基于单片机设计与实现一款人体脉搏测量仪。
首先,我们需要了解什么是脉搏。
脉搏是人体心脏搏动时,由于动脉中的血液被心脏排出而引起的动脉的周期性扩张和收缩的现象。
测量脉搏可以了解人体的心脏系统是否正常工作,并作为一种辅助诊断工具。
我们的设计将使用单片机作为测量仪的主要控制器。
单片机的选择可以根据实际需求来确定,一般使用中小型的单片机即可满足要求。
其次,我们需要选择合适的传感器来测量脉搏。
脉搏传感器一般通过与人体的皮肤接触来测量脉搏。
一种常用的传感器是光电传感器,可以通过测量人体皮肤上血液流动时的光变化来获得脉搏数据。
此外,还可以使用压力传感器或者加速度传感器等其他传感器来测量脉搏。
接下来,我们需要设计电路来连接传感器和单片机。
首先,将传感器与适当的电路连接,以便能够将传感器的输出信号转换为电压或者数字信号。
然后,将电路与单片机连接,以便能够将传感器输出的数据输入到单片机中进行处理。
在单片机端的软件设计中,我们首先需要初始化单片机的相关设置,例如时钟频率、IO口模式等。
然后,在主循环中,我们可以获取传感器输出的数据,并将其转换为合适的脉搏数值。
最后,可以通过显示设备(如LCD)显示脉搏数值,并可以将数据存储到存储器中,以便日后分析和查看。
此外,为了增加可操作性和用户体验,我们还可以在设计中添加一些功能和特性。
例如,可以添加一个按钮来启动脉搏测量,或者使用无线通信模块将脉搏数据发送到手机或电脑上进行分析。
总结起来,基于单片机人体脉搏测量仪的设计与实现具有以下步骤:选择合适的单片机;选择合适的传感器;设计连接传感器和单片机的电路;进行单片机端的软件设计;添加额外的功能和特性。
需要强调的是,这只是一个基本的设计框架,实际的设计与实现过程中还需要根据具体要求进行调整和完善。
家用脉搏仪系统框图
项目的系统框图如图2-1所示。
图2-1 系统框图
各部分的原理及功能如下:
①传感器电路。
本部分电路将脉搏跳动信号转换为与此相对应的电脉冲信号。
②放大与整形电路:将传感器的微弱信号放大,整形除去杂散信号。
③倍频器:将整形后所得到的脉冲信号的频率提高。
如将15s内传感器所获得的频率
进行4倍频,即可得到对应一分钟脉冲数,从而缩短测量时间。
④基准时间产生电路:产生短时间的控制信号,以控制测量时间。
⑤控制电路:用以保证在基准时间控制下,使4倍频后的脉冲信号送到计数、显示电
路中。
⑥ 计数、译码、显示电路:用来读出脉搏数,并以十进制数的形式由数码管显示出来。
传统中医诊疗设备清单一、中医诊断设备1. 中医四诊仪- 简介:中医四诊仪是用于中医诊断的重要设备,通过测量患者的脉搏、舌象、面色和问诊等方式,帮助医生了解患者的身体状况和病情。
- 功能:- 脉搏测量模块:用于记录患者的脉搏信息,分析脉象,判断身体的阴阳、气血状况等。
- 舌象影像模块:通过舌诊仪拍摄患者的舌象图像,帮助医生诊断患者的体质和疾病情况。
- 面色分析模块:通过面相识别技术,分析患者的面容特征,为中医诊断提供辅助信息。
- 问诊模块:通过与患者交流,了解患者症状、疾病史等资料,为中医诊断提供参考依据。
2. 中医穴位刺激仪- 简介:中医穴位刺激仪是用于对穴位进行刺激的仪器,通过电磁或电流刺激,以调节人体气血运行,疏通经络、调整阴阳平衡,从而达到治疗疾病的目的。
- 功能:- 穴位定位模块:通过定位功能,准确找到要刺激的穴位。
- 刺激参数调节模块:可以调整刺激仪的刺激参数,如电流强度、频率等,以适应不同病情。
- 刺激模式选择模块:提供不同的刺激模式,如脉冲、连续、间断等,以满足不同的治疗需求。
二、中医治疗设备1. 中草药煎煮机- 简介:中草药煎煮机是用于煎煮中草药的设备,通过传统中药煎煮工艺,提取草药的有效成分,用于中药治疗。
- 功能:- 温度控制模块:可以调节煎煮机的温度,以保证中草药的煎煮效果。
- 时间控制模块:可以设置煎煮的时间,以确保中草药充分释放有效成分。
- 搅拌模块:通过搅拌装置,保证中草药煎煮均匀、不粘锅。
2. 中医针灸设备- 简介:中医针灸设备是用于进行针灸疗法的设备,通过刺激特定穴位,调节人体的阴阳平衡,以治疗疾病和改善健康状况。
- 功能:- 针灸针扎入控制模块:通过控制针灸针的插入深度和速度,确保针的准确性和安全性。
- 电针刺激控制模块:通过微电流或脉冲电流刺激穴位,以调节人体的生理功能。
- 热疗模块:通过温热的方式刺激穴位,促进气血流通,起到疏通经络、活血化瘀的作用。
三、中医检测设备1. 中医气体分析仪- 简介:中医气体分析仪是通过检测人体呼吸、腋下等部位气体的成分和含量,了解患者身体内脏功能和疾病情况的设备。
STM32实现的脉搏心率检测算法及其性能评估脉搏心率检测是一种非侵入性但有效的方式,用于测量人体的心率。
在医疗领域和健身行业,心率监测对于评估人体健康状况和调整运动强度至关重要。
本文将介绍STM32实现的脉搏心率检测算法,并对其性能进行评估。
为了实现脉搏心率检测算法,首先需要收集心电信号。
心电信号通常通过心电图仪器进行采集,然后使用STM32微控制器进行处理。
在STM32中,可以使用模拟采样和数据转换模块将心电信号转换为数字信号。
一种常用的脉搏心率检测算法是基于R峰检测的方法。
R峰是心电波形中的一个特征点,代表心脏收缩。
通过检测R峰的峰值和间隔时间,可以计算出心率。
算法的实现过程如下:1. 心电信号预处理:对于接收到的心电信号,首先使用低通滤波器滤除高频噪声和基线漂移。
然后使用高通滤波器进行基线漂移校正。
这一预处理步骤可以提高信号的质量。
2. R峰检测:在预处理过的心电信号中,使用波峰检测算法识别R峰所在的位置。
常用的波峰检测算法包括峰值检测和阈值检测。
峰值检测算法根据信号的极值点来识别R峰,而阈值检测算法则基于信号的阈值来检测R峰。
3. 心率计算:根据检测到的R峰位置和间隔时间,可以计算出心率。
心率的计算公式是心脏跳动的次数除以时间间隔,然后乘以60。
心率的单位通常是“bpm”(每分钟跳动次数)。
为了评估STM32实现的脉搏心率检测算法的性能,可以进行以下测试和验证:1. 测试数据准备:准备包含不同心率下的心电信号的测试数据集。
可以模拟生成不同心率范围内的心电信号,或者使用真实采集到的心电信号。
2. 算法准确性评估:使用测试数据集对算法进行验证,计算出检测到的心率与实际心率之间的误差。
可以使用均方根误差(RMSE)或平均绝对误差(MAE)来衡量算法的准确性。
3. 算法的实时性评估:对算法的实时性能进行评估,即计算算法处理特定长度心电信号所需的时间。
通过性能评估,可以确定算法是否适合于实时心率监测应用。
第18期2023年9月无线互联科技Wireless Internet TechnologyNo.18September,2023基金项目:2023年度河北省体育科技研究项目;项目名称:基于云计算的国民体质监测系统的研究;项目编号:2023QT15㊂项目名称:新业态背景下我省电竞产业发展对策研究;项目编号:2023CY13㊂2019年张家口市科技局科研项目;项目名称:基于大数据的智能交通控制系统;项目编号:1911002B ㊂作者简介:杨凯(1987 ),男,湖北黄冈人,助教,硕士;研究方向:电子信息㊂∗通信作者:吉高卿(1987 ),男,河北张家口人,讲师,硕士;研究方向:大数据㊂基于STM32的人体体质监测系统设计与实现杨㊀凯1,王润修2,倪笑宇2,吉高卿2∗(1.江西财经职业学院,江西九江332000;2.河北建筑工程学院,河北张家口075000)摘要:由于人们生活节奏的加快和生活压力的增大,人体体质健康越来越受到重视㊂为了使人们更为直观地关注自身的体质健康,文章设计了一款基于STM32单片机的人体体质监测系统㊂系统以STM32单片机作为主控制模块,通过血氧传感器模块㊁脉搏心率测量模块㊁体温测量模块,分别对心率㊁血氧㊁体温等人体体质参数进行监测,并通过蓝牙模块实现无线传输功能,将测量的数据传送到手机上㊂利用该系统,用户既可以在液晶显示屏上查看体质数据,也可以在手机App 上了解到自身的体质参数㊂经实验测试,该系统运行平稳㊁工作正常,符合设计要求㊂关键词:人体体质;STM32;传感模块;血氧中图分类号:TP31㊀㊀文献标志码:A 0㊀引言㊀㊀目前,我国经济快速发展,但人口老龄化问题化日趋严重[1]㊂在我国人民生活水平不断提升的同时,生活压力也变得越来越大,由于错误的饮食习惯和较少的运动,导致人们的健康问题与日俱增[2]㊂在现实生活中,还存在医疗资源匮乏㊁少部分人支付不起昂贵的医疗费用㊁就医不及时等一系列问题[3]㊂人体体质监测是医疗健康领域的一个新兴研究方向,随着社会对健康生活的重视和人民对疾病预防意识的提高,越来越多的人开始关注自身的体质与潜在健康风险,以上因素推动了体质监测技术的快速发展[4]㊂人体体质监测系统可以实现关键生理参数的实时采集与数据分析,对个体体质特征及疾病发病风险进行评估,能够有效帮助人们做到早发现㊁早预防㊁早治疗[5]㊂1㊀系统硬件设计㊀㊀本文设计的人体体质监测系统硬件组成,如图1所示㊂系统主要由主控制器㊁温度采集模块㊁心率与血氧采集模块㊁显示模块㊁蓝牙模块等构成,不仅可以实现对体温㊁心率㊁血氧等数据的实时监测,还可以将数据通过蓝牙模块发送到手机等设备㊂本文设计的人体体质监测系统中,主控制器的作用是对系统各个组成模块进行总体控制;温度采集模块的作用是利用温度传感器,对人体体温等数据进行采集;心率和血氧采集模块的作用是利用相关传感器,对人体心率和血氧等体质数据进行采集;蓝牙模块的作用是利用蓝牙芯片,对已经获得的人体体质数据进行发送,使用户在手机端也可以查看自身的体质数据㊂图1㊀系统硬件构成1.1㊀主控制器模块㊀㊀系统采用STM32F103c8t6作为主控制器,它是ST 公司STM32系列32位ARM Cortex -M3内核微控制器的一款产品,属于STM32主流系列入门级产品,芯片采用高性能的ARM 内核,内置丰富的外设和接口,拥有软硬件资源丰富的生态系统[6]㊂该芯片内置了64KB 闪存㊁20KB SRAM 以及多个通信接口,如USART㊁SPI㊁I2C 和CAN 等,还有丰富的外围设备,如ADC /DAC㊁定时器和PWM 等㊂此外,它还支持多种电源模式,包括低功耗㊁停机㊁待机和休眠等,适用于多种应用领域,如工业控制㊁汽车电子㊁家电控制等[7]㊂1.2㊀温度采集模块㊀㊀系统选用DS18B20作为温度传感器,DS18B20数字温度传感器由Dallas半导体公司(现Maxim Integrated)开发制造[8]㊂芯片采用单总线接口,通信方式简单,连接方便,只需要一条数据线即可与微控制器连接实现温度数据的读取㊂DS18B20具有以下特点:(1)测量结果精度较高㊂DS18B20提供的温度测量范围是-10~85ħ精度为ʃ0.5ħ㊂这使得它非常适合需要准确温度测量的应用㊂(2)芯片采用单线连接㊂DS18B20传感器使用单一的数据线进行通信,这使得它在布线和连接方面非常方便,只需使用一个引脚就可以进行数据传输和供电㊂(3)芯片的功耗较低㊂DS18B20在进行温度测量和通信时消耗的功率非常低,这使得它非常适合用于低功耗和电池供电的应用场景㊂(4)芯片采用多种封装形式㊂DS18B20传感器提供了不同的封装选项,包括TO-92㊁TO-220㊁SOT-223等,以适应不同的应用需求㊂1.3㊀心率与血氧采集模块㊀㊀心率与血氧数据的采集模块采用的是MAX30102芯片㊂该芯片是Maxim Integrated公司推出的一款可穿戴生物传感器㊂它是一种集成了红外(IR)和可见光(Visible Light)LED发光器㊁光电传感器和数字信号处理电路的高度集成脉搏氧合仪和心率监测模块㊂芯片利用反射式光谱测量技术,通过测量光线在皮肤上的反射率和吸收率,来获取血氧饱和度(SpO2)和心率等人体体质数据㊂该芯片的主要特点和功能:(1)芯片采用双波长测量㊂MAX30102集成了红外(IR)和可见光(Visible Light)LED发光器,可同时进行双波长的光谱测量㊂这使得它能够有效地消除来自皮肤颜色和环境光的影响,确保血氧饱和度和心率测量的准确度㊂(2)芯片具有灵敏的光电传感器㊂MAX30102内置高灵敏度的光电传感器,能够检测微弱的光信号,并将其转换为电信号进行处理㊂(3)芯片具有灵活的数据接口㊂MAX30102通过I2C(Inter-Integrated Circuit)总线接口与主控制器进行通信㊂它提供了多个配置寄存器,可以调整采样速率㊁工作模式㊁阈值设置等参数,以满足不同应用的需求㊂(4)洗牌具有低功耗模式㊂AX30102支持多个低功耗模式,可以在不同的功耗和性能需求之间进行权衡,以延长电池寿命㊂1.4㊀显示模块㊀㊀本文的显示模块采用的是LCD1602芯片㊂LCD1602是一种基于液晶技术的字符显示模块,性能稳定,使用方便,价格低廉㊂它由两行,每行16个字符的显示区域组成,每个字符由5ˑ8点阵组成㊂LCD1602具有广泛的应用领域,包括电子设备㊁嵌入式系统㊁工业控制以及教育实验等㊂通过与控制器的连接,可以向LCD1602发送指令和数据,以控制显示内容㊁位置和外观等㊂用户可以在LCD1602上显示自定义的文本㊁数字㊁符号和图形,以满足各种应用的需求㊂1.5㊀蓝牙模块㊀㊀本文通过JDY-30蓝牙模块与手机软件连接,可以将测量得到的数据发送到手机上,人们通过手机便可以清楚地观察到自身体质数据㊂JDY-30是一种基于SPP(串口蓝牙传输协议)蓝牙模块,是一种小型且易于使用的无线通信模块,常用于与蓝牙设备进行串口通信㊂JDY-30模块配置方式简便,用户可以通过发送AT指令来配置模块的参数,如蓝牙名称㊁波特率等;JDY-30模块可工作在主从模式或仅从模式㊂主从模式可实现双向数据传输,而仅从模式只能接收数据㊂另外,JDY-30模块采用低功耗设计,适合于对电源功耗有要求的场景,带有蓝牙连接状态的指示灯,可以方便地了解蓝牙连接状态㊂STM32主控模块与手机端App之间采用JDY-30蓝牙模块进行通信㊂该模块体积小巧㊁使用灵活,用户可根据需要设置波特率,通信距离可达10m㊂该蓝牙芯片非常适合在人体体质监测系统中使用㊂2 系统软件设计㊀㊀本系统的程序设计以模块化为设计原则,将每个模块封装为函数,每个模块完成特定的功能㊂使用模块化开发,可以将代码耦合度降低,模块化的意义在于最大化的设计重用,以最少的模块㊁零部件,更快速地满足更多的个性化需求,提高系统程序的可维护性和可测试性㊂此外,如果需要对程序进行升级优化及功能扩展,可在不影响程序原有功能的情况下,加入相应模块的代码即可实现,提高开发效率和降低开发成本㊂本系统中,程序设计模块包括以下几种:脉搏波传感模块㊁蓝牙通信模块㊁LCD屏幕显示模块㊁存储模块㊁时钟及辅助模块等㊂系统主程序可以控制单片机系统按预定的操作方式运行㊂它是单片机系统程序的框架㊂系统上电后,需对系统进行初始化㊂初始化程序主要完成对单片机内专用寄存器㊁定时器工作方式及各端口的工作状态的设定㊂在系统初始化之后,进行按键扫描㊁液晶显示等工作㊂系统主流程,如图2所示㊂图2㊀系统主流程3 测试及结论㊀㊀在完成系统的硬件设计和软件设计后,可进行人体体质监测系统的工作性能测试㊂当系统接通电源后,系统便开始正常工作㊂在监测人体体质时,系统不仅可以通过LED显示屏显示被监测人的体质信息,还可以将数据通过蓝牙发送到手机端㊂LCD显示屏上显示的信息包括:当前测得的心率(HR)㊁血氧(SpO2)㊁体温(HeartRate)㊂经测试,本文所设计系统㊀㊀可以稳定㊁正常的工作㊂参考文献[1]张金榜,吴荣春,何骞,等.可穿戴的生理监测系统设计[J].微型机与应用,2013(20):29-31. [2]管培培,丁宁炜,汤强,等.三维加速度counts估算不同步速能量消耗应用初探[J].山东体育科技,2018 (1):72-75.[3]叶宏,彦秉军,高晓飞,等.单片机温度自动控制系统[J].黑龙江电子技术,2017(3):25-28. [4]刘会忠,程煜.Flash存储管理在嵌入式系统中的实现[J].计算机工程,2010(8):88-90.[5]李冰冰,俞帅东,杨象校,等.基于可穿戴的运动强度监测系统[J].计算机系统应用,2015(5):32-39.[6]龙晓庆,陈忠平.基于51单片机的小型分配性冷库温控系统[J].中国科技信息,2019(8):89-92. [7]钱钧,惠王伟,高莹,等.RC滤波电路实验设计与研究[J].大学物理实验,2017(5):116-119.[8]仝兆景,时俊岭,李月,等.基于无线通讯技术脉搏检测仪的设计与实现[J].计算机测量与控制,2017 (1):13-16.(编辑㊀姚㊀鑫)Design and implementation of a human physical fitness monitoring system based on STM32Yang Kai1Wang Runxiu2Ni Xiaoyu2Ji Gaoqing2∗1.Jiangxi Vocational College of Finance and Economics Jiujiang332000 China2.Hebei University of Architecture Zhangjiakou075000 ChinaAbstract Due to the acceleration of people s pace of life and the increase in life pressure the physical health of the human body is increasingly valued.In order to make people pay more intuitive attention to their physical health the article designs a human physique monitoring system based on the STM32microcontroller.The system uses the STM32 microcontroller as the main control module and monitors human physical parameters such as heart rate blood oxygen and body temperature through the blood oxygen sensor module pulse heart rate measurement module and body temperature measurement module.The wireless transmission function is achieved through the Bluetooth module and the measured data is transmitted to the mobile phone.With this system users can view their physical fitness data on the LCD screen and also learn about their physical fitness parameters on the mobile App.After experimental testing the system runs smoothly and operates normally meeting the design requirements.Key words human constitution STM32 sensing module blood oxygen。
基于STM32的脉搏心率检测仪设计方案脉搏心率检测仪是一种常见的医疗设备,用于测量人体心脏的脉搏和心率数据。
本文将详细介绍基于STM32的脉搏心率检测仪的设计方案。
1. 引言脉搏心率检测仪是一种用于检测和监测人体心脏功能的设备,具有广泛的应用领域,如医疗机构、健康管理等。
本设计方案旨在利用STM32微控制器实现一个高效、精准、可靠的脉搏心率检测仪。
2. 系统硬件设计基于STM32的脉搏心率检测仪的硬件设计包括传感器模块、信号处理模块和显示模块。
传感器模块用于感知人体脉搏信号,常用的传感器有光电传感器和压阻传感器。
信号处理模块通过采样和滤波算法来提取脉搏信号,并计算心率值。
显示模块用于展示心率数据,可以选择LCD屏幕或LED显示。
3. 传感器模块设计本设计方案选择光电传感器作为脉搏信号的感知装置。
光电传感器工作原理是利用红外光的透射和反射来检测脉搏信号。
传感器通过检测红外光线的反射变化来感知脉搏信号。
在设计时,需要合理选择传感器的灵敏度和工作范围,并采用适当的信号调理电路来增强信号质量。
4. 信号处理模块设计信号处理模块的设计是脉搏心率检测仪的核心。
该模块主要包括信号采样、滤波和心率计算三个部分。
信号采样应根据传感器输出脉搏信号的特点,选择适当的采样频率和分辨率。
滤波算法主要用于去除噪声和干扰,保留脉搏信号的有效部分。
常用的滤波算法有移动平均滤波和巴特沃斯滤波。
心率计算可以通过测量脉搏波的峰距离和时间间隔来估算心率值。
5. 显示模块设计显示模块的设计用于展示心率数据。
可以选择LCD屏幕或LED显示来实现数据的可视化。
LCD屏幕可以显示详细的心率波形和数值,而LED显示适合于简单的心率数据展示。
在设计时,需要考虑显示模块的分辨率、刷新率和功耗等因素。
6. STM32控制器选型和编程在本设计方案中,选择STM32微控制器作为系统的核心控制单元。
合适的STM32型号应具备足够的计算能力和丰富的接口资源,以满足传感器模块、信号处理模块和显示模块的连接需求。
目录摘要 .................................................................... 1关键词 .................................................................. 1Abstract ................................................................ 1Key words ............................................................... 11 引言 .................................................................. 22 设计要求和设计方案 ................................................... 42.1 设计要求 .......................................................... 42.2 设计方案 .......................................................... 42.3 工作原理 ........................................................... 43 数字脉搏检测仪各模块的工作原理 ....................................... 63.1 传感器模块 ........................................................ 63.1.1 传感器概述 ....................................................... 63.1.2 芯片CD4011 ....................................................... 73.2 信号放大模块 ....................................................... 83.2.1 放大器概述 ....................................................... 83.2.2放大器的工作电路................................................... 93.3 译码/驱动模块 ................................................... 113.4计时模块........................................................... 123.5计数模块........................................................... 143.6 显示模块 ......................................................... 163.6.1 显示器概述 ...................................................... 163.6.2 工作电路 ....................................................... 163.6.3 LED数码管的工作原理及工作方式.................................. 173.6.4 LED数码管的显示方式及安全性问题................................ 174 总结 ................................................................ 19参考文献 .............................................................. 20附录数字脉搏检测仪的工作电路图 ...................................... 21致谢 .................................................... 错误!未定义书签。
第1篇一、实验目的本次实验旨在通过设计并实现一个基于ATmega8微控制器的脉搏测量与显示系统,验证脉搏测量技术的可行性和实用性,并探索其在实际应用中的潜在价值。
实验过程中,我们对脉搏信号的采集、处理、显示以及存储等环节进行了深入研究,取得了以下结论。
二、实验方法1. 硬件组成:实验中使用了ATmega8微控制器、LCD1602显示器、DS1302时钟芯片、AT24C02存储芯片、蜂鸣器、按键以及脉搏测量电路等。
2. 系统设计:采用模块化设计方法,将脉搏测量、显示、报警和数据存储等功能模块进行集成,形成一个完整的脉搏测量与显示系统。
3. 脉搏信号采集:利用脉搏测量电路将人体脉搏信号转换为电信号,通过ATmega8微控制器进行采样和处理。
4. 脉搏信号处理:对采集到的脉搏信号进行滤波、放大、去噪等处理,提取脉搏信号的频率和幅度信息。
5. 显示与报警:将处理后的脉搏信号在LCD1602显示器上实时显示,并根据设定的上下限值判断是否触发报警。
6. 数据存储:利用AT24C02存储芯片将测量数据、设定的上下限值以及报警状态等信息进行存储,实现数据的掉电保护。
三、实验结果与分析1. 脉搏信号采集:实验中成功采集到人体脉搏信号,并进行了有效处理,提取出脉搏信号的频率和幅度信息。
2. 显示与报警:系统实时显示脉搏测量结果,并根据设定的上下限值判断是否触发报警。
实验结果表明,系统对脉搏信号的检测和报警功能均达到了预期效果。
3. 数据存储:实验过程中,成功将测量数据、设定的上下限值以及报警状态等信息存储在AT24C02芯片中,实现了数据的掉电保护。
4. 实验误差分析:实验过程中,脉搏信号的采集和处理过程中可能存在一定的误差。
通过对实验数据进行统计分析,得出以下结论:(1)脉搏信号采集误差:主要受脉搏测量电路性能和人体脉搏信号波动的影响,误差范围在±5%以内。
(2)脉搏信号处理误差:主要受滤波、放大、去噪等处理环节的影响,误差范围在±3%以内。
意义:医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。
为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。
而该系统以AT89C51单片机为核心,以红外发光二极管和光敏三极管为传感器,并利用单片机系统内部定时器来计算时间,由光敏三极管感应产生脉冲,单片机通过对脉冲累加得到脉搏跳动次数,时间由定时器定时而得。
系统运行中能显示脉搏次数和时间,系统停止运行时,能够显示总的脉搏次数和时间。
目的:实现脉搏波的实时存储并可实现与上位机( PC 机) 的实时通讯,作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。
2.1 光电脉搏测量仪的结构光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。
本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。
1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。
2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。
3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括AT89C51、外部晶振、外部中断等)。
4.数码显示即把单片机计算得出的结果用8位LED数码管静态扫描来显示,便于直接准确无误的读出数据。
5. 电源即向光电传感器、信号处理、单片机提供的电源,可以是5V-9V的交流或直流的稳压电源。
2.2 工作原理本设计采用单片机AT89C51为控制核心,实现脉搏测量仪的基本测量功能。
脉搏测量仪硬件框图如下图1.1所示:图 1.1 脉搏测量仪的工作原理当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。
基于单片机的脉搏测量仪设计作者姓名:XX班级专业:2009050103 指导老师:XXX摘要脉搏跳动的次数是一个人很重要的生理指标,从最简单的手按在腕部的动脉上,根据脉搏的跳动进行计数,到用仪器较为精确的测量,脉搏测量在我们日常生活中的应用已经很广泛了。
本课题设计是基于51单片机的脉搏测量仪,以AT89C52单片机为核心,以红外发光二极管和光敏三极管为传感器,并利用单片机系统内部定时器来计算时间,由光敏三极管感应产生脉冲,单片机通过对脉冲累加得到脉搏跳动次数,停止运行时,液晶能够显示总的脉搏次数和时间。
关键词:脉搏测量、STC89C52单片机、传感器、软件STC89C52 AND Pulse measuring instrumentThe frequency of the pulse is a physiological indicator of a person is very important, from the most simple hand at the wrist arteries, according to the pulse count, to instrument for measuring more accurate, application of pulse measurement in our daily life has been very widely. The design of this project is to pulse measuring instrument based on 51 single chip microcomputer, the AT89C52 microcontroller as the core, with infrared emitting diode and a phototransistor as sensor, and calculates the time using the internal timer of MCU, pulse is generated by the photosensitive triode induction, single-chip based on frequency of the pulse by pulse accumulation, stop running, can display the total the pulse frequency and time.Keywords: pulse measurement, STC89C52 MCU, sensor, software目录第1章前言 (5)1.1前言 (5)1.2选题背景 (5)1.3脉搏测量仪的发展 (6)第2章方案设计 (8)2.1方案的论证 (8)2.2方案的选择 (9)2.3方案内容 (9)第3章基本元器件的选择 (11)3.1STC89C52 (11)3.2光电传感器 (14)3.3液晶显示器 (15)3.4三端稳压电路LM7805 (18)第4章单元模块设计 (19)4.1单片机的外围电路 (19)4.2稳压电源电路 (20)4.3信号采集电路 (20)4.4信号放大电路 (22)4.5波形整形电路 (24)4.6显示电路 (25)4.7整体硬件电路 (25)第5章软件设计 (26)5.1K EIL C51软件简介 (26)5.2K EIL的基本使用流程图 (26)5.3程序流程图 (27)第6章系统调试 (29)6.1调试 (29)6.2系统检验 (30)6.3误差分析 (33)结论 (33)致谢 (34)参考文献 (35)附录1 系统原理总图............................... 错误!未定义书签。
光电式脉搏波无线测量系统东南大学王晨迪, 王衡,朱文琦(东南大学生物科学与医学工程学院,江苏省南京市210096)指导教师:汪丰副教授摘要:本项目研制的光电式脉搏波无线测量系统包括脉搏波测量模块,无线收发模块和运算机分析处置软件三大部份。
结合光电容积法的特点,充分利用了TI公司OPT101等芯片的特性,设计高通、低通、工频陷波器对输出信号进行处置;利用集成了模数转换的CC2430单片机芯片完成检测心率、无线通信等功能;运算机分析软件通过USB接口与无线接收模块互换数据,接收脉搏波信号,可动态实时观看脉搏波数据,并进行分析处置,通过本文提出的基于小波变换的阈值去噪改良算法,快速有效地分离脉搏波信号和噪声;依托智能分析算法辅助医生进行各波段特点提取、进行节律异样,血管弹性和血液粘性等快速诊断,迅速关注异样脉搏波,指导用户了解自身健康状况和帮忙医护人员进行下一步医疗方法。
关键词:光电脉搏波,传感器,无线传输,小波去噪,智能分析Abstract: The photoelectric pulse wave wireless measurement system developed in this project includes pulse wave measurement module, wireless transceiver modules, and computer analysis software. Combined with the characteristics of photoelectric volume method, we have made full use of the OPT101 and other chips from TI company designing high-pass, low pass, power frequency notch filter to process the output signals; By the use of the integration of the analog-digital conversion of the CC2430 microcontroller chip, the heart rate detection, wireless communications and other functions have been accomplished; computer analysis software can exchange data with the wireless receiver module via USB interface to receive the pulse wave signal and fulfill dynamic real-time observation of pulse wave data and analyzed treatment. Using the proposed threshold denoising Algorithm based on wavelet transform, the pulse wave signal and noise can be separated quickly and effectively; the intelligence analysis algorithms can assist doctors with feature extraction, and rhythm abnormalities, blood vessel elasticity and blood viscosity and other rapid diagnosis and pay attention to abnormal pulse wave promptly, guiding the user to understand their own health status and help medical staff medical measures on the next step.Key Words: Photoelectric pulse wave, sensors, wireless transmission, wavelet denoising, intelligent analysis一、引言脉搏是临床检查和生理研究中常见的生理现象,脉搏波的波形幅度和形态,包括了反映心脏和血管状况的重要生理信息。