计算机图形学10-曲线曲面参数表示的基础知识PPT课件
- 格式:ppt
- 大小:2.13 MB
- 文档页数:128
12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面在工程上经常遇到的曲线和曲面有两种:◆简单曲线和曲面函数方程或参数方程直接给出;◆自由曲线用二次混合曲线或三次曲线。
曲线曲面描述方法的发展: 1963曲线曲面1971线形状1972条曲线曲面1975方法1991何形状的唯一数学方法☐非参数表示:显式表示,坐标变量之间一一对应隐式表示☐非参数表示存在问题:不具有几何不变性,形状与坐标轴相关斜率无穷大非平面曲线、曲面难以用常系数的非参数化函数表示 不便于计算与编程参数表示:曲线上任一点的坐标均表示成给定参数的函数示,曲线上一点的笛卡尔坐标:曲线上一点坐标的矢量表示:p对参数变量规格化:例子:直线段的参数表示曲面的参数表示空间曲面xyzP☐参数表示法的优点◆曲线的形状与坐标系无关。
◆容易确定曲线的边界。
参数规格化区间或为◆曲线的绘制简单。
当参数序列组成的连线就是方程代表的曲线。
◆易于变换。
对参数方程表示的曲线或曲面进行几何变换或投影变换,只需要对方程的系数变换即可◆易于处理斜率无穷大的情形。
◆易于用矢量和矩阵表示几何分量,简化了计算隐式表示的曲线称为隐式曲线 表示形式空间隐式曲线表示为联立方程组 注意参数表示与隐式表示的比较参数表示易于求值给定一个参数值,代入参数方程对应的参数曲线上的点;得到隐式曲线上的点则非常困难。
参数表示难于判断内外对于隐式曲线f(x线12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面☐参数曲线的表示参数的、连续的、单值的函数:x=x(t), y=y(t), z=z(t), 0<=t<=1 ☐位置矢量p(t)=[x(t), y(t), z(t)]曲率:数学上表明曲线在某一点的弯曲程度的数值.几何意义是曲线的单位切矢对弧长的转动率。