电磁学试题库电磁学第三章试题(含答案)
- 格式:doc
- 大小:242.50 KB
- 文档页数:4
《电磁学》试题库渭南师范学院·物理系第一章静电场0111 一带正电小球移近不带电导体时,小球将受到_________力;一带负电小球移近不带电导体时,小球将受到_________力;一带正电小球靠近不带电的接地导体时,小球将受到力;一带负电小球与不带电的接地导体接触时小球将_________力。
0211 由库仑定律知,当r→0时,F→∞,但将二带同号电荷的小球推靠在一起并不很费力,其原因是_________0322 在一带正电荷的大导体附近放置一个检验电荷+q0,测得其受到的力为F,若考虑到电量q0不是足够小,则F/q0将比实际场强_________0423 三个在一直线上带负电的小球A、B、C,带电量之比为1∶3∶5,A、C固定,若使B也不动,则AB和BC距离之比为_________0522 将某电荷[WTBX]Q分成[WTBX]q和(Q-q)两部分,并将两部分分离开一定距离,则它们之间的库仑力为最大时Q与q的关系为_________0622 将一单摆小球带上正电荷置于方向竖直向下的匀强电场,则单摆的周期变_________0721 将一孤立带电导体接地,则电荷将会_________;将充电的电容器一极板接地,则电荷_________0821 当其它电荷移近两个点电荷时,则这两个电荷之间的库仑力_________。
0911 若两个点电荷连线中点处的场强为零,则表明这两个点电荷是_________1023 库仑力和万有引力都是与距离的平方成反比的力,从场的角度看库仑力是电荷在电场中受到的力,那么万有引力就是_________1111 电力线一般并不是点电荷在电场中的运动轨迹,其原因是_________1211 静电场的高斯定理表明〖CD#4〗只与高斯面内的电荷有关,而_________与高斯面内外的1311 若高斯面内无净电荷,则高斯面上各点的 E_________;若高斯面上各点的E都为零,则高斯面内的净电荷_________1423 若库仑定律中〖WTBX〗r的指数不是2而是n ,则高斯定理_________,因为_________。
电磁学试题库试题3一、填空题〔每题2分,共20分〕1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是〔〕。
2、一无限长均匀带电直线〔线电荷密度为λ〕与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为〔〕。
3、如下图,金属球壳外半径分别为a 和b ,带电量为Q ,球壳腔距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势〔〕。
4、两个同心的导体薄球壳,半径分别为b a rr 和,1〕两球壳之间的电阻〔 〕。
〔2U ,其电流密度〔 〕。
5、载流导线形状如下图,(〔〕6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如下图,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,假设可动边的长度为L , 滑动速度为V ,则回路中的感应电动势大小〔 〕,方向〔 〕。
7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况一样,则通过半径为r 〔a<r<b 〕的任一圆柱面的总位移电流是〔 〕。
8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是〔〕。
9、对铁磁性介质M B H、、三者的关系是〔〕〕。
10、有一理想变压器,12N N =15,假设输出端接一个4Ω的电阻,则输出端的阻抗为〔 〕。
一、选择题〔每题2分,共20分〕 1、关于场强线有以下几种说法〔〕 〔A 〕电场线是闭合曲线〔B 〕任意两条电场线可以相交〔C 〕电场线的疏密程度代表场强的大小 〔D 〕电场线代表点电荷在电场中的运动轨迹2、对*一高斯面S ,如果有0=⋅⎰S S d E则有〔〕 〔A 〕高斯面上各点的场强一定为零 〔B 〕高斯面必无电荷 〔C 〕高斯面必无净电荷 〔D 〕高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。
第三章 稳 恒 电 流§3.1 电流的稳恒条件和导电规律思考题:1、 电流是电荷的流动,在电流密度j ≠0的地方,电荷的体密度ρ是否可能等于0? 答:可能。
在导体中,电流密度j ≠0的地方虽然有电荷流动,但只要能保证该处单位体积内的正、负电荷数值相等(即无净余电荷),就保证了电荷的体密度ρ=0。
在稳恒电流情况下,可以做到这一点,条件是导体要均匀,即电导率为一恒量。
2、 关系式U=IR 是否适用于非线性电阻?答:对于非线性电阻,当加在它两端的电位差U改变时,它的电阻R要随着U的改变而变化,不是一个常量,其U-I曲线不是直线,欧姆定律不适用。
但是仍可以定义导体的电阻为R=U/I。
由此,对非线性电阻来说,仍可得到U=IR的关系,这里R不是常量,所以它不是欧姆定律表达式的形式的变换。
对于非线性电阻,U、I、R三个量是瞬时对应关系。
3、 焦耳定律可写成P=I 2R 和P=U 2/R 两种形式,从前者看热功率P 正比于R ,从后式看热功率反比于R ,究竟哪种说法对?答:两种说法都对,只是各自的条件不同。
前式是在I一定的条件下成立,如串联电路中各电阻上的热功率与阻值R成正比;后式是在电压U一定的条件下成立,如并联电路中各电阻上的热功率与R成反比。
因此两式并不矛盾。
4、 两个电炉,其标称功率分别为W 1、W 2,已知W 1>W 2,哪个电炉的电阻大? 答:设电炉的额定电压相同,在U一定时,W与R成反比。
已知W 1>W 2,所以R1<R 2,5、 电流从铜球顶上一点流进去,从相对的一点流出来,铜球各部分产生的焦耳热的情况是否相同?答:沿电流方向,铜球的截面积不同,因此铜球内电流分布是不均匀的。
各点的热功率密度p=j 2/σ不相等。
6、 在电学实验室中为了避免通过某仪器的电流过大,常在电路中串接一个限流的保护电阻。
附图中保护电阻的接法是否正确?是否应把仪器和保护电阻的位置对调? 答:可以用图示的方法联接。
一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为(A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零.[E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) lI B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为a(A) R 140πμ. (B) R120πμ. (C) 0. (D) R 140μ. [ ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小(B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d 1 2C q 4(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l Bd(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则 (A) 回路L 内的∑I 不变,L 上各点的B 不变. (B) 回路L 内的∑I 不变,L 上各点的B 改变. (C) 回路L 内的∑I 改变,L 上各点的B 不变. (D) 回路L 内的∑I 改变,L 上各点的B 改变. [ ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:L 1 2 I 3 (a) (b)⊙(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ] 28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C)qB m y v 2-=. (D) qBm y v -=. [ ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ ]×× ×33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v .(D) 反比于B ,反比于v .[ ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ. (C) rR I I 22210πμ. (D) 0. [ ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为(A) 2/32IB Na . (B) 4/32IB Na .(C) ︒60sin 32IB Na . (D) 0. [ ]OO r R I 1 I 240、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ] 42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.(E) 9m /2. [ ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移.(C) 转动. (D) 不动. [ ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:BI 1 I I a(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ ] 48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的? (A) H 仅与传导电流有关. (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零. (C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零. (D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ ]49、图示载流铁芯螺线管,其中哪个图画得正确?(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ 0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.a M O P(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍.[ ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.[ ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ ]B I O (D)I O (C)O (B)58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.[ ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈. (C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻). (D) 把铁芯从螺线管中抽出. [ ]Ib d b d bcd v v I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21.(D) ω abB | cosω t |. (E) ω abB | sin ω t |. [ ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0.(B) 21v Bl .(C) v Bl . (D) 2v Bl . [ ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]B ☜ t O (A) ☜ tO (C) ☜ t O (B) ☜ tO (D)70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动.(B) 转动. (C) 向左移动. (D) 向右移动.[ ]71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ] ca b d N M B76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I πμμ (B) 200)2(21aI πμμ (C) 20)2(21I a μπ (D) 200)2(21aI μμ [ ] 78、电位移矢量的时间变化率t D d /d 的单位是A )库仑/米2 (B )库仑/秒C )安培/米2 (D )安培•米279、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ] 80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z轴正方向的半球壳表面的磁通量的大小为____________Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=__________.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=_________________.83、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直________________________________________________________________.84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =____________________.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为_________________.86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________.87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为__________________________.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为________________.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为____________.90、一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电 质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)。
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220m a x 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E +=+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθa πεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==a πεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
大学物理电磁学答案【篇一:大学物理电磁学练习题及答案】(c) u12增大,e不变,w增大;vd(c) ib球壳,内半径为r。
在腔内离球心的距离为d处(d?r),固定一点电荷?q,如图所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心o处的电势为[ ]q?qq11(c)2. 一个平行板电容器, 充电后与电源断开,当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差u12、电场强度的大小e、电场能量w将发生如下变化:[ ](a) u12减小,e减小,w减小; (b) u12增大,e增大,w增大;(d) u12减小,e不变,w不变.3.如图,在一圆形电流i所在的平面内,选一个同心圆形闭合回路l?(a) lb?dl??0?,且环路上任意一点b?0(b) lb??dl??0?,且环路上任意一点b?0 (c) lb??dl??0?,且环路上任意一点b?0 ??(d),且环路上任意一点b? lb?dl?0?常量. [ ]4.一个通有电流i的导体,厚度为d,横截面积为s,放置在磁感应强度为b的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。
现测得导体上下两面电势差为v,则此导体的霍尔系数等于[ ]ibv(a) dsbvs(b)idivs(d) bd5.如图所示,直角三角形金属框架abc放在均匀磁场中,磁场b平行于ab边,bc的长度为l。
当金属框架绕ab边以匀角速度?转动时,abc回路中的感应电动势?和a、c两点间的电势差ua?uc为 [ ] (a)??0,u2a?uc?b?l(b)? ? 0, ua?u2c??b?l/2 (c)??b?l2,u2a?uc?b?l/2(d)??b?l2,u2a?uc?b?l6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ ](a) 位移电流是由变化的电场产生的;(b) 位移电流是由线性变化的磁场产生的; (c) 位移电流的热效应服从焦耳——楞次定律;(d) 位移电流的磁效应不服从安培环路定理.二、填空题(20分) 1.(本题5分)若静电场的某个区域电势等于恒量,则该区域的电场强度为,若电势随空间坐标作线性变化,则该区域的电场强度分布为 .2.(本题5分)一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3a电流时, 铁芯中的磁感应强度b的大小为;铁芯中的磁场强度h的大小为。
电磁学第三章课后习题答案电磁学第三章课后习题答案电磁学是物理学中的重要分支,研究电荷和电流之间相互作用的规律。
在电磁学的学习过程中,习题是巩固知识和提高能力的重要途径。
本文将为大家提供电磁学第三章的课后习题答案,希望能对大家的学习有所帮助。
1. 一个导线的长度为l,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × (ρl/A)。
2. 一个导线的电阻为R,电流为I,如图所示。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,导线两端的电势差为V = I × R。
3. 一个导线的电阻为R,电流为I,导线的长度为l,电阻率为ρ,横截面积为A。
求导线两端的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
而导线的电阻可以通过电阻率乘以长度除以横截面积来计算。
所以,导线两端的电势差为V = I × R = I × (ρl/A)。
4. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电流为I。
求两个电阻器上的电势差。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,第一个电阻器上的电势差为V1 = I × R1,第二个电阻器上的电势差为V2 = I × R2。
5. 在一个电路中,有一个电阻为R1的电阻器和一个电阻为R2的电阻器连接在一起,电阻器之间的电势差为V。
求电流的大小。
答案:根据欧姆定律,电势差等于电流乘以电阻。
所以,V = I × (R1 + R2)。
解方程可得电流的大小为I = V / (R1 + R2)。
6. 一个电路中有两个电阻器,电阻分别为R1和R2,电流为I。
求电路中的总电阻。
答案:电路中的总电阻可以通过电阻器的并联和串联来计算。
如果电阻器是串联的,总电阻等于各个电阻器的电阻之和,即R = R1 + R2。
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
第三章 练习题一、选择题1、[ C ]关于D r的高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D r为零.(B) 高斯面上D r 处处为零,则面内必不存在自由电荷. (C) 高斯面的D r通量仅与面内自由电荷有关.(D) 以上说法都不正确.2、[ D ]静电场中,关系式 0D E P ε=+r r r(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质. (D) 适用于任何电介质.3、[ B ]一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为:(A)0E ε. (B) E ε. (C) r E ε . (D) 0()E εε- .4、[ A ]一平行板电容器中充满相对介电常量为r ε的各向同性的线性电介质.已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为:(A)0σε'. (B) 0r σεε'. (C) 02σε'. (D) rσε'. 5、[ B ]一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E r ,电位移为0D r,而当两极板间充满相对介电常量为r ε的各向同性的线性电介质时,电场强度为E r ,电位移为D r,则(A) 00,r E E D D ε==r rr r . (B) 00,r E E D D ε==r r r r.(C) 00,r r E E D D εε==r r r r . (D) 00,E E D D ==r r r r.6、 [ C ]一空气平行板电容器,两极板间距为d ,充电后板间电压为U 。
然后将电源断开,在两板间平行地插入一厚度为d/3的与极板等面积的金属板,则板间电压变为(A )3U . (B)13U . (C) 23U . (D U .7、[ B ]一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑.8、[ B ]真空中有“孤立的”均匀带电球体和一“孤立的”的均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 9、[ B ]如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.10、[ D ]图示为一均匀极化的各向同性电介质圆柱体,已知电极化强度为P ϖ,圆柱体表面上束缚电荷面密度0σ'=的地点是图中的(A) a 点. (B) b 点. (C) c 点. (D) d 点.二、填空题1、分子的正负电荷中心重合的电介质叫做无极分子电介质,在外电场作用下,分子的正负电荷中心发生相对位移,电介质的这种极化形式叫:____ __极化。
电磁学试题含答案电磁学试题含答案电磁学试题(含答案)1、如果通过闭合面s的电通量φe为零,则可以确实a、面s内没有电荷b、面s内没有净电荷c、面s上每一点的场强都等于零d、面s上每一点的场强都不等于零2、下列说法中正确的是a、沿电场线方向电势逐渐减少b、沿电场线方向电势逐渐增高c、沿电场线方向场强逐渐减小d、沿电场线方向场强逐渐增大3、载流直导线和滑动线圈在同一平面内,如图所示,当导线以速度v向左匀速运动时,在线圈中a、存有顺时针方向的感应电流b、有逆时针方向的感应电c、没感应电流d、条件不足,无法判断4、两个平行的无限大光滑磁铁平面,其面电荷密度分别为+σ和-σ,则p点处的场强为-σσ2σa、b、c、d、02ε0ε0ε05、一束α粒子、质子、电子的混合粒子流以同样的速度垂直进进磁场,其运动轨迹如图所示,则其中质子的轨迹就是a、曲线1b、曲线2p6、一个电偶极子以如图所示的方式放置在匀强电场e中,则在电场力促进作用下,该电偶极子将a、保持静止b、顺时针转动c、逆时针转动d、条件不足,无法判断7、点电荷q坐落于边长为a的正方体的中心,则通过该正方体一个面的电通量为a、0b、c、曲线3d、无法判断qε0c、qqd、4ε06ε0i8、长直导线通有电流i=3a,另有一个矩形线圈与其共面,如图所而立,则在以下哪种情况下,线圈中可以发生逆时针方向的感应电流?a、线圈向左运动b、线圈向右运动c、线圈向上运动d、线圈向上运动∑qi9、关于真空中静电场的高斯定理e∙ds=,下述说法正确的是:a.该定理只对存有某种对称性的静电场才设立;b.∑qi是空间所有电荷的代数和;c.积分式中的e一定是电荷∑qi激发的;d.分数式中的e就是由高斯面内外所有电荷唤起的。
10、下列各图为载流电路,其中虚线部分表示通向“无限远”,弧形部分为均匀导线,点o磁感强度为零的图就是11、两个带有同号电荷、形状完全相同的金属小球a和b,电量均为q,它们之间的距离远大于小球本身的直径。
电磁学叶邦角课后答案第三章电磁技术自出现以来,一直被人们广泛应用于生活的各个领域,尤其是在航天、军事、医学等诸多领域,都可以看到电磁学的身影。
例如军事领域的电磁炮、医学领域的磁疗、生活中的常见的电磁炉等等,这些事物都是对电磁学的使用和应用。
本次笔者以叶邦角电磁测探法为例,简单分析叶邦角电磁测探法的电磁原理。
公路隧道在建设过程中,往往会受到地形和地质结构复杂的影响,尤其是在西部地区,往往会因为复杂的地质环境,给公路隧道的修建带来巨大的困难。
因难以提取和探索异常物体,导致勘测行动进展缓慢。
叶邦角电磁测深法(AMT)具有比传统物理勘测方法更深入、更多宽泛、更高率的特点,因此被广泛应用于一些复杂地形的勘探工作中。
1 叶邦角电磁法简介音频电磁测深采用的是0.1~10000Hz频段电磁波,是一种利用自然交替电磁场作为电场源的电磁勘探方法。
其原理在于通过地面向地下发射电磁波,不同物质对于电磁波的电阻率不同,进而大致探测出不同物质的分布情况。
2 叶邦角电磁测探法中的电磁学原理根据电磁理论,地磁波在地下传输,电磁波跟随麦克斯韦方程在岩石上传播。
假设大部分的地下岩石不是磁性的,它在宏观上均匀地传导电,没有电荷积累,麦克斯韦方程可以简化如下:220∇H+K H= (1)220∇E+K E= (2)式(1)和式(2)称为亥姆霍兹方程。
其中εμωiεμσ=2 (3)K-称作复波数或传播系数。
式(3)包括位移电流和传导电流两项,简化为σωμi K -= (4)可得波阻抗)1(i f Z -=πρμ (5)式中, ƒ为可控电磁频率;ρ为地层的视电阻率,μ为磁导率。
地层中的视电阻率由下式求取:251Hy Ex f =ρ (6)式中Ex 为电场分量,Hy 为磁场分量。
从而可以理解测量地球电磁场宽度与介质电阻率之间的关系。
介质电阻率可以通过测量地面磁场和电场的正交和水平分量来计算。
趋肤深度定义:电磁波在电磁波幅度减小到地面宽度时传播到地下介质传播深度为值的1/e 。
第三章3.1 解:因螺绕环内的磁感应强度I n B 0μ=,所以副线圈中的感应电动势为VdtdI S dtd Sdtd 30103.1nN B N N --⨯===Φ=με副副副感应电流为A103.6RI 4-⨯==ε3.2 解:(1)设线圈发现→n 与→B 的夹角为零度时作为计时的起点,则t 时刻线圈中的感应电动势为tNBS dt t B d dt d ωωωεsin )cos S (-N-N==Φ=由此可以看出,当2t πω=或23t πω=时,即线圈法线与地磁场→B 的夹角为2π或23π时,感应电动势的值最大,此时ωεNBS m=(2)97N==ωεBS m 匝3.3 解:因距直导线为r 处的ri πμ2B 0=,所以(1)穿过回路ABCD 的磁通量t I a b l ldr riS d B basωπμπμsin ln 22000⎪⎭⎫⎝⎛==⋅=Φ⎰⎰⎰→→(2)回路ABCD 中的感应电动势 tI ab l dtωπωμεcos )(ln2d 00-=Φ-=3-5解:设t=0时,线圈与直导线处于同一平面内。
t 时刻俯视线圈与导线的相对位置如图3-19所示。
此时,线圈的有效面积是宽为AB 长为2a 的与长直导线共面的矩形面积。
穿过此有效面积的磁通量t t ab b a t ab b a b Ia tt ωωωπωμsin cos 21cos 21d )(d ε222220⎪⎭⎫⎝⎛-++++=Φ-=3-10解:设l 正方向如图3-23所示,则ac 段产生的感应电动势Vbc vB l d B l d B cbba30109.160cos 0)()(-→→→→→→⨯=+=⋅⨯+⋅⨯=⎰⎰ννε故感应电动势的方向为c a →,即c 点的电位高。
所以 V3oc 109.1U -⨯-=3-13解:(1)a,b 间的感应电动势22222121)(NBRR N B R B ldl B l d B d RLbaππωωυεε=⋅⋅===⋅⨯==⎰⎰⎰→→→(2)因ε的方向从轮心指向边缘,故在外电路上,I 的方向为b 指向a 。
第三章 静电场中的电介质一、判断题(正确划“√”错误划“×” )1.当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的1r ε倍。
( )2.对有极分子组成的介质,它的介电常数将随温度而改变。
( )3.在均匀介质中一定没有体分布的极化电荷。
( )4.均匀介质的极化与均匀极化的介质是等效的。
( )5.导体可以看作是介电常数为无穷大的电介质。
( )6.如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
( )7.在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
( )8.在均匀电介质中,只有P 为恒矢量时,才没有体分布的极化电荷。
( )9.电介质可以带上自由电荷,但导体不能带上极化电荷。
( )10.电位移矢量D 仅决定于自由电荷。
( )11.电位移线仅从正自由电荷发出,终止于负自由电荷。
( )12.在无自由电荷的两种介质交界面上,0E 线连续,'E 线不连续。
(其中,0E 为自由电荷产生的电场,'E 为极化电荷产生的电场) ( )13.在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。
( )14.在两种介质的交界面上,电场强度的法向分量是连续的。
( )15.介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。
( )16.当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。
( )17.一个带电量为Q 、半径为R 的金属球壳里充满了相对介电常数为r ε的均匀电介质,外面是真空,此球壳的电势是0r 4QR πεε。
( )18.若高斯面内的自由电荷总量为零,则面上各点的D 必为零。
( )19.把带电的金属球浸入煤油中,导体上的自由电荷量将减少。
( )20.极化强度P 与电场强度E 成正比,0εχP =E 对任何介质都成立。
一、填 空 题
1、电介质的极化分为 ,和 。
答案内容:位移极化,取向极化。
2、如图,有一均匀极化的介质球,半径为R ,极化强度为P ,则极化电荷在球心处产生的场强是 。
答案内容:
3ε-P ;
3、0C C r ε=成立的条件是 。
答案内容:介质为均匀介质;
4、通常电介质的极化分为两类,其中无极分子的极化称为 有极分子的极化称为 。
答案内容:位移极化;取向极化;
5、如图所示,水平放置的平行电容器,极板长为L ,二极板间距为d ,电容器两极板间加有电压,据板右端L 处放置一个荧光屏S 。
有一个质量为m ,电量为q 的粒子,从电容器左端的中央以速度0v 水平射入电场,粒子穿过电容器后
(两板间距离d 的大小能满足粒子穿过电容器),要求以水平速度打在荧光屏S 上,则加在电容器两极板间电压的大小应为 。
答案内容:2mgd/q ;
6、如图所示,平行板电容器的极板面积为S ,间距为d ,对此电容器充电之后,拆去电源,再插入相对介电常数为r ε,厚度为/2d 的均匀电介质板,设为插入介质前,两极板间的电场为0E ,插入介质后,介质内外的电场分
别为1E 和2E ,则:10/__________E E =,20/__________E E = 。
答案内容: 1/r ε;1.
7、有一平板电容器,用电池将其充电,这时电容器中储存能量为W 0,在不断开电池的情况下,将相对介电常数为r ε的电介质充满整个电容器,这时电容器内存储能量W= W 。
答案内容:r ε ;
P
z
R
8、在平行板电容器之间放入一电介质板,如图所示,则电容器电容将为 ,设未放介质时电容为C 0 。
答案内容:021r r
C εε+ ;
单选择题 1
1、如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比:( )
(A)增多; (B )减少; (C )相同; (D )不能比较。
答案内容:A ;
2、内外半径为21R R 和的驻极体球壳被均匀极化,极化强度为P
P ;的方向平行于球壳直
径,壳内空腔中任一点的电场强度是: ( C )
(A )
3ε=
P E ; (B)0=E
;
(C)
3ε-
=P E
;
(D)
32ε=
P E 。
3、一个介质球其内半径为R ,外半径为R+a ,在球心有一电量为0q 的点电荷,对于R <r <R+a 电场强度为:( )
(A )200
4r q r επε (B)2
00
4r q πε (C)2
4r q π (D)
2
41r
q r r πε-ε)(
答案内容: A ;
4、在平行板电容器中充满两种不同的介质,如图所示,1r ε>2r ε ,则在介质1和2中分别有( ):
A D 1=D 2 E 1<E 2 ;
B D 1=D 2 E 1>E 2 ;
C
D 1>D 2
E 1=E 2 ; D D 1<D 2 E 1=E 2 。
答案内容: A ;
判 断 题
1、电位移仅与自由电荷有关. 答案内容:不正确 。
1r ε 2
r ε
2、有极分子在外场作用下除了发生取向极化外,还要发生位移极化。
答案内容:正确 。
3、有极分子的极化主要是取向极化,而无极分子的极化是位移极化。
答案内容:正确 。
4、有极分子的极化主要是位移极化,而无极分子的极化是取向极化。
答案内容:不正确 。
5、电介质中自由电荷的电场0E 与极化电荷的电场'E
的方向总是相反,因此电介质内部
的合场强通常要比0E
弱。
答案内容:正确 。
6、电介质中自由电荷的电场0E 与极化电荷的电场'E
的方向总是相同,因此电介质内部的合场强通常要比0E
强。
答案内容:不正确 。
7、对于各向同性的电介质,D
、E
、P
三矢量的方向都相同。
答案内容:正确 。
8、对于所有电介质,D
、E
、P
三矢量的方向都相同。
答案内容:不正确 。
四、计 算 题
1、在半径为R 1的金属球之外有一层半径为R 2的均匀介质层,设介质的相对介电常数为
r ε,金属球带电量为+Q 0 。
求:介质层内外的P
E D
,,。
解:应用高斯定理,选半径为r 的同心球面为高斯面,-------1分 1) 1R r 时,因是导体内部, ∴ 0
=D
0=E
0=P
-----3分
2) 21R r R Q S d D S
=∙⎰⎰
-----2分
∴ Q r
D =∙2
4π r
r Q
D
2
4π=
-----1分
∴ r
r
Q D
E r 2
04επεε
==
-------1分
r r
Q E P r r r
2
04)1()1(πεεεε-=-= ------1分
3) ∝ r R 1 r
r
Q E
2
04πε=
r
r
Q D
2
4π=
0=P
------2分
2、一无限大均匀介质平板,厚度为d ,相对介电常数为r ε,其中有密度均匀的自由电荷,体密度为0ρ,求介质板内、外的E 、D 、P 。
解:在介质内作一圆柱形高斯面,底面面积为S ,且两底面与平板平面平行,两底面到介质对称面的距离x 相等。
------1分
故有
0D d s q
⋅=⎰
---------- 2分 02(2)S D x S ρ=内
0D x i ρ∴=
内----------2分 000
r D x E i
ρεεεε==
内内r ------1分 00(1)r p x E E εεε==-
内内内 -----1分
同理在板外有 00
(2()2
p d sD ds p D =∴=
---------3分
02d D i
ρ=-
外I 00
2p d E i ε=-
外I 0p =
外I -------1分
0Ⅱ2
p d D i
= 外,
0Ⅱ0
2p d E i
ε= 外, Ⅱ0p =
外 --------1分
3、如图,一平行板电容器两极板相距为d ,面积为S 、其中放有一层厚为t 的电介质,相对介电常数为r ε,介质两边都是空气。
设两极板间电位差为U ,略去边缘效应。
试求:介质中的电场强度E ,电位移D 和极化强度P ; 解: 设空气中场强为0E
000()()x u E x E E d x t E d t Et
=++--=-+ ---------2分
由高斯定理知,两板间D
处处相等 ---------1分
00
D
E ε=
--------1分 0D
r
E εε=
--------1分
00
()()r
r
D
D
D
t
u d t t d t εεεεε∴=
-+
=
-+
----------1分
故 00(1)r
r r r
u u D t
d t
d t εεεεεε=
=
+--+
----------1分
0(1)r
r r D
u
E d t
εεεε=
=
+- -------2分
00(1)
(1)(1)r r r r u D E d t
εεεεεε-=-=
+- --------2分。