(完整版)专题——中点的妙用(初三数学)
- 格式:doc
- 大小:1.30 MB
- 文档页数:35
中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。
【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。
【中考专题】中点模型(通关篇)—三种⽅法以微课堂⾼中版奥数国家级教练与四位⾼中特级教师联⼿打造,⾼中精品微课堂。
35篇原创内容公众号线段中点是⼏何部分⼀个⾮常重要的概念,和后⾯学习的中线,中位线等概念有着密切的联系.在⼏何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三⾓形三线合⼀;直⾓三⾓形斜边上的中线等于斜边的⼀半;还是中位线定理?今天我们重点探究“倍长中线”法以及平⾏线间夹中点,延长中线交平⾏的应⽤。
建⽴模型模型⼀倍长中线如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种⽅法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进⽽得到AC=BE且AC//BE.模型⼆平⾏线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.平⾏线间夹中点.处理这种情况的⼀般⽅法是:延长过中点的线段和平⾏线我们把这种情况叫做平⾏线间夹中点相交.即“延长中线交平⾏”此时,易证△BEF≌△CED模型三中位线如图,在△ABC中,点D是AB边的中点.可作另⼀边AC的中点,构造三⾓形中位线.如下图所⽰:由中位线的性质可得,DE//BC且DE=1/2BC.模型运⽤例1、如图,在平⾏四边形ABCD中,AD=2AB,点E是BC边的中点.连接AE,DE.求∠AED的度数.分析:本题的证明⽅法有很多,⽐如利⽤“双平等腰”模型等(前⽂已对这种做法做过讲解,不再赘述.链接:课本例题引出的基本图形——双平等腰模型),这⾥主要讲⼀下平⾏线间夹中点的做法.根据平⾏四边形的性质可知,AB//CD,⼜点E是BC中点,构成了平⾏线间夹中点.当题中出现这些条件时,只需将AE延长和DC的延长线相交,就⼀定会得到全等三⾓形,进⽽得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平⾏四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE⼜∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD, ⼜∵AD=2CD∴AD=DF,⼜因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE⾄点F使EF=AE,连接CF.通过证明△ABE≌△FCE得到AB//CF,利⽤经过直线外⼀点有且只有⼀条直线与已知直线平⾏,得到D、C、F三点共线.再证明△DAF 是等腰三⾓形,利⽤等腰三⾓形三线合⼀得到结论.对于第⼆种⽅法,同学们可以⾃⼰尝试.例2、在△ABC中,AB=AC,点F是BC延长线上⼀点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满⾜平⾏线间夹中点,所以可将DG延长与BF 相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正⽅形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直⾓三⾓形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直⾓三⾓形,⼜∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正⽅形绕点C旋转任意⾓度,在旋转的过程中,上述结论还成⽴吗?试试看动画链接:/svg.html#posts/16428(选择复制并打开,可操作演⽰动画效果)(2)AG⊥DG,AG=√3DG如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是菱形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等边三⾓形∴AB=AC,∠ACD=180°-60°-60°=60°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=60°∴△DAH是等边三⾓形,⼜∵点G是DH的中点∴AG⊥DG.∠DAG=1/2∠DAH=30°∴AG=√3DG动画链接:/svg.html#posts/16429(选择复制并打开,可操作演⽰动画效果)(3)AG⊥DG,DG=AG×tan(α/2)证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是菱形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BE的中点,∴BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2,∴∠ABC=∠ACD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=α/2,∴tan∠DAG=tan(α/2),∴DG=AGtan(α/2).动画链接:/svg.html#posts/16430(选择复制并打开,可操作演⽰动画效果)反思:在本题的证明中,我们结合题⽬中给出的平⾏线间夹中点这⼀条件,将DG进⾏延长和BC相交,通过全等使问题得证.对于本题我们也可以采⽤倍长中线法进⾏证明.下⾯⽤倍长中线法对第⼀种情况加以证明.证明:如图,延长AG⾄点H,使GH=AG.连接EH,AD,DH.在△ABG和△HEG中BG=EG,∠AGB=∠HGE,AG=HG∴△ABG≌△HEG∴AB=HE,∠ABG=∠HEG∵AB=AC∴AC=HE∵DE//BC∴∠DEG=∠EBC∴∠HED=∠HEB+∠DEG=∠ABG+∠EBC=∠ABC=45°⼜∠ACD=180°-45°-90°=45°∴∠ACD=∠HED在△ACD和△HED中AC=HE,∠ACD=∠HED,DC=DE∴△ACD≌△HEDDA=DH,∠ADC=∠HDE∴∠ADC-∠HDC=∠HDE-∠HDC即∠ADH=∠CDE=90°所以△ADH是等腰直⾓三⾓形⼜因为点G是AH的中点所以DG=AG,DG⊥AG.上⾯我们⽤倍长中线证明了第⼀种情况,请你对第⼆三问加以证明.反思:在本题的证明过程中,容易犯的⼀个错误是,许多同学看到HE经过点C,就说∠HED=45°.⽽这⼀结论是需要证明的.⼩试⾝⼿如图1,在正⽅形ABCD的边AB上任取⼀点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图2所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图3所⽰,则线段EG和CG⼜有怎样的数量和位置关系?请写出你的猜想,并加以证明.(3)将△BEF绕点B旋转⼀个任意⾓度α,如图4所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出结论.前两问较简单,请同学们⾃⾏完成,这⾥只给出第三问的⼏种解法,仅供⼤家参考.解法⼀:如图,延长EG⾄点H,使GH=EG.连接DH,CE,CH.因为点G是DF的中点,所以GF=GD.根据SAS易证△GEF≌△GHDEF=HD且∠GEF=∠GHD,所以EF//DH.分别延长HD与EB交于点K,HD的延长线交BC于点M.如下图:因为EB⊥EF,⽽EF//DH,所以EK⊥HK,即∠BKM=∠MCD=90°.⼜∠BMK=∠CMD.根据三⾓形的内⾓和,可得∠KBM=∠MDC.所以∠EBC=∠HDC.⼜EB=HD,BC=DC所以△EBC≌△HDC.所以CE=CB且∠ECB=∠HCD.所以∠ECB=90°,即△BCE是等腰直⾓三⾓形,⼜因为点G是斜边EB的中点,所以CG⊥GE且CG=GE.⽹址链接:/svg.html#posts/16284(选中并打开⽹址看动态图)解法⼆:如图,延长CG⾄点N,是GN=CG.连接FN,EN,EC.以下过程可参照解法⼀⾃⾏完成解法三:延长FE⾄点P使得EP=EF,连接BP;延长DC⾄点Q,使得CQ=CD,连接BQ.连接FQ,DP。
中点四大用法
以下是 6 条关于“中点四大用法”的内容:
1. 中点可以用来找平衡呀!就像走钢丝的时候,中点就是那根让你保持稳定的杆子。
比如你在分食物给小伙伴们的时候,找到中点,不就可以分得很公平啦!大家都开心,多好啊!
2. 中点也是划分区域的好帮手呢!嘿,你想想,要是把一个房间从中间分开,多清楚呀!像我们画地图一样,找到中点,就能把不同的地方区分开来,这不是很厉害吗,对吧?就好比把操场分成两半,一半踢足球,一半打篮球,多有序呀!
3. 中点还能帮助我们做对称呢!哇哦,对称可是很美的哦。
比如折一只纸鹤,找到中点对折,就能得到完美的对称形状。
你看那蝴蝶的翅膀,不也是以身体中间为点,两边对称多漂亮呀!咱做手工的时候不就经常用这个方法嘛!
4. 中点在测量的时候也超有用的呀!哎呀呀,你说量一条绳子的长度,从中间开始不就容易多了嘛。
就像我们量身高,找到中点做个标记,再往上往下量,多准确呀!难道不是吗?这方法多简单又好用!
5. 中点在解决问题的时候也能派上大用场嘞!比如说,两个人争论一个东西怎么分,找到中点不就解决啦。
就好像分一块蛋糕,从中间切开,一人一半,矛盾不就没啦!这种时候中点就是那个能让一切变得公平合理的关键呀,可不是嘛!
6. 中点有时候还是个重要的标志呢!哈哈,你想啊,比赛的时候中间那个点,多醒目呀!像跑道中间的线,那就是我们要努力奔过去的目标呀!我们生活中有时候也需要一个中点来作为目标呀,难道不是吗?这样我们才有前进的动力呀!
总之,中点的用法真的好多呀,我们可得好好利用起来!。
数学初中中点总结一、中点的定义和性质在数学中,中点是指一条线段的中间点,即将一条线段平均划分为两个相等的部分。
以下是关于中点的定义和性质的总结:1.定义:若线段AB的中点为M,则AM = MB。
2.定理1:如果一个线段的两个端点对换,则线段的中点也对换。
3.定理2:两个线段的中点连线平行于这两个线段。
4.定理3:一个线段的中点将线段平分为两个相等部分。
5.定理4:如果三个点A、B、C在同一条线段上,且B是AC的中点,则AB = BC。
二、中点的求解方法在求解一个线段的中点时,我们可以使用以下方法:1. 使用坐标求解假设线段的两个端点分别是A(x₁, y₁)和B(x₂, y₂),则线段AB的中点M的坐标可以通过以下公式求解:M = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)我们可以将上述公式应用于平面直角坐标系、极坐标系和三维空间中的线段。
2. 使用向量求解我们可以使用向量的加法运算来确定线段的中点。
假设线段的两个端点分别是A和B,则线段AB的中点M可以通过以下公式求解:M = (A + B) / 2其中,A和B是线段的位置向量。
3. 使用尺规作图法求解尺规作图是一种用尺子和圆规来进行几何作图的方法。
我们可以使用尺规作图来求解线段的中点。
方法如下:•步骤1:画出线段AB;•步骤2:以点A为圆心,以线段AB的长度为半径画一个圆;•步骤3:以点B为圆心,以线段BA的长度为半径画一个圆;•步骤4:两个圆的交点即为线段AB的中点M。
三、数学应用中点的概念在数学中有广泛的应用,以下是一些常见的应用场景:1. 几何图形的性质证明在几何证明中,我们常常需要证明线段的性质。
通过使用中点的性质和定理,我们可以更方便地证明某些几何图形的性质。
例如,在证明平行四边形的性质时,我们可以使用中点将对角线平分的性质来简化证明过程。
2. 向量运算在向量运算中,我们经常需要计算两个向量的中点。
通过求解两个向量的位置向量的中点,我们可以方便地计算向量的和、平均值等。
中点的妙用一、知识回顾1、三角形中位线定理:2、直角三角形斜边上中线性质的运用二、应用举例1、直接找线段的中点,应用中位线定理例1、如图1所示,在三角形ABC 中,∠B=2∠C ,AD 是三角形的高,点M 是边BC 的中点,求证:DM=21AB 。
2、利用等腰三角形的三线合一找中点,应用中位线定理例2、如图3所示,在三角形ABC 中,AD 是三角形ABC ∠BAC 的角平分线,BD ⊥AD ,点D 是垂足,点E 是边BC 的中点,如果AB=6,AC=14,则DE 的长为 。
3、利用平行四边形对角线的交点找中点,应用中位线定理例3、如图5所示,AB ∥CD ,BC ∥AD ,DE ⊥BE ,DF=EF ,甲从B 出发,沿着BA 、AD 、DF 的方向运动,乙B 出发,沿着BC 、CE 、EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达?例1 如图1,已知,△ABC 中,CE ⊥AD 于E ,BD ⊥AD 于D ,BM =CM .求证:ME =MD .例2 如图2,BD 、CE 是高,G 、F 分别是BC 、DE 的中点,求证:FG ⊥DE .例3 如图3所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系;(2)MA 与DG 的大小关系.EDB CA FG图2EDBCA FGM 图3EDCB AM图1例4 已知:如图4,□ABCD 中,对角线AC 、BD 相交于点O ,EF ⊥AC ,O 是垂足,EF 分别交AB 、CD 于点E 、F ,且BE =OE =12AE .求证:□ABCD 是矩形.如图6所示,在梯形ABCD 中,AB ∥CD ,∠C +∠D =90°,E 、F 为AB 、CD 的中点.求证:CD -AB =2EF .例1 在△ABC 中,BD 平分∠ABC ,A D ⊥BD,垂足为D ,AE=EC.求证:DE ∥BC.例2 如图2,四边形ABCD 中,对角线AC 、BD 相交于O ,已知AC=BD,M,N 分别是AD 、BC 的中点,MN 与AC 、BD 分别交于E 、F 点.求证:∠AEN=∠BFM.图4A BCEGFOD 图6FE DCBA 图1CFEDBA图24312FEBAP NMCD三、用于证明线段相等例3 如图3,△ABC 的AB 、AC 向形外作正三角形ABD 和ACE,分别取BD 、BC 、CE 的中点P 、M 、Q.求证:PM=QM.图3M D四、用于证明线段的特殊关系例4 如图4,已知四边形ABCD 中,E 、F 、G 、H 分别为AB 、CD 、AC 、BD 的中点,且E 、F 、G 、H 不在同一条直线上,求证:EF 和GH 互相平分.图4GHBE ACFD巧用中线的性质解题我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题.一、巧算式子的值例 1 在数学活动中,小明为了求23411112222++++ (1)2n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求23411112222++++ (1)2n +的值.图1解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (12)n +112n =-.【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.图2 解析:连接CG ,不难得出BCF S DCE S = 4ab=,从而BEG DFG S S = , 由E 、F 分别是BC 和CD 的中点,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等, 因此S 四边形ABGD ab =-4ab 43⨯23=ab . 【点评】本题的难度较大,通过连接CG ,巧妙地把四边形ABGD 以外的部分分成四个面积相等的三角形.像CG 这样原题中没有,但我们在解题的过程中用它来“辅助”解决问题的线,称之为“辅助线”.三、巧等分土地例3.有一块三角形优良品种试验基地,如图3所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).图3解析:可根据中线的特征,先分为两个面积相等的三角形,然后再依次等分.方案1:如答图(1),在BC 上取D 、E 、F ,使BD=ED=EF=FC ,连接AE 、ED 、•AF .(1) (2) (3)方案2:如答图2,分别取AB 、BC 、CA 的中点D 、E 、F ,连接DE 、EF 、DF .方案3:如答图3,分别取BC 的中点D ,CD 的中点E ,AB 的中点F ,连接AD 、AE 、DF .【点评】三角形面积计算公式为12×底×高,因此解题的关键是找出底、高分别相等的四个三角形.对于本题,同学们!你还有别的方法吗?试试看.时到达的。
全等三角形辅助线之中点3招妙用
全等三角形
令很多初学几何的同学很头痛
各大型考试必考内容
中考必考考点
几何题中的分值大户
考试重点,也是难点,拉开差距
【例】如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC边中点,求证:△BMD为等腰直角三角形。
第一招:倍长中线法
是。
第二招:特殊中点连线——特殊的中线
第三招:取两边中点连线构造中位线
【例】如图,已知E、F、G、H分别为四边形ABCD各边上的中点,求证:四边形EFGH是平行四边形。
【例】如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC边中点,求证:△BMD为等腰直角三角形。
小念老师总结
题目中出现中点的时候一般有以下作辅助线的方法:
⑴倍长中线法。
⑵作中位线法。
⑶如果是直角三角形,经常还要构造斜边上的中线。
【例】如图,已知△ABD和△ACE是直角三角形,∠ABD=∠ACE=90°,∠BAD=∠CAE,连接DE,点M为DE边中点,求证:BM=CM。
中点的八大用法
1. 计算中点
中点是两个数的平均值,可以用公式计算:
中点 = (数1 + 数2) / 2
例如,数1为2,数2为6,则中点为 (2+6)/2 = 4。
2. 判定中点
当两个数都已知,可以利用中点的定义来判定任意一个数是否为这两个数的中点。
如果这个数等于这两个数的平均值,则它是中点。
3. 求线段中点
在几何中,我们可以利用中点的概念来确定一个线段的中点。
只需要将线段两端点的横纵坐标分别相加除以2,就可以得到线段的中点坐标。
4. 拆分线段
通过线段的中点,可以将线段等分为两个长度相等的部分。
这种拆分方法在数学和计算机图形学中经常使用。
5. 布局设计
在设计中,中点可以作为布局的基准点,使设计更加对称美观。
例如,在网页设计中,中点可以用来排版页面元素使得页面看起来更加整洁。
6. 统计学
在统计学中,对于一组数据,可以找到它们的中点并计算出平均值,以便评估数据的分布情况和趋势。
7. 物理学
在物理学中,中点可以用来描述物体的质心。
质点系统的质心是它们所有的质量的平均位置,而且它的运动符合牛顿第一定律。
8. 艺术创作
在艺术创作中,中点可以用来创造视觉上的平衡和对称。
例如,在绘画和雕塑中,艺术家通常会使用中点来确定物体的比例关系和对称性。
精典专题五中点问题一.考情分析二.知识回顾1.与中点有关的内容与中点有关的内容主要包括三角形的中位线、梯形的中位线、直角三角形斜边上的中线等.(1)等腰三角形底边的中线、底边的高与顶角的角平分线“三线合一”。
(2)三角形的中位线平行于第三边,并且等于第三边的一半;.(3)梯形的中位线平行于两底,且等于两底和的一半;(4)直角三角形斜边上的中线等于斜边的一半;(5)弦的中点与垂径定理;2.中点四边形(1)顺次连接四边形四边的中点得到一个平行四边形;(2)顺次连接对角线相等的四边形四边的中点得到一个菱形;(3)顺次连接对角线互相垂直的四边形四边中点得到一个矩形;(4)顺次连接对角线互相垂直且相等的四边形四边中点得到一个正方形;三.重点突破类型一:直角三角形斜边的中线(B)【典型例题1】如图1在△ABC和△ABD中,已知∠=∠=∠,E F分别为边AB和CD的中点,求证:,ACB ADB Rt⊥EF CD.〖搭配练习〗(A )1.如图2,在四边形ABCD 中,,ABC ADC Rt ∠=∠=∠P 为线段AC 的中点,连接,,.BD PB PD 试问:PBD ∠与PDB ∠有何关系?说明理由.(C )2.如图3,在锐角△ABC 中,AD CE 、分别是BC AB 、边上的高,AD CE 、相交于F ,BF 的中点为P ,AC 的中点为Q ,连接PQ 、.DE 求证:直线PQ 是线段DE 的垂直平分线.类型二:中线倍长的用法(A )【典型例题2】如图,在△ABC 中,AD 为BC 边上的中线,求证:()1.2AD AB AC <+(B )【典型例题3】如图6,在△ABC 中,AD 为BC 边上的中线,BF 交AD 于点E ,交AC 于点F ,且满足AF EF =,求证:.BE AC =〖搭配练习〗(A )1.三角形的两边长分别为3和5,试求第三边的中线长x 的取值范围.(B )2. 如图7,在△ABC 中,AD 为BC 边上的中线,DA AC ⊥于点A ,120BAC ∠=︒, 求证:2.AB AC =(C )3.如图8,在△ABC 中,D 为BC 边上的中点,且.ED DF ⊥求证:.BE CF EF +>类型三:三角形的中位线与梯形的中位线(A )【典型例题4】如图9在△ABC 中,AD 平分BAC ∠,BD AD ⊥于点D ,点E 是BC 边上的中点,3,5AB AC ==,试求线段DE 的长.(C )【典型例题5】如图10,梯形ABCD 中,AD ∥BC ,AC BD ⊥于O ,试判断AB CD +与AD BC +的大小,并证明你的结论.〖搭配练习〗(C )1.如图11,在△ABC 中,BE 、CD 分别为ABC ∠与ACB ∠的平分线,AM CD ⊥于点M ,AN BE ⊥于点N ,连接MN ,求证:MN ∥BC .(B )2. 如图12,在等腰梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF =18 cm ,MN =8 cm ,求AB 的长.(B )3. 如图13,AE 为正方形ABCD 中BAC ∠的平分线,AE 分别交BD 、BC 于点F 、E ,AC 、BD 相交于点O . 求证:1.2OF CE =类型四:四边形的中点(B)【典型例题6】如图14,△ABC与△CDE都是等边三角形,且B、C、D三点共线,分别取AB、BD、DE、EA边的中点M、N、P、Q,连接MN、NP、PQ、QM,试判断四边形MNPQ的形状,说明理由.(B)【典型例题7】如图15,在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥C D于点P,则∠FPC= ( )A. 35°B45° C. 50° D. 55°〖搭配练习〗(A)1.如图16,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11(B)2.如图17,在□ABCD中,AD=2AB,M是AD的中点,CE⊥AB于点E,∠CEM=40°,则∠DME是()A.150°B.140°C.135°D.130°(B)3.如图18,已知:梯形ABCD中,AB//CD,且BM⊥CM,M是AD的中点,试说明AB+CD=BC.(B )4.已知:如图19,在正方形ABCD 中,Q 在CD 上,且DQ=QC ,P 在BC 上,且AP=CD +CP .求证:AQ 平分∠DAP .类型五:弦的中点与垂径定理(A )【典型例题8】如图20,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F.求证:EC=DF.〖搭配练习〗(A )1.如图21,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,AB =10cm,CD =6cm ,则AC 的长为( )A .0.5cmB .1cmC .1.5cmD .2cm(A )2.如图22,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦AB CD ⊥,OCD ∠的平分线交⊙O 于点P ,当点C 在上半圆(不包括A 、B 两点)上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分D .随C 点的移动而移动(B )3.如图,已知:在⊙O 中,AB 是直径,CD 是弦,CD CE ⊥交AB 于E ,CD DF ⊥交AB 于F .求证:BF AE =.(B )4.如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅四.复习建议作为几何的基础,中点是解决其他综合问题的必备知识,是几何证明以及几何计算的重要的辅助工具。
初中数学中点的5大用法
在初中数学中,点是基本的几何概念,有着广泛的应用。
以下是初中数学中点的五大用法:
表示位置:点是表示空间中一个确定位置的数学工具。
在坐标系中,一个点通常由坐标(x,y)表示,其中x 表示横坐标,y 表示纵坐标。
这有助于几何图形的绘制和定位。
线段的中点:点常用于表示线段的中点。
中点是线段上距离两端相等的点。
通过中点,可以进行线段的等分、划分和相关计算。
图形的顶点:在图形中,点被用来表示多边形的顶点。
多边形是由一系列连接的线段组成,其中每个顶点都是一个点。
函数图像上的点:在函数图像上,点表示函数在特定输入值处的输出值。
这有助于可视化函数的性质、变化趋势和关键点。
平面图形的构造:点用于平面几何图形的构造。
通过在平面上标记点,可以绘制线段、角、多边形等图形。
点的位置和关系是几何构造的基础。
这些用法涵盖了初中数学中点的主要应用领域,帮助学生理解和运用几何概念。
通过点的概念,学生能够更好地理解和分析几何图形,同时点也是引入坐标系和代数概念的重要媒介。
1。
中点的妙用(上篇)中点条件是平面几何中非常常见的条件,如何利用好中点条件顺利解题?看到中点我们应该联想到什么呢?请看例题。
例题讲解:【例1】(2013·江西)在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程.【分析】观察图形,很容易猜想到MD与ME相等,设法以MD,ME为边构造全等三角形就OK了。
如何构造呢?关键是巧用M是中点这一条件。
【解答】(1) MD=ME的理由是:分别取AB,AC的中点F,G,连接DF,MF,EG,MG。
∵M是BC的中点又∵EG是等腰Rt△AEC斜边上的中线∴FM=EG(巧妙之处就在此!)同理可证DF=MG∵AF∥MG,MF∥AG∴四边形AFMG是平行四边形∴∠AFM=∠AGM又∵∠DFA=∠EGA=90°∴∠MFA+∠DFA=∠MGA+∠EGA即∠DFM=∠MGE,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS)∴MD=ME(2)MD⊥ME的理由是:(利用第(1)问全等结论,同学们自己试一试吧!)方法提炼:我们知道,中学共学习了三个等于线段一半的定理,它们是:①30°所对的直角边等于斜边一半②直角三角形斜边上的中线等于斜边一半③三角形的中位线等于第三边的一半其中定理②,定理③均与中点有关!再加上中点的定义,面对中点条件,我们自然而然采取下列策略:1.倍长中线法2.构造中位线3.构造直角三角形斜边中线变式练习:在任意△ABC中,分别以AB和AC为边向△ABC的外侧作等边三角形,如图所示,I,J,K分别是AD,BC,AE的中点,判断△IJK的形状并证明。
解题感悟:有道是:见到中点有三法一是构造中位线二是构造斜中线三是倍长构全等中点的妙用(中篇)我们学习了中点模型的一道经典例题,介绍了面对中点时可采取的策略,即倍长构造全等(8字型),构造中位线以及构造直角三角形斜边中线。
解题技巧专题:中点问题——遇中点,定思路,一击即中◆类型一 直角三角形中,已知斜边中点构造斜边上的中线 1.如图,在四边形ABCD 中,∠BCD=∠BAD=90°,AC ,BD 相交于点E ,点G ,H 分别是AC ,BD 的中点,若∠BEC=80°,那么∠GHE 等于( ) A .5° B.10° C.20° D.30°第1题图 第2题图2.如图,在△ABC 中,D 是BC 上的点,AD =AB ,E ,F 分别是AC ,BD 的中点,AC =6,则EF 的长是_______.3.如图,在△ABC 中,∠ACB=90°,M 是AB 的中点,E ,F 分别是AC ,BC 延长线上的点,且CE =CF =12AB ,则∠EMF 的度数为_______.第3题图 第5题图◆类型二 中点四边形与特殊平行四边形4.若顺次连接四边形的各边中点所得的四边形是矩形,则该四边形一定是( )A .菱形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形5.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 的中点,连接AF ,BE ,CE ,DF ,分别交于点M ,N ,则四边形EMFN 是( )A .正方形B .菱形C .矩形D .无法确定 6.(2016·兰州中考)阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗?小敏在思考问题时,有如下思路:连接AC.结合小敏的思路作答:(1)若只改变图①中四边形ABCD 的形状(如图②),则四边形EFGH 还是平行四边形吗?说明理由;(2)如图②,在(1)的条件下. ①当AC 与BD 满足什么条件时,四边形EFGH 是菱形?写出结论并证明;②当AC 与BD 满足什么条件时,四边形EFGH 是矩形?写出结论并证明.解题技巧专题:中点问题答案 1.B 解析:连接AH ,CH .∵∠BCD =∠BAD =90°,点H 是BD 的中点,∴AH =CH =12BD .∵点G 是AC 的中点,∴HG ⊥AC ,∴∠HGE =90°.又∵∠GEH =∠BEC =80°,∴∠GHE =10°.故选B.2.3 解析:如图,连接AF .∵AD =AB ,F 是BD 的中点,∴AF ⊥BD .又∵E 是AC 的中点,∴EF =12AC =12×6=3.3.45° 解析:如图,连接CM .∵∠ACB =90°,M 是AB 的中点,∴CM =12AB .∵CE=CF =12AB ,∴CE =CF =MC ,∴∠1=∠E ,∠2=∠F .∵∠1+∠E =∠4,∠2+∠F =∠3,∴∠1=12∠4,∠2=12∠3,∴∠1+∠2=12(∠4+∠3)=12×90°=45°,即∠EMF =45°.4.D5.B6.解:(1)四边形EFGH 还是平行四边形.理由如下:如图,连接AC .∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC .同理可得HG ∥AC ,HG =12AC ,∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形;(2)如图,连接BD .①当AC =BD 时,四边形EFGH 是菱形.证明如下:由(1)可知四边形EFGH 是平行四边形,HG =12AC .∵F 是BC 的中点,G 是CD 的中点,∴FG =12BD .∵AC=BD ,∴HG =FG ,∴四边形EFGH 是菱形;②当AC ⊥BD 时,四边形EFGH 为矩形.证明如下:由(1)可知四边形EFGH 是平行四边形,HG ∥AC .∵AC ⊥BD ,∴HG ⊥BD .∵F 是BC 的中点,G 是CD 的中点,∴FG ∥BD ,∴HG ⊥GF ,∴∠HGF =90°,∴四边形EFGH 为矩形.。
方法专题:中点的妙用联想是一种非常重要的数学品质。
善于联想,才能更好的寻求解决问题的方法。
同学们当你遇到中点时,你会产生哪些联想呢?学习完这个专题后,能给你带来一定的启示。
看到中点该想到什么?1、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质;2、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”;3、三角形中遇到两边的中点,常联想“三角形的中位线定理”;4、两条线段相等,为全等提供条件(遇到两平行线所截得的线段的中点时,常联想“八字型”全等三角形);5、有中点时常构造垂直平分线;6、有中点时,常会出现面积的一半(中线平分三角形的面积);7、倍长中线8、圆中遇到弦的中点,常联想“垂径定理” 中点辅助线模型一、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质1、如图1所示,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( )A .65B .95C .125D .165二、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”2、如图,在Rt⊿ABC 中,∠A=90°,AC=AB,M 、N 分别在AC 、AB 上。
且AN=BM.O 为斜边BC 的中点.试判断△OMN 的形状,并说明理由.3、如图,正方形ABCD 的边长为2, 将长为2的线段QF 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A D C B A →→→→滑动到点A 为止,同时点F 从点B 出发,沿图中所示方向按B A D C B →→→→滑动到点B 为止,那么在这个过程中,线段QF 的中点M 所经过的路线围成的图形的面积为( ) A. 2 B. 4-π C.π D.1π-NMBO CADA BC 第8题图QFM三、三角形中遇到两边的中点,常联想“三角形的中位线定理” 4、(直接找线段的中点,应用中位线定理)如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F.你能说出OE 与OF 的大小关系并加以证明吗?5、(利用等腰三角形的三线合一找中点,应用中位线定理)如图所示,在三角形ABC 中,AD 是三角形ABC ∠BAC 的角平分线,BD ⊥AD ,点D 是垂足,点E 是边BC 的中点,如果AB=6,AC=14,求DE 的长6、(利用平行四边形对角线的交点找中点,应用中位线定理)如图所示,AB ∥CD ,BC ∥AD ,DE ⊥BE ,DF=EF ,甲从B 出发,沿着BA 、AD 、DF 的方向运动,乙B 出发,沿着BC 、CE 、EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达F 点?7、(综合使用斜边中线及中位线性质,证明相等关系问题)如图,等腰梯形ABCD 中,CD ∥AB ,对角线AC 、BD 相交于点O ,60ACD ∠=︒,点S 、P 、Q 分别是DO 、AO 、BC 的中点.求证:△SPQ 是等边三角形。
方法专题:中点的妙用联想是一种非常重要的数学品质。
善于联想,才能更好的寻求解决问题的方法。
同学们当你遇到中点时,你会产生哪些联想呢?学习完这个专题后,能给你带来一定的启示。
看到中点该想到什么?1、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质;2、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”;3、三角形中遇到两边的中点,常联想“三角形的中位线定理”;4、两条线段相等,为全等提供条件(遇到两平行线所截得的线段的中点时,常联想“八字型”全等三角形);5、有中点时常构造垂直平分线;6、有中点时,常会出现面积的一半(中线平分三角形的面积);7、倍长中线8、圆中遇到弦的中点,常联想“垂径定理” 中点辅助线模型一、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质1、如图1所示,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( )A .65B .95C .125D .165二、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”2、如图,在Rt⊿ABC 中,∠A=90°,AC=AB,M 、N 分别在AC 、AB 上。
且AN=BM.O 为斜边BC 的中点.试判断△OMN 的形状,并说明理由.3、如图,正方形ABCD 的边长为2, 将长为2的线段QF 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A D C B A →→→→滑动到点A 为止,同时点F 从点B 出发,沿图中所示方向按B A D C B →→→→滑动到点B 为止,那么在这个过程中,线段QF 的中点M 所经过的路线围成的图形的面积为( ) A. 2 B. 4-π C.π D.1π-NMBO CADA BC QFM三、三角形中遇到两边的中点,常联想“三角形的中位线定理” 4、(直接找线段的中点,应用中位线定理) 如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F.你能说出OE 与OF 的大小关系并加以证明吗?5、(利用等腰三角形的三线合一找中点,应用中位线定理)如图所示,在三角形ABC 中,AD 是三角形ABC ∠BAC 的角平分线,BD ⊥AD ,点D 是垂足,点E 是边BC 的中点,如果AB=6,AC=14,求DE 的长6、(利用平行四边形对角线的交点找中点,应用中位线定理)如图所示,AB ∥CD ,BC ∥AD ,DE ⊥BE ,DF=EF ,甲从B 出发,沿着BA 、AD 、DF 的方向运动,乙B 出发,沿着BC 、CE 、EF 的方向运动,如果两人的速度是相同的,且同时从B 出发,则谁先到达F 点?7、(综合使用斜边中线及中位线性质,证明相等关系问题)如图,等腰梯形ABCD 中,CD ∥AB ,对角线AC 、BD 相交于点O ,60ACD ∠=︒,点S 、P 、Q 分别是DO 、AO 、BC 的中点.求证:△SPQ 是等边三角形。
四、两条线段相等,为全等提供条件(遇到两平行线所截得的线段的中点时,常联想“八字型”全等三角形)8、如图:梯形ABCD 中,∠A=90°,AD//BC,AD=1,BC=2,CD=3,E 为AB 中点,求证:DE ⊥ECE DCB A 图2-1FEDMNCBA P O ABCD 图6-1SQ9、如图甲,在正方形ABCD 和正方形CGEF (CG >BC )中,点B 、C 、G 在同一直线上,M 是AE 的中点,(1)探究线段MD 、MF 的位置及数量关系,并证明;(2)将图甲中的正方形CGEF 绕点C 顺时针旋转,使正方形CGEF 的对角线CE 恰好与正方形ABCD 的边BC 在同一条直线上,原问题中的其他条件不变。
(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明五、有中点时常构造垂直平分线10、如图所示,在△ABC 中,AD 是BC 边上中线,∠C=2∠B.AC=21BC 。
求证:△ADC 为等边三角形。
六、有中点时,常会出现面积的一半(中线平分三角形的面积) 11、(1)探索:已知ABC ∆的面积为a ,①如图1,延长ABC ∆的边BC 到点D ,使CD=BC ,连接DA ,若ACD ∆的面积为1S ,则1S = (用含a 的代数式表示)②如图2,延长ABC ∆的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连接DE ,若DEC ∆的面积为2S ,则2S = (用含a 的代数式表示)③在图2的基础上延长AB 到点F,使BF=AB,连接FD ,FE,得到DEF∆(如图3),若阴影部分的面积为3S ,3S = (用含a 的代数式表示)⑵发现:像上面那样,将ABC ∆各边均顺次延长一倍,连接所得端点,得到DEF ∆(如图4),此时,我们称ABC ∆向外扩展了一次。
可以发现,扩展一次后得到的DEF ∆的面积是原来ABC ∆面积的 倍 ⑶应用:如图5,若△ABC 面积为1,第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使得A 1B =AB ,B 1C = BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1. 第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1= A 1B 1,B 2C 1= B 1C 1,C 2A 1= C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2,第三次操作… ,按此规律,要使得到的三角形的面积超过2010,最少要...经过 次操作.A B CD F G EM 图乙图甲 B A C E D F G MBDCA12、如图所示,已知梯形ABCD ,AD ∥BC ,点E 是CD 的中点,连接AE 、 BE , 求证:S △ABE =21S 四边形ABCD 。
13、如图,M 是ABCD 中AB 边的中点。
CM 交BD 于点E,则图中阴影部分面积与ABCD 面积之比为14、如图所示,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于:A 、65B 、54C 、43 D 、32七、倍长中线15、如图,△ABC 中,D 为BC 中点,AB=5,AD=6,AC=13。
求证:AB ⊥AD16、如图,点D 、E 三等分△ABC 的BC 边,求证:AB+AC>AD+AE17、如图,D 为线段AB 的中点,在AB 上取异于D 的点C ,分别以AC 、BC 为斜边在AB 同侧作等腰直角三角形ACE 与BCF ,连结DE 、DF 、EF ,求证:△DEF 为等腰直角三角形。
八、圆中遇到弦的中点,常联想“垂径定理”18、半径是 5 cm 的圆中,圆心到 8 cm 长的弦的距离是________DCBM A EB AODC19、半径为cm 5的圆O 中有一点P ,OP=4,则过P 的最短弦长_________, 最长弦是__________,20、如图,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。
21、如图,在⊙O 中,直径AB 和弦CD 的长分别为10 cm 和8 cm ,则A 、B 两点到直线CD 的距离之和是_____.22、如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300, 求:CD 的长;23、某市新建的滴水湖是圆形人工湖。
为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图5所示。
请你帮他们求出滴水湖的半径。
A BC倍长中线:1.(2011平谷二模)24. 已知:如图①,正方形ABCD 中,E 为对角线BD 上一点, 过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)② 遇到中点引发六联想1、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质 例1、如图1所示,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于【 】A .65 B .95 C .125D .165 分析:由AB=AC=5,所以,三角形ABC 是等腰三角形,且边BC 是底边;由点M 为BC 中点,如果连接AM ,则根据等腰三角形的三线合一,得到AM 是底边BC 上的高线,这样就能求出三角形ABC 的面积,而三角形AMC 的面积是等腰三角形面积的一半,在三角形AMC 中利用三角形的面积公式,求可以求得MN 的长。
解: 连接AM , ∵ AB=AC=5 , 点M 为BC 中点 ∴ AM ⊥BC ,在直角三角形AMC 中,AC=5,CM=21BC=3, ∴ AM=222235-=-CM AC =4, S △ABC = 21×BC ×AM=21×6×4=12 , S △ACM= 21S △ABC =6;∴ 6=21×AC ×MN , ∴ MN=512. 所以,选择C 。
2、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半” 例2、在三角形ABC 中,AD 是三角形的高,点D 是垂足,点E 、F 、G 分别是BC 、AB 、AC 的中点,求证:四边形EFGD 是等腰梯形。
分析:由点E 、F 、G 分别是BC 、AB 、AC 的中点,根据三角形中位线定理,知道FG ∥BC,FE ∥AC ,FE=21AC ,由直角三角形ADC ,DG 是斜边上的中线,因此,DG=21AC ,所以,EF=DG ,这样,我们就可以说明梯形EFGD 是等腰梯形了。
证明:∵ 点E 、F 、G 分别是BC 、AB 、AC 的中点, ∴ FG ∥BC , FE ∥AC ,FE=21AC , ∵ AD 是三角形的高, ∴ △ADC 是直角三角形, ∵ DG 是斜边上的中线, ∴DG=21AC , ∴DG=EF, ∴梯形EFGD 是等腰梯形。