气动控制系统设计
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
气动系统的设计计算
浏览字体设置:
+
10pt
放入我的网络收藏夹
气动系统的设计计算
气动系统的设计一般应包括: 1)回路设计;
2)元件、辅件选用; 3)管道选择设计; 4)系统压降验算; 5)空压机选用;
6)经济性与可靠性分析。
以上各项中,回路设计是一个“骨架”基础,本章着重予以说明,然后结合实例对气对系统的设计计算进行综合介绍。
1 气动回路
1.1 气动基本回路
气动基本回路是气动回路的基本组成部分,可分为:压力与力控制回路、方向控制(换向)回路、速度控制回路、位置控制回路和基本逻辑回路。
1.1.2换向回路(见表4
2.6-2)
表42.6-2 气动换向回路及特点说明
1.1.3速度控制回路(见表4
2.6-3)
位置停止)
表42.6-4 气动位置控制回路及特点说明
1.1.5 基本逻辑回路(见表4
2.6-5)
实际应用中经常遇到的典型回路简称常用回路。
1.2.1 安全保护回路(见表42.6-6)
1.2.2往复动作回路(见表42.6-7、8)
表42.6-6 气动安全保护回路及特点说明
1.2.3程序动作控制回路
程序动作控制回路(表42.6-8)在实际中应用广、类型多。
下面仅举一个双缸程序动作(A1-B1-B0-A0)为例(表42.6-8)说明。
而不同执行缸以及各种不同程序动作的回路,将在本章第2节中介绍其基本设计方法。
1.2.4同步动作控制回路(见表42.6-9)
表42.6-9 气动同步动作控制回路及特点说明。
气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。
气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。
本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。
一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。
气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。
而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。
二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。
气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。
2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。
气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。
控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。
3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。
在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。
三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。
这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。
2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。
在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。
3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。
气动控制系统的参数优化设计气动控制系统作为重要的工业自动化控制系统,广泛应用于生产制造、机械加工、自动化装配等领域。
在气动控制系统的设计和运行中,参数优化是实现系统高效稳定运行的关键因素之一。
本文从气动控制系统参数的含义和影响出发,探讨气动控制系统的参数优化设计方法与技术。
一、气动控制系统参数的含义及影响气动控制系统的参数指各种控制元件的参数和运行特性,包括压力、流量、速度、时间、阻力等。
这些参数的大小和变化对于整个系统的控制效果和质量具有重要影响。
例如,在气动系统中,压力差是控制阀门和气缸动作的重要参数,过小或过大都会导致控制效果不理想;另外,在节流元件中,阻力大小和形状对气体流量和速度控制起到重要作用,适当的阻力设定可以快速实现气动元件的动作,而过大或过小的阻力则会影响系统的响应速度和动作稳定性。
二、气动控制系统参数优化设计方法气动控制系统的参数优化设计是指在满足系统要求的前提下,通过合理的参数设置和调整,使系统响应速度更快、动作更为平稳、能耗更为节约。
下面结合压力控制和流量控制两个方面,介绍气动控制系统参数优化设计方法。
1、压力控制在气动系统中,压力控制是实现阀门和气缸动作的关键因素之一。
为了实现压力控制的优化,需要注意以下几点:(1)坚持优先选择质量可靠的气动元件,例如优化设计气缸的避免气缸漏气,以此增加压力稳定性。
(2)合理设置压差,例如在控制阀开关时,设置适当的压差可以有效减少空气浪费。
(3)将调压器和压力传感器设置在合理的位置,以获得准确的压力信号,并根据实际需求进行调整。
2、流量控制流量控制是气动控制系统中另一个重要的参数之一,通过对气源、过滤器、调节阀、气管以及节流元件的设计和调整,实现系统流量控制的优化。
具体方法如下:(1)流量选择:在不同的气缸、阀门、执行器等气动元件中选择适当的流量匹配,以确保流量控制的合理性。
(2)管路设计:对于气动控制系统的管路设计,应该注意管路截面和长度的优化设计,以保证气流的稳定性和流量的可控性。
基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。
基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。
本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。
本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。
将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。
在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。
本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。
通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。
也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。
二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。
该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。
PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。
PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。
气动执行元件:包括气缸、气阀和气压调节器等。
气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。
机械工程中的气动系统设计规范要求在机械工程中,气动系统设计是一个至关重要的环节。
气动系统广泛应用于各类工业和制造领域,包括航空、汽车、机械制造等。
为了确保气动系统的有效性和安全性,设计人员必须遵循一系列的规范要求。
1.设计原则在开始气动系统设计之前,设计人员首先要了解气动系统的设计原则。
这些原则包括流体力学、热力学和材料力学等方面的知识。
设计人员需要理解气动系统中液压力、流速、流量、压降、温度和密封等基本概念,并且要掌握这些参数的计算方法和实际应用。
2.元件选择在气动系统设计过程中,设计人员需要根据具体的应用要求选择合适的气动元件。
常见的气动元件包括气缸、阀门、过滤器、压力表和连接件等。
设计人员需要根据系统的工作压力、流量和环境条件等因素选择合适的元件,并且要确保元件的质量和可靠性。
3.系统布局在气动系统设计中,系统布局是一个关键环节。
设计人员需要考虑气动元件的相互配合和布置,以确保气动系统的正常工作。
布局要合理,避免气动元件之间的干扰和冲突。
此外,设计人员还要考虑气动系统的维护和维修便利性,以及防止泄漏和能量损失等问题。
4.压力控制在气动系统设计中,压力控制是非常重要的。
设计人员需要通过合理调整气源和气缸之间的压力差,控制系统的工作效果。
压力控制还涉及到压力传感器、调压阀和安全阀等元件的选型和设置。
设计人员还要根据系统的工作要求,选择合适的压力控制方法,包括恒压和调节压力两种方式。
5.安全性考虑在气动系统设计中,安全性是至关重要的。
设计人员需要考虑气动系统在运行过程中的安全性和稳定性。
设计人员要特别关注气动系统的压力和温度变化,以及磨损和老化等因素对系统的影响。
此外,设计人员还要注意防止气体泄漏和爆炸等安全隐患,并且要合理设置安全装置,保证操作人员的安全。
6.性能测试在气动系统设计完成后,设计人员需要进行性能测试,以验证系统的设计是否满足要求。
性能测试包括流量测试、压力测试、泄漏测试和温度测试等。
气动传动系统的设计与控制近年来,气动传动系统在各个行业中的应用日益普及。
同时,在工业生产中,气动传动系统也越来越受到重视。
在现代工业生产中,气动传动系统已经成为不可或缺的一部分。
本文将结合气动传动系统的应用案例,讨论气动传动系统的设计与控制。
一、气动传动系统的设计1.1 概述气动传动系统是一种以气体驱动的传动系统,它利用气动元件实现机械部件的运动。
气动传动系统具有结构简单、响应速度快、维修方便等优点。
气动传动系统的设计要考虑很多因素,例如:工作效率、耐久性、安全可靠、节约能源等。
1.2 系统的组成气动传动系统主要由以下几个部分组成:压缩空气源、气源处理元件、执行元件、控制元件和管路组成。
其中,“压缩空气源”负责提供空气源,“气源处理元件”负责对空气进行处理,“执行元件”负责对机械部件进行运动,“控制元件”负责调节运动速度和方向,“管路”负责将气体输送至各个部件。
1.3 系统的设计原则在气动传动系统的设计中,需要考虑以下几个原则:1.3.1 系统可靠性原则气动传动系统在运行过程中需要保证其可靠性。
因此,在设计过程中,需要考虑各个部分组件的选择、安装位置、管路连接等因素。
1.3.2 系统安全性原则气动传动系统的安全性非常重要。
在设计过程中,需要考虑各部分的安装位置、管路连接方式、执行元件的控制方式、紧急停止按钮等因素,以确保系统的安全可靠。
1.3.3 系统节能原则气动传动系统需要消耗大量的压缩空气。
在设计过程中,需要考虑如何节省能源,例如:合理设计管路、减少漏气等。
1.4 系统的优化在气动传动系统的设计过程中,需要对系统进行优化。
优化的方法有很多种,例如:合理安排元件的选型、管路的设计、系统的调试等。
通过优化,可以提高系统的工作效率,降低系统的能耗。
二、气动传动系统的控制2.1 概述气动传动系统的控制包括运动的控制和速度的控制。
在气动传动系统的控制过程中,需要考虑很多因素,例如:元件的选择和运用、气路的设计、控制方式的选择等。
创新论坛当前工业在生产领域应用的气动机械手仍然是重要设备,因为它能在有效控制下完成相对复杂的机械操作。
本文通过分析PLC下的气动机械手的结构和系统气动原理来设计基于PLC的气动机械手控制系统。
在生产过程中伴随着机械化和自动化的发展,一种新的工具——机械手因运而生并在工业生产领域内得到广泛应用。
如今,由于电子信息技术的飞速发展,关于机器人有关研制和生产在现代化社会备受关注,更是引起了高新技术领域的高度关注,机械手就在这种背景下产生,并逐渐实现与机械化、自动化的有机结合。
气动技术是将空气作为压力介质,能有效减少环境污染,可以广泛应用在非污染行业中,对于自动化控制方面更加便捷。
但传统的机械手在一定范围内缺少灵活度,设计中如果加上可编程逻辑控制器( PLC) 的优势,就能在自动控制领域得到广泛的认可。
因此,本文提出一种基于PLC的气动机械手控制系统,运用在生产领域有何优势。
1 气动机械手整体构造机械手,实际上就是以机器形象的代替人力完成工作,智能化的设备根据自身运行程序或接收到的指令,在规定时间内对目标进行运送,转移等基本动作。
因为很多工业现场需要太多人力去施工存在一定风险,工作效率也不高。
现在介绍的气动机械手工作压力在0.6~1.0MPa之间。
机械手经过直线运动以及旋转就能够搬运物体。
机械手旋转要在多个部分的共同协作下完成,包括摆动臂、摆动气缸、摆动位置微动开关、轴向止推轴承等部件,机械手的摆臂区间在0°~180°之间,机械手需要导柱与导轨、气缸、滑动导柱等各个部件密切配合才能完成升降动作,移动大概就在0~150cm;通过气缸、弹簧共同作用,可以进行夹持工件的动作,可以通过调节弹簧预压缩量来改变夹持力的大小。
机械手主要是根据工件是否合格的要求将生产线上的工件运输到各个生产环节中去。
具体结构示意如1。
图1 气动机械手的流程图2 气动回路控制气动控制系统的设计简要逻辑控制如图2 所示。
《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化程度的不断提高,气动机械手作为一种重要的自动化设备,其控制系统的设计变得越来越关键。
本文旨在介绍一种基于PLC的气动机械手控制系统设计,以提高机械手的控制精度、稳定性和可靠性。
二、系统概述基于PLC的气动机械手控制系统主要由气动执行机构、传感器、PLC控制器、上位机监控系统等部分组成。
气动执行机构负责完成机械手的各项动作,传感器负责检测机械手的位置、速度等信息,PLC控制器负责接收传感器的信号并控制气动执行机构的动作,上位机监控系统则用于实时监控机械手的运行状态。
三、系统设计1. 气动执行机构设计气动执行机构是机械手的核心部分,包括气缸、气动阀等。
气缸的选型应根据机械手的负载、行程等要求进行,气动阀则负责控制气缸的进气、排气,以实现机械手的各项动作。
2. 传感器设计传感器是机械手控制系统中的重要组成部分,用于检测机械手的位置、速度等信息。
常用的传感器包括光电传感器、接近传感器等。
这些传感器应具有高精度、高稳定性的特点,以保证机械手控制的准确性。
3. PLC控制器设计PLC控制器是整个控制系统的核心,负责接收传感器的信号并控制气动执行机构的动作。
在选择PLC时,应考虑其处理速度、可靠性、扩展性等因素。
此外,还需要根据机械手的控制要求,编写相应的控制程序。
4. 上位机监控系统设计上位机监控系统用于实时监控机械手的运行状态,包括机械手的位置、速度、工作状态等信息。
通过上位机监控系统,可以实现对机械手的远程控制、故障诊断等功能。
四、控制系统实现在控制系统实现过程中,需要完成以下步骤:1. 根据机械手的控制要求,编写相应的PLC控制程序。
2. 将传感器与PLC控制器进行连接,确保传感器能够正常工作并输出信号。
3. 将气动执行机构与PLC控制器进行连接,确保PLC能够控制气动执行机构的动作。
4. 搭建上位机监控系统,实现对机械手的远程控制和实时监控。
机械工程中的气动控制系统设计随着科技的进步和工业的发展,机械工程在各个领域中发挥着重要的作用。
而气动控制系统作为机械工程中的一项重要技术,广泛应用于各种机械设备中。
本文将探讨机械工程中的气动控制系统设计。
一、气动控制系统的基本原理气动控制系统是通过气动元件和控制元件组成的,通过气源、气动执行器和控制器等部件实现对机械设备的控制。
其基本原理是利用气压产生的动力来传递和控制能量,实现机械设备的运动和控制。
在气动控制系统中,气源是非常关键的部分。
常见的气源有压缩空气和惰性气体等,通过气源产生的气压来驱动气动执行器,从而实现机械设备的运动。
而气动执行器则是将气源的能量转化为机械能的装置,常见的气动执行器有气缸和气动马达等。
控制器则是控制气源和气动执行器之间的信号传递和转换,使机械设备按照预定的方式进行工作。
二、气动控制系统的设计要点在进行气动控制系统的设计时,需要考虑以下几个要点:1. 系统的可靠性和稳定性:气动控制系统应具备良好的可靠性和稳定性,能够在各种工况下正常工作。
为了提高系统的可靠性,可以采用冗余设计,即在系统中增加备用元件,以备发生故障时能够及时切换并保证系统的正常工作。
2. 系统的灵活性和可调节性:气动控制系统应具备一定的灵活性和可调节性,能够适应不同的工况和工作要求。
为了实现系统的灵活性,可以采用可调节元件,如可调节气压阀门,以便根据需要调整系统的工作参数。
3. 系统的节能性和效率:气动控制系统应具备较高的节能性和效率,以减少能源的消耗和提高工作效率。
为了实现系统的节能性,可以采用节能元件,如气动节能阀门和气动节能缸等。
4. 系统的安全性和环保性:气动控制系统应具备良好的安全性和环保性,能够保证工作过程中的安全和环境保护。
为了提高系统的安全性,可以采用安全元件,如安全阀门和安全传感器等,以便在系统发生故障时及时停机并保护设备和人员的安全。
三、气动控制系统的应用领域气动控制系统广泛应用于各个领域,如制造业、航空航天、汽车工业等。
气动阀门控制系统的设计与实现随着工业自动化水平的不断提高,气动阀门控制系统的应用越来越广泛。
这一系统能够实现对阀门的精确操控,提高生产效率,降低生产成本。
下面,我们将深入研究气动阀门控制系统的设计与实现。
一、气动阀门控制系统的概述气动阀门控制系统由阀门、气控装置、智能控制装置组成。
气控装置包括气源部分和气控元件部分。
气源部分提供气压供给,气控元件部分由膜片、阀、排气口、通气口等组成,通过气路连接阀门和气源,实现对阀门的控制。
智能控制装置通过接收传感器信号,对气源输出的气压进行精确控制,从而控制阀门的开合和流量。
一个完整的气动阀门控制系统应该具备如下特点:1.精确:能够通过电脑或者其他自动化设备进行精确控制,达到精确控制流量和压力的目的。
2.稳定:控制压力稳定,不会产生过量的气压或者过低的气压,保证系统的稳定性。
3.安全:能够自动进行检测和报警,可以及时发现和处理设备故障,防止因故障导致设备危险。
4.使用寿命长:系统内部使用的元器件应具有广泛的适应性和耐用性,能够在长期使用中保持良好状态,降低维修和更换成本。
二、1.选型设计气动阀门控制系统的设计应该考虑到以下因素:1.使用环境:是否需要防爆、防腐、耐高温、耐寒等特殊要求。
2.流体特性:介质的物理和化学属性,流体状态(压力、温度、流速),流量大小和变化范围等。
3.操作要求:阀门的开度、反应速度、气密性,所需控制压力范围、精度,以及独立控制还是系统集成需要等因素。
在上述因素基础上,应对气动阀门进行选型设计。
对于气控元件,应采用品质稳定、性能可靠的元器件,如奥多尼气动元件等。
对智能控制装置,应根据控制要求选择合适的PLC、DCS等控制器。
2.系统设计气动阀门控制系统的系统设计是重要的环节。
首先,需要确定阀门的控制方式。
在单向控制模式下,系统通过启动和停止操作,控制气流进出阀门。
在两向控制模式下,需要通过气源切换来实现气流的进出。
其次,需要决定气流的控制方式。
气动传动系统设计与控制引言气动传动系统是一种利用压缩空气传递动力的系统,广泛应用于各个领域,如制造业、汽车工业和机械设备等。
本文将探讨气动传动系统的设计原理和控制方法。
一、气动传动系统的组成气动传动系统通常由压缩空气产生装置、传动装置和执行装置组成。
1. 压缩空气产生装置:包括压缩机、储气罐和气流处理器。
压缩机将空气压缩后储存在储气罐中,气流处理器则通过滤波和调压等处理操作,确保传动系统的正常运行。
2. 传动装置:主要由气源阀、气缸、活塞杆和活塞组成。
当气源阀打开时,压缩空气通过气缸驱动活塞运动,从而产生机械动力。
3. 执行装置:根据不同的应用场景,执行装置可以是线性传动装置、旋转传动装置或者复杂的组合式装置。
执行装置将气动动力转换为机械动作。
二、气动传动系统的工作原理气动传动系统的工作原理基于压缩空气的力学特性和流体动力学原理。
1. 压缩空气的工作特性:气体在被压缩时会产生压力,这种压力通过气源阀传递给活塞,进而驱动执行装置实现机械运动。
2. 气动力的计算:根据物理学原理,F=PA,即压力乘以面积等于气动力。
在气动传动系统中,通过调节压力和活塞的面积,可以实现不同力和速度的输出。
3. 流体动力学:在气动传动系统中,气体通过管道和阀门进行流动。
了解流体动力学原理对于设计和控制系统至关重要,以确保气压稳定和能量传递的高效性。
三、气动传动系统的设计注意事项在进行气动传动系统设计时,需要考虑以下几个因素:1. 功能需求:精确定义所需的机械运动,并确定所需要的力和速度参数。
这将有助于选择合适的执行装置和传动比例。
2. 系统压力:根据所需的力矩和运动速度来选取合适的系统压力。
过高的压力会导致能耗增加和系统损坏,过低的压力则可能无法满足运动需求。
3. 气源系统:储气罐和滤波器等设备对于气源的稳定供应和纯净度起着重要作用。
合理设计气源系统,可以确保系统的可靠性和长期稳定性。
4. 主动安全装置:如过压保护和限位保护等装置,有助于提高系统的安全性和可靠性。
气动控制系统设计课程设计一、课程目标知识目标:1. 让学生掌握气动控制系统的基本组成、工作原理及主要性能参数;2. 使学生了解气动元件的选用原则,能正确选择合适的气动元件;3. 引导学生掌握气动控制系统的设计方法,能根据实际需求完成气动控制系统的设计。
技能目标:1. 培养学生运用气动控制理论知识解决实际问题的能力;2. 提高学生动手操作和团队协作能力,能完成气动控制系统的搭建和调试;3. 培养学生运用计算机辅助设计软件进行气动控制系统设计的能力。
情感态度价值观目标:1. 培养学生对气动控制技术及其应用的兴趣,激发学习热情;2. 培养学生严谨的科学态度,注重实践与创新,提高分析和解决问题的能力;3. 引导学生关注气动控制技术在我国工业领域的应用,增强学生的社会责任感和使命感。
本课程针对高年级学生,结合学科特点,注重理论知识与实际应用的结合。
在分析课程性质、学生特点和教学要求的基础上,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。
通过本课程的学习,使学生能够具备气动控制系统设计和应用的基本能力,为未来从事相关工作打下坚实基础。
二、教学内容1. 气动控制系统的基本概念与组成- 教材章节:第二章 气动控制系统概述- 内容:气动控制系统的定义、组成、分类及其应用领域。
2. 气动元件及其选用- 教材章节:第三章 气动元件- 内容:气动执行元件、气动控制元件、气动辅件的工作原理、性能参数及选用原则。
3. 气动控制系统的设计方法- 教材章节:第四章 气动控制系统设计- 内容:气动控制系统的设计步骤、设计要求、控制回路的设计方法。
4. 气动控制系统的搭建与调试- 教材章节:第五章 气动控制系统的安装与调试- 内容:气动控制系统的安装、调试方法及注意事项。
5. 计算机辅助设计软件在气动控制系统中的应用- 教材章节:第六章 气动控制系统CAD- 内容:介绍常用的气动控制系统CAD软件及其应用。
根据课程目标,教学内容分为五个部分,确保教学内容的科学性和系统性。
气动系统设计与优化气动系统是利用气体流动和压力变化来实现工业生产、交通运输等领域的关键设备之一。
在工程设计中,如何合理地设计和优化气动系统,对于提高效率、降低能耗、确保安全都具有重要意义。
本文将探讨气动系统设计与优化的几个关键方面。
一、气动元件选择在气动系统的设计中,合理选择气动元件是非常关键的。
气动元件主要包括压缩器、调压器、过滤器、冷却器、气缸等。
在选取气动元件时,需要考虑到所需要的流量、压力范围、气体干燥度以及安全性等因素。
此外,还需综合考虑气动元件的性能指标,如流量系数、压力损失、温度特性等,以确保系统的高效运行。
二、气动管道布局气动管道的布局与连接方式直接影响到气体流动的畅通与能效。
在设计过程中,需要根据实际需求合理安排气动管道的长度、直径和弯头的数量和角度,以降低气体流动时的阻力和能量损失。
同时,应尽量避免管道的突变和歧管,减少气流的分流和回流现象,从而提高气动系统的稳定性和能效。
三、气动系统控制气动系统的控制方式直接决定了系统的响应速度和稳定性。
传统的气动系统主要采用机械开关和比例调节阀等方式进行控制,但这种方式响应速度较慢,且存在能量浪费的问题。
目前,随着电子技术的发展,气动系统的控制方式逐渐向电子化、智能化方向发展。
比如采用压力传感器和电子比例阀等设备,可以实现对气动系统的精确控制,提高系统的响应速度和能效。
四、气动系统优化方法气动系统的优化方法主要包括传统方法和优化算法两种。
传统方法主要是通过经验和试错的方式进行优化,但这种方式需要耗费大量时间和资源,并且无法保证找到最佳解决方案。
相比之下,优化算法可以结合数学建模和计算机仿真等技术,通过优化搜索算法寻找最优解。
常见的优化算法有遗传算法、蚁群算法、粒子群算法等。
这些算法可以通过迭代优化寻找到更合理的气动系统设计方案,从而提高系统的效率和性能。
五、气动系统可靠性设计在气动系统设计中,可靠性是一个非常重要的指标。
气动系统可靠性设计主要包括故障诊断、容错设计和备份系统等方面。
气动控制系统设计
2007-08-23 11:43
气动控制系统设计
1、气动控制系统的组成。
在气动控制系统中,气动发生装置一般为空气压缩机,它将原动机供给的机械能转换为气体的压力能;气动执行元件则将压力能转化为机械能,完成规定动作;在这两部分之间,根据机械或设备工作循环运动的需求、按一定顺序将各种控制元件(压力控制阀、流量控制阀、方向控制阀和逻辑元件)、传感元件和气动辅件连接起来。
设计程序有关事项
2.1设计程序
2.1.1调研主机工作要求,明确设计依据。
A.了解主机结构、循环动作过程、执行元件操作力、运动速度及调整范围、运动平稳性、定位精度、传感器元件安装位置、信号转换、联锁要求、紧急停车、操作距离和自动化程度等。
B.工作环境,如温度及变化范围、湿度、振动、冲击、灰尘、腐蚀、防爆要求等。
C.是否要和电气、液压系统相配合,如需要须了解相应的安装位置等。
D.其他要求,如气控装置的重量、外形尺寸、价格要求等要求。
2.1.2气动回路设计
A.由执行元件数目、工作要求和循环动作过程,拟出执行元件的工作程序图。
根据工作速度要求确定每一个气缸在一分钟内的动作次数。
B.根据元件的工作程序,参考各种气动基本回路,按程序控制回路设计方法,设计气动回路。
为了得到最合理的气动回路,设计时可做几种法案比较,如气控制,气-----电控制,射流控制方案等进行选择,绘出气动回路图,使用电磁阀的场合,同时还绘出电气回路图。
2.1.3执行元件选择和计算
气动执行元件的类型一般应与主机相协调,即直线往复运动应选择气缸,回转运动应选择气动马达,往复摆动应选择摆动缸。
2.1.4控制元件选择
根据系统或执行元件的工作压力和通过阀的最大流量,选用各生产厂制造的阀和气动元件。
选择各种控制阀或逻辑元件时应考虑的特性有:
1工作压力
2额定流量
3响应速度
4使用温度范围
5最低工作压力和最低控制压力
6使用寿命
7空气泄漏量
8尺寸及联接形式
9电气特性等
选择控制阀时除了根据最大流量外,还应考虑最小稳定流量,以保证气缸稳定工作。
2.1.5气动辅件选择
根据气缸装置的用气量进行辅件选择:
A过滤器:不同的执行元件和控制元件对过滤器的要求一般为
气缸、截止阀等50~75u
气动马达等10~25u
金属硬配滑柱式、射流元件等5u
B减压器:根据压力调整范围和流量确定减压器或定植器的型号
C油雾气:根据流量和油雾颗粒大小要求。
一般10平方米空气中应加润滑油量1毫升左右。
D消声器:根据工作场合对噪声的要求选择。
2.1.6压缩机选择
由于使用压缩空气单位的负载波动不同,故压缩机容量的确定要充分了解不同用户的用气规律性,根据实际情况最后确定,压缩机供气量Qg可按下式简单估算
Qg=(1.2~1.5)求和(QZ+QO)m3/min
式中QZ-------------------------一台机器的用气量
QO-------------------------机器和配管的漏气量
N--------------------工作台数
根据上式可选择相应的空气压缩机,当样本上的压缩机供气量与计算结果不一致时,一般选偏大的压缩机。
2.1.7管道直径的确定
在管道计算中,常常是先按计算流量及经验流速计算出各区段的管径,然后计算出管径校核各区段的压力降,以使最远点压力降在允许的范围内。
若压力降超过额定值,应重新选择较低流速,再确定新的管径,在新的管径基础上再计算阻力损失,直到使压力降在允许范围内。
2.2气动控制系统设计有关事项
1气源处理
供给气动装置的压缩空气,除了保证其压力和流量外还必须除去其中的含油污水和灰尘等,以减少气动元件的磨损避免其零件的锈蚀,否则将引起系统工作效率降低,并常产生误动作而发生事故。
故在气动装置前除直接安装减压----过滤------油雾三联件外,在压缩机之后一般应设有冷却器、过滤器和气罐等,以保证气动系统正常运行。
在要求更高的情况下,应加干燥器或特殊过滤器。
三联件应安装在外部,以便排水,观察和维修。
必要时应装有压力继电器和主机电器部分互锁
2管路安装
进行管路设计时,应注意管内的水分,在这前面虽然经过一些处理,但其中还是含有些未除掉的水分,是管道、机件生锈而工作失常。
所以必须采取措施除掉残余的水分。
3控制箱
为满足一定操作要求,常将各种控制元件集中在控制箱内,对控制箱设计时的注意点有:
A保证线路正常工作,阻力损失小,布置合理。
B面板及结构安排要考虑操作方便
C便于维修,易于检查
D经济美观
4特殊情况处理
在设计时,应考虑系统在停电、发生事故需要紧急停车以及重新开车而必须联锁保护元件等等,在这里我就不细说了,欢迎大家对这方面处理的经验拿出来讨论!
5环境保护
气动系统工作时,由于压缩空气从换向阀排到大气中而发生排气噪声和油雾而污染空气等,故应注意环境保护问。