椭圆参数方程教学设计
- 格式:doc
- 大小:439.00 KB
- 文档页数:3
椭圆的参数方程教学目的:(一)知识:1.椭圆的参数方程.2.椭圆的参数方程与普通方程的关系。
(二)能力:1. 了解椭圆的参数方程,了解参数方程中系数b a ,的含义并能利用参数方程来求最值、轨迹问题;2.通过学习椭圆的参数方程,进一步完善对椭圆的认识,理解参数方程与普通方程的相互联(三)素质:使学生认识到事物的表现形式可能不止一种。
教学重点:椭圆参数方程的推导.参数方程与普通方程的相互转化 教学难点:1椭圆参数方程的建立及应用.2.椭圆参数方程中参数的理解. 教学方法:引导启发式 教学用具:多媒体辅助教学 教学过程: 一、新课引入:问题1.圆222x y r +=的参数方程是什么? 是怎样推导出来的?由圆的方程变形为122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛r y r x ,令⎪⎪⎩⎪⎪⎨⎧==θθsin cos ry r x解得:)(sin cos 为参数θθθ⎩⎨⎧==r y r x问题2.设ϕϕ,cos 3=x 为参数,写出椭圆14922=+y x 的标准方程。
代入椭圆方程,得到解:把ϕcos 3=xϕϕ222sin 4)cos 1(4=-=∴y 即ϕsin 2±=y.sin 2ϕϕ=y 的任意性,可取由参数)(.sin 2,cos 314922为参数的参数方程是因此,椭圆ϕϕϕ⎩⎨⎧===+y x y x探究:能类比圆的参数方程,写出椭圆的参数方程吗?二、新课讲解:1、焦点在x 轴上的椭圆参数方程的推导因为22()()1x y a b+=,又22cos sin 1ϕϕ+=设cos ,sin x ya b ϕϕ==, 即a cos y bsin x ϕϕ=⎧⎨=⎩)(为参数ϕ, 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。
2.参数ϕ的几何意义思考:类比圆的参数方程中参数θ的意义,椭圆的参数方程中参数ϕ的意义是什么?圆的标准方程:222r y x =+ 圆的参数方程:⎩⎨⎧==θθsin cos r y r x )(为参数θ椭圆的标准方程:12222=+b y a x 椭圆的参数方程:⎩⎨⎧==ϕϕsin cos b y a x )(为参数ϕ圆的参数方程中θ是Ox 轴逆时针旋转到OP 的旋转角即θ=∠AOP ,那么椭圆的参数方程中ϕ是不是上图中Ox 轴逆时针旋转到OM 的旋转角呢?请大家看下面图片如图,以原点为圆心,分别以a 、b (0)a b >>为半径作两个圆,点B 是大圆半径OA 与小圆半径的交点,过点A 作AN O x ⊥,垂足为N ,过点B 作BM AN ⊥,垂足为M ,求当半径OA 绕点O 旋转时A θxyOPxyOMϕ2M 1M 2P 1PM 的轨迹的参数方程.分析:动点A 、B 是如何动的?M 点与A 、B 有什么联系?如何选取参数较恰当? 解:设M 点坐标为(,)x y ,ϕ=∠AOx ,以ϕ为参数, 则ϕϕcos cos a OA ON x === ϕϕsin sin b OB NM y ===,当半径OA 绕O 点逆时针旋转一周时,就得到点M 的轨迹,它的参数方程是)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x ①这是中心在原点O ,焦点在x 轴上的椭圆。
12椭圆的参数⽅程(教师版)12. 椭圆的参数⽅程主备:审核:学习⽬标:1. 了解椭圆的参数⽅程的推导过程及参数的意义;2. 掌握椭圆的参数⽅程,并能解决⼀些简单的问题.学习重点:椭圆参数⽅程的应⽤,学习难点:椭圆参数⽅程中参数的意义.学习过程:⼀、课前准备:阅读教材2729P P -的内容,理解椭圆的参数⽅程的推导过程,并复习以下问题:1. 写出圆⽅程的标准式和对应的参数⽅程.(1)圆222x y r +=参数⽅程为:cos sin x r y r θθ=??=?(θ为参数);(2)圆22200()()x x y y r -+-=参数⽅程为:00cos sin x x r y y r θθ=+??=+? (θ为参数). 2.做⼀下类⽐:(1)①22()()1y x r r +=,②22cos sin 1θθ+=,你能否将他们联系起来?答:可以看出,cos x r θ=,sin y r θ=,所以可得圆的参数⽅程cos sin x r y r θθ=??=? . (2)①22221y x a b+=,②22cos sin 1θθ+=,你会有什么结论?答:可以看出,cos x a θ=,sin y b θ=,所以可得椭圆的参数⽅程cos sin x a y b θθ=??=? . ⼆、新课导学:(⼀)新知:1.如图,以原点为圆⼼,分别以a ,b (0a b >>)为半径作两个圆,点B 是⼤圆半径OA 与⼩圆的交点,过点A 作AN Ox ⊥,垂⾜为N ,过点B 作BM AN ⊥,垂⾜为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数⽅程.【分析】点M 的横坐标与点A 的横坐标相同,点M 的纵坐标与点B 的纵坐标相同. ⽽A 、B 的坐标可以通过引进参数建⽴联系,【解析】设xOA θ∠=,(,)M x y ,则(cos , sin )A a a θθ,(cos , sin )B b b θθ,所以cos sin x a y b θθ=??=?(θ为参数).即为点M 的轨迹参数⽅程.消去参数θ得:22221y x a b+=即为点M 的轨迹普通⽅程. 在椭圆的参数⽅程中,常数a 、b 分别是椭圆的长半轴长和短半轴长.a b >,θ称为离⼼⾓,规定参数的取值范围是[0,2)θπ∈.2.根据以上的解法,可求得椭圆22221b a y x +=(0a b >>)的参数⽅程是:cos sin x b y a θθ=??=?为参数(). 3.椭圆的参数⽅程中离⼼⾓θ的的⼏何意义是:是xOA θ∠=,不是xOM θ∠=.(⼆)典型例题【例1】把下列普通⽅程化为参数⽅程.(1)22149x y += (2) 22116y x += 【解析】(1)2cos 3sin x y ??=??=?(θ为参数)(2)cos 4sin x y ??=??=?(θ为参数)动动⼿:1.把下列参数⽅程化为普通⽅程(1)3cos 5sin x y ??=??=?(?为参数);(2)8cos 10sin x y ??=??=?(?为参数).【解析】(1)221925y x +=;(2)22164100y x +=. 2.已知椭圆的参数⽅程为2cos sin x y θθ=??=?(θ为参数),则此椭圆的长轴长为4,短轴长为2,焦点坐标是(3,0)±,离⼼率是3. 【例2】已知A 、B 两点是椭圆22194 y x +=与坐标轴正半轴的两个交点,在第⼀象限的椭圆弧上求⼀点P ,使四边形OAPB 的⾯积最⼤.【解析】椭圆的参数⽅程是3cos 2sin x y θθ=??=?,设椭圆上的点(3cos ,2sin )P αα,因为AOB S ?的⾯积⼀定,所以只需APB S ?最⼤即可.即求点P 到直线AB 的距离的最⼤值,直线AB 的⽅程为132y x +=,即2360x y +-=4sin()d πα==+66,所以当4a π=时,d 有最⼤值,⾯积最⼤,这时点P的坐标是. 动动⼿:动点P (,)x y 在曲线22y 194x +=上变化,求23x y +的最⼤值和最⼩值. 【解析】曲线的参数⽅程为3cos 2sin x y θθ=??=?,设椭圆上的点(3cos ,2sin )P αα,则236cos 6sin 62)4x y πθθθ+=+=+,所以23x y +最⼤为6262-.【例3】已知⽅程226sin 29cos 8cos 90y y x θθθ---++=.(1)试证:不论θ如何变化,⽅程都表⽰顶点在同⼀椭圆上的抛物线;(2)θ为何值时,该抛物线在直线14x =上截得的弦最长?并求出此弦长.【解析】(1)把原⽅程化为())cos 4(2sin 32θθ-=-x y ,知抛物线的顶点为()θθsin 3,cos 4,设顶点坐标为(,)x y ,则有4cos 3sin x y θθ=??=?,它在椭圆191622=+y x 上. (2)令14x =,代⼊设226sin 29cos 8cos 90y y x θθθ---++=得226sin 9cos 8cos 190y y θθθ--+-=设上⽅程的两根为1y 、2y ,则126sin y y θ+=,2129cos 8cos 19y y θθ=-+-,所以2121212||()4d y y y y y y =-=+-22(6sin )36cos 32cos 76θθθ=+-+11232cos θ=-所以,当θπ=时,弦长最⼤为12.三、总结提升:1.椭圆的参数⽅程对于解决与椭圆上的点有关的最值问题,有很⼤的优越性,具体表现在最⼤距离、最⼩距离、最⼤⾯积等;在求解过程中,将问题转化为三⾓函数的问题,利⽤三⾓函数求最值.2.椭圆参数⽅程中的参数θ的⼏何意义,⼀定要利⽤图形观察弄清楚.四、反馈练习:1.椭圆23x y ββ==(β为参数)的焦点坐标是( C )A. (1,0)- ,(1,0)B. (2,0)- ,(2,0)C. (0,1)- ,(0,1)D. (0,2)- ,(0,2)2.直线2360x y -+=与椭圆3cos 4sin x y ββ=??=?的位置关系是( B ) A.相切 B. 相交不过焦点 C. 相交且过焦点 D. 相离3. 14922=+y x 上⼀点P 与定点(1,0)之间距离的最⼩值是( A )B.C. 2D.4. 已知过曲线3cos 4sin x y θθ=??=?()θθπ≤≤为参数,0上⼀点P 与原点O 的连线OP 的倾斜⾓为4π,则P 点坐标是 ( D ) A . (3,4) B . 1212(,)55-- C . (3,4)-- D . 1212(,)55 5. 设椭圆的参数⽅程为()πθθθ≤≤?==0sin cos b y a x ,()11,y x M ,()22,y x N 是椭圆上两点,M 、N 对应的参数为21,θθ,且21x x <,则12,θθ⼤⼩关系是12θθ>.6.点P 在椭圆221169x y +=上,求点P 到直线3424x y -=的最⼤距离和最⼩距离.【解析】设(4cos ,3sin )P θθ,则12cos 12sin 245d θθ--=122cos()244πθ+-= 当cos()14πθ+=-时,max 12(22)5d =;当cos()14πθ+=时,min 12(22)5d =.五、学后反思:。
《椭圆的参数方程》教学案2【教学目的】1. 通过探究活动,了解椭圆参数方程及椭圆规的设计原理;2. 有应用参数的意识,能用椭圆参数方程解决一些简单问题;3. 通过观察,探索的学习过程,培养探究能力和创新意识.【教学重点】椭圆的参数方程的建立.【教学难点】椭圆参数方程的应用.【教学过程】一、自主探究,发现新知探究1:如图,以原点O 为圆心,,a b (0a b >>)为半径分别作两个同心圆.设A 为大圆上的任一点,连接OA ,与小圆交于点B . 过点A 、B 分别作x 轴,y 轴的垂线,两垂线交于点M ,求点M 的轨迹.利用Excel 图表功能,及几何画板直观点M 的轨迹,结合三角消元得出椭圆的参数方程.借助几何画板解释椭圆参数方程中参数的几何意义.二、分组讨论,体验应用探究2:椭圆规是用来画椭圆的一种器械,它的构造如图所示. 在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定滑块A ,B , 它们可分别在纵槽和横槽中滑动,在直尺上的点M 处用套管装上铅笔,使直尺转动一周就画出一个椭圆.你能说明它的构造原理吗?(提示:可以用直尺AB 和横槽所成的角为参数,求出点M 的轨迹的参数方程. )思考椭圆规的发现过程:源于探究1.⊗⊗*AB M xy M B O A三、动手实践,深化知识探究3:已知椭圆22:194x y C +=. (1)求椭圆C 的内接矩形面积的最大值;(2)若(,)P x y 是椭圆C 上任一点,求=+z x y 2的最值;(3)设(3,0)A ,(0,2)B ,D 为椭圆位于第一象限的弧上的一点,求四边形OADB 面积的最大值;(4)在椭圆C 上求一点M ,使点M 到直线2100x y +-=的距离最小,并求出最小值.体会椭圆参数方程的应用.四、学生小结布置作业:课本29P 思考题【教学后记】。
椭圆及其方程教案(中档篇)第一章:椭圆的概念1.1 椭圆的定义让学生了解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。
通过图形和实例让学生理解椭圆的基本性质,如焦点、半长轴、半短轴等。
1.2 椭圆的标准方程引导学生推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是半长轴,\(b\)是半短轴。
解释椭圆标准方程的含义和应用,如通过方程可以确定椭圆的位置和大小。
第二章:椭圆的性质2.1 焦点和焦距让学生了解椭圆的焦点和焦距的概念,焦点是椭圆上到两个焦点距离之和为常数的点,焦距是两个焦点之间的距离。
通过图形和实例解释焦点和焦距与椭圆的大小和形状的关系。
2.2 半长轴和半短轴引导学生了解椭圆的半长轴和半短轴的概念,半长轴是椭圆上横坐标方向的半径,半短轴是椭圆上纵坐标方向的半径。
解释半长轴和半短轴与椭圆的大小和形状的关系。
第三章:椭圆的参数方程3.1 椭圆的参数方程定义让学生了解椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数,\(a\)是半长轴,\(b\)是半短轴。
通过图形和实例解释椭圆参数方程的含义和应用,如可以通过参数方程描绘椭圆的形状和位置。
3.2 椭圆的参数方程的应用引导学生了解椭圆的参数方程的应用,如通过参数方程可以求椭圆的面积、弧长等。
给出实例,让学生学会使用参数方程解决实际问题。
第四章:椭圆的图像4.1 椭圆的标准图像让学生了解椭圆的标准图像,即椭圆的图形。
通过图形和实例解释椭圆的标准图像的特点和形状。
4.2 椭圆的图像变换引导学生了解椭圆的图像变换,如平移、缩放等。
给出实例,让学生学会使用图像变换改变椭圆的位置和大小。
第五章:椭圆的应用5.1 椭圆在几何中的应用让学生了解椭圆在几何中的应用,如椭圆的面积、弧长等。
通过实例让学生学会使用椭圆的性质和方程解决几何问题。
椭圆的参数方程班级:_______ 姓名:_______小组:__________ 评价:__________【学习目标】1.了解椭圆的参数方程及其参数的意义2.能选取适当的参数,求简单曲线的参数方程 【学习重点】椭圆参数方程的定义和应用 【学习难点】1.选择适当的参数写出椭圆的参数方程2.正确理解椭圆离心角的几何意义 【课堂六环节】一、导——教师导入新课。
(2-3分钟)如图,以原点为圆心,分别以a ,b (a >b >0)为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程.二、思——自主学习。
学生结合课本自主学习,完成下列相关内容。
(13分钟)椭圆)(012222>>=+b a b ya x 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数) 1.在椭圆的参数方程中,常数a 、b 分别是椭圆的 和 . (其中a>b ) 2.ϕ称为离心角,规定参数ϕ的取值范围是3.当焦点在y 轴时椭圆的标准方程:_________________________与其对应的参数方程为:___________________ 【典型例题】例1、写出下列普通方程化为参数方程.例2、写出下列参数方程的普通方程例3、在椭圆14922=+y x 上求一点M ,使点M 到直线0102=-+y x 的距离最小,并求出最小距离2222(1)1(2)14916x y y x +=+=3cos 8cos (1)(2)5sin 10sin x x y y ϕϕϕϕ==⎧⎧⎨⎨==⎩⎩例4、动点),(y x P 在曲线14922=+y x 上变化,求y x 32+的最大值和最小值三、议——学生起立讨论。
根据以上学习的内容进行小组集体讨论。
(9分钟) 四、展——学生激情展示。
小组代表或教师随机指定学生展示。
第13节 椭圆的参数方程一、学习目标:(1).椭圆的参数方程.(2).椭圆的参数方程与一般方程的关系。
(3).通过学习椭圆的参数方程,进一步完善对椭圆的熟悉,明白得参数方程与一般方程的彼此联系.并能彼此转化.提高综合运用能力二、学习重难点学习重点:椭圆参数方程的推导.参数方程与一般方程的彼此转化学习难点:(1)椭圆参数方程的成立及应用.(2)椭圆的参数方程与一般方程的互化三、学法指导:认真阅读教材,依照导学案的导引进行自主合作探讨式学习四、知识链接:将以下参数方程化成一般方程1 )(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x2 )(sin cos 为参数ϕϕϕ⎩⎨⎧==a y b x 五、学习进程:(一)椭圆的参数方程1核心在x 轴: )(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x2核心在y 轴: )(sin cos 为参数ϕϕϕ⎩⎨⎧==a y b x (二)典型例题例1参数方程与一般方程互化1把以下一般方程化为参数方程. (1)19422=+y x (2)11622=+y x2把以下参数方程化为一般方程(1) )(sin 5cos 3为参数ϕϕϕ⎩⎨⎧==y x (2) )(sin 10cos 8为参数ϕϕϕ⎩⎨⎧==y x 练习:已知椭圆的参数方程为 ( 是参数) ,那么此椭圆的长轴长为 ______,短轴长为_______,核心坐标是________,离心率是_-________。
例2、在椭圆8822=+y x 上求一点P ,使P 到直线l :04=+-y x 的距离最小. 例3、已知椭圆 16410022=+y x 有一内接矩形ABCD,求矩形ABCD 的最大面积。
六、课堂练习:( ) 2cos sin x y θθθ=⎧⎨=⎩)2,0(),3,1(),0,3(),3,2()sin 2,cos 3(1πθθθ、点、点、点、点所确定的曲线必过变化时,动点、当参数D C B A P。
椭圆的参数⽅程(教案)8.2 椭圆的⼏何性质(5)——椭圆的参数⽅程(教案)齐鲁⽯化五中翟慎佳 2002.10.25⼀.⽬的要求:1.了解椭圆参数⽅程,了解系数a、b、含义。
2.进⼀点完善对椭圆的认识,并使学⽣熟悉的掌握坐标法。
3.培养理解能⼒、知识应⽤能⼒。
⼆.教学⽬标:1.知识⽬标:学习椭圆的参数⽅程。
了解它的建⽴过程,理解它与普通⽅程的相互联系;对椭圆有⼀个较全⾯的了解。
2.能⼒⽬标:巩固坐标法,能对简单⽅程进⾏两种形式的互化;能运⽤参数⽅程解决相关问题。
3.德育⽬标:通过对椭圆多⾓度、多层次的认识,经历从感性认识到理性认识的上升过程,培养学⽣辩证唯物主义观点。
三.重点难点:1.重点:由⽅程研究曲线的⽅法;椭圆参数⽅程及其应⽤。
2.难点:椭圆参数⽅程的推导及应⽤。
四.教学⽅法:引导启发,计算机辅助,讲练结合。
五.教学过程:(⼀)引⾔(意义)⼈们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这⼀规律。
本节课学习椭圆的参数⽅程及其简单应⽤,进⼀步完善对椭圆认识。
(⼆)预备知识(复习相关)1.求曲线⽅程常⽤哪⼏种⽅法?答:直接法,待定系数法,转换法〈代⼊法〉,参数法。
2.举例:含参数的⽅程与参数⽅程例如:y =kx +1(k 参数)含参⽅程,⽽+==142t y tx (t 参数)是参数⽅程。
3.直线及圆的参数⽅程?各系数意义?(三)推导椭圆参数⽅程1.提出问题(教科书例5)例题.如图,以原点为圆⼼,分别以a 、b (a>b>0)为半径作两个圆。
点B 是⼤圆半径OA 与⼩圆的交点,过点A 作AN ⊥O x ,垂⾜为N ,过点B 作BM ⊥AN ,垂⾜为M 。
求当半径OA 绕点O 旋转时点M 的轨迹的参数⽅程。
2.分析问题本题是由给定条件求轨迹的问题,但动点较多,不易把握。
故采⽤间接法——参数法。
引导学⽣阅读题⽬,回答问题:(1)动点M 是怎样产⽣的?M 与A 、B 的坐标有何联系?(2)如何设出恰当参数?设∠AOX=?为参数较恰当。
《椭圆的参数方程》教学设计学情分析:学生已经掌握了椭圆的标准方程、图像和性质,能够简单的应用,但是对于一些求最值的问题感到计算比较困难。
因此,本节课椭圆的参数方程的教学应该帮助学生解决好:1.能从类比圆的参数方程的建立得出椭圆的参数方程;2.引导学生探究教科书第28页图2-8的建立过程,体会椭圆参数的几何意义;3.能利用椭圆的参数方程解决有关的问题;椭圆参数的几何意义是本节的难点。
效果分析椭圆的参数方程一节,主要目的在于让学生理解并掌握椭圆的参数方程,培养类比能力及探究意识,让学生更深入地体会参数方法的优越性。
在本节课的设计上,整体思路是通过类比圆的参数方程的研究方式,学生选取适当的参数,合作探究椭圆的参数方程,在探究过程中,教师利用几何画板动态演示椭圆的形成过程,帮助学生在几何图形中观察获得变量关系。
在例题练习的选择上,考虑文科学生的认知特点,本着由简单到复的原则,由浅入深,逐层推进,在例题的解决过程中,采取教师引导、学生列式的模式,从而达到落实重点、突破难点的目的;在作业的布置上,梯度性设置,尊重不同学生的个性化发展,满足学生的多样化学习需求。
本节课的整体设计思路是合理的。
1、用几何画板动态演示椭圆的形成过程,通过动态演示,类比圆的参数的选取,便于学生更直观、更有效的选择适当的参数,从而获得关系式,更有效地体会椭圆参数的几何意义,以及其与圆的参数几何意义的区别与联系;同时再次让学生体验了合作探究的过程,提高合作探究意识与能力。
2、设立学案较好,包含主体内容,流程也较为清晰;但仍需要进一步完善、规范学案的设计,使学案能够更有效地帮助学生学习。
3、在例2的求结果过程中,在必要时复习辅助角公式,而不是将它放在复习回顾环节中,有利于学生对问题的整体把握,便于学生整理解题思路,从而提高分析问题、解决问题的能力。
4、基于学生的特点,设置较为基础的练习,有利于帮助学生建立自信,从而提高学习数学的积极性。
教材分析本节内容是在高中数学选修2-1.椭圆的标准方程之后的升华。
椭圆的参数方程中参数的几何意义教学重难点:椭圆参数方程中参数的几何意义教学用具:多媒体辅助教学教学方法:由于学生独立获得椭圆参数方程中参数的几何意义是困难的,因此采用教师讲解的方法,只要学生理解就可以了教学过程:1、焦点在x 轴上的椭圆参数方程的推导 因为22()()1x y a b+=,又22cos sin 1ϕϕ+= 设cos ,sin x y a b ϕϕ==, 即a cos y bsin x ϕϕ=⎧⎨=⎩)(为参数ϕ, 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。
2.参数ϕ的几何意义思考:类比圆的参数方程中参数θ的意义,椭圆的参数方程中参数ϕ的意义是什么?圆的标准方程:222r y x =+ 圆的参数方程:⎩⎨⎧==θθsin cos r y r x )(为参数θ 椭圆的标准方程:12222=+b y a x 椭圆的参数方程:⎩⎨⎧==ϕϕsin cos b y a x )(为参数ϕ圆的参数方程中θ是Ox 轴逆时针旋转到OP 的旋转角即θ=∠AOP ,那么椭圆的参数方程中ϕ是不是上图中Ox 轴逆时针旋转到OM 的旋转角呢?请大家看右边图片如图,以原点为圆心,分别以a 、b (0)a b >>为半径作两个圆,点B 是大圆半径OA 与小圆半径的交点,过点A 作AN O x ⊥,垂足为N ,过点B 作BM AN ⊥,垂足为M ,求当半径OA 绕点O 旋转时M 的轨迹的参数方程. 分析:动点A 、B 是如何动的?M 点与A 、B 有什么联系?如何选取参数较恰当?解:设M 点坐标为(,)x y ,ϕ=∠AOx ,以ϕ为参数, 则ϕϕcos cos a OA ON x ===ϕϕsin sin b OB NM y ===,当半径OA 绕O 点逆时针旋转一周时,就得到点M 的轨迹,它的参数方程是)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x ① 这是中心在原点O ,焦点在x 轴上的椭圆。
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
《椭圆的参数方程》导学案
《椭圆的参数方程》导学案
【学习目标】
(1)理解椭圆参数方程的形成过程和参数的几何意义;
(2)会进行椭圆参数方程与普通方程之间的互化;
(3)会用椭圆的参数方程解决动点最值的相关问题。
【重点难点】
重点:椭圆参数方程的形成过程;椭圆参数方程解
决动点最值问题;
难点:参数的几何意义。
【学法指导】
引导探究法,启发式教学
【学习过程】
问题1:圆心在原点,半径为的圆的参数方程是什么?
参数的几何意义:
问题2:
如下图,以原点为圆心,分别以为半径作两个圆,
点是大圆半径与小圆的交点,过点作,垂足为,过点作,垂足为。
当半径绕点旋转时,点的轨迹是什么?
问题3:圆的参数方程中,引入了旋转角作为参数,椭
圆中可以引入哪个变量作为参数?
问题4:为什么引入作为参数?
问题5:怎样建立椭圆的参数方程?
问题6:怎样说明这个参数方程表示的就是椭圆?
问题7:参数有怎样的几何意义?
椭圆的参数方程中的几何意义与圆的参数方程中的几何意义相同吗?
总结:椭圆的参数方程为:
课堂练习:
(1)椭圆的参数方程为:
(2)(为参数)普通方程为:
例1.求椭圆的内接矩形的最大面积。
例2.在平面直角坐标系中,点是椭圆上的动点;(1)求的最大值;
(2)求点到直线距离的最小值。
小结:这节课你学到了什么?
课后思考:(1)推导焦点在轴上椭圆的参数方程;
(2)椭圆还有别的参数方程形式吗?。
《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
《椭圆的参数方程》说课稿张军(一)教材分析:一、教材的地位和作用:教科书根据教学大纲的精神,在讲过椭圆的标准方程之后,以例题的形式,给出了椭圆的一个参数方程。
二、教学目标1、知识目标:学习椭圆的参数方程。
了解它的建立过程,理解它与普通方程的相互联系,对椭圆有一个较全面的了解。
2、过程方法目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参数方程解决相关问题。
3、态度、情感、价值观:通过对椭圆多角度、多层次的认识,经历从感性认识到理性认识的上升过程,培养学生辩证唯物主义观点。
三、教学重点:进一步巩固和掌握由曲线求方程及由方程研究曲线的方法及椭圆参数方程的推导。
教学难点:椭圆参数方程的推导及应用。
(二)学生情况分析:本班学生基础知识掌握比较扎实。
通过圆的参数方程求法采用类别直接得出椭圆的参数方程;通过对圆的参数方程中参数的几何意义知识的回顾使学生掌握椭圆参数方程的实质并应用此方法得到焦点在y轴上的椭圆的参数方程;学生三角变形能力较强故可选取解析与三角相结合的例题。
(三)教学方法:引导启发、计算机辅助、讲练结合1、引导启发:从学生熟悉的问题出发引导学生发现椭圆的参数方程。
2、计算机辅助:多媒体显示动点M轨迹的形成过程,使学生确信结论的正确性;例4中利用多媒体帮助学生发现距离的最大位置,起到直观、易懂的作用。
3、讲练结合:通过2道例题的练习使学生对椭圆的参数方程的形式有一个正确的认识并掌握其应用。
(四)、教学过程设计:本节课采用“问题——探究”的教学过程,能够在每一个教学环节中设置问题,引导学生去解决问题。
而问题情境的题目后面的提示是在学生还不能正确建立M点的坐标时给一定的启发。
在学生发现轨迹是椭圆时,在多媒体屏幕上展示M点的动画,让学生更清楚自己化简结果的准确性。
思考题的设置便于学生对椭圆的参数方程有一个全面的理解。
例1、主要是让学生准确掌握椭圆参数方程的形式并由椭圆的参数方程研究椭圆的几何性质。
椭圆的参数方程一、知识回顾(4’)以设问的方式进行复习回顾:1、当焦点在x轴上时椭圆的普通方程:2、相关知识点:(1)焦点,顶点(), ();(2)(3);(4);3、辅助角公式:学生跟着老师的思路进行复习回顾,并能较为准确回答出老师所问问题。
为接下来的新知识做铺垫。
明确相关知识便于学生理解下面的新知识,加深了学生对单一函数的认识及应用二、新课引入(3’)对椭圆的普通方程进行换元可得到椭圆的参数方程。
对学生提出思考:上节课圆的参数方程中,参数的几何意义是圆的旋转角,那么椭圆的参数方程中参数的几何意义是什么?学生认真记录笔记,并根据老师所提出的思考题进行思考,并忆起圆的参数方程中参数的几何意义。
利用学生熟悉的三角函数公式进行换元,通过换元法进行引入。
然后对参数进行设问,引导学生合作探究。
三、探究参数(14’)设椭圆上任一动点M 坐标为(),则:探究1:参数是椭圆的旋转角吗?不是,因为x=,不是定值。
探究2:从参数方程出发(即M的坐标点)根据圆的参数方程寻找的意义:建立以a为半径的圆,过M作垂线交圆于A,点A的横坐标与M的横坐标一样为(为∠AOx);再建立以b为半径的圆交线段OA于B,而B点纵坐标为,恰与M的纵坐标一样,即BM∥x轴。
因此,椭圆的参数方程中参数的几何意义并非旋转角,而是椭圆的离心角。
探究3:当椭圆的焦点在y轴上时的参数方程是什么样子的,其参数是否满足探究2中的几何意学生之间先进行探究一的讨论,发现不是椭圆的旋转角,然后再自己原有讨论的基础上跟着老师一起探究参数的几何意义,得出原来参数的几何意义是椭圆的离心角。
探究3让学生自主探究,发现不论椭圆的焦点在哪,其参数的几何意义仍是椭圆的离心角。
探究1:类比圆的参数方程中参数的几何意义,猜想椭圆参数方程中参数的几何意义,引导发现不相同之处,否定原有猜想。
探究2:从所设M点的坐标出发,通过数形结合思想,引导学生从已知点坐标出发,进行探究,思考椭圆的参数方程中参数的几何意义。
椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。
高二数学教案:椭圆的参数方程学案第04课时2.2.1椭圆的参数方程学习目标1.通过学习椭圆的参数方程的建立,进一步熟悉建立参数方程的基本步骤,加深对参数方程的理解。
学习过程一、学前准备复习:1.直角坐标系下的椭圆的标准方程是什么?2.点到直线的距离公式是怎样的?3.你还记得下面一些三角公式的运算吗?试试看。
(1)(2) =(3)(4) 。
二、新课导学◆探究新知(预习教材P27~P29,找出疑惑之处)以原点O为圆心,,为半径分别作两个同心圆,设A为大圆上任一点,连接OA,与小圆交于B,过点A、B分别作轴,轴的垂线,两垂线交于点M,那么M点的轨迹是什么?(用几何画板考察)设以为始边,为终边的角为,点的坐标是。
那么点的横坐标为,点的纵坐标为,由于点均在角的终边上,由三角函数的定义有当半径绕点旋转一周时,就得到了点的轨迹,它的参数方程是这是中心在原点,焦点在轴上的椭圆.,通常规定参数的范围是,可以看出参数是点所对应的圆的半径(或)的旋转角(称为点的离心角)◆应用示例例1.在椭圆上求一点M,使点M 到直线的距离最小,并求出最小距离。
(教材P28例1)解:◆反馈练习1.椭圆的焦距等于( )A、B、C、D、2.已知椭圆( 为参数)求(1) 时对应的点P的坐标(2)直线OP的倾斜角三、总结提升◆本节小结1.本节学习了哪些内容?答:学习椭圆的参数方程的建立,进一步熟悉建立参数方程的基本步骤,加深对参数方程的理解。
学习评价一、自我评价你完成本节导学案的情况为( )A.很好B.较好C. 一般D.较差课后作业我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
《椭圆的参数方程》(第一课时)教学设计一、教学内容分析教科书通过推广前一节例4,得出椭圆的参数方程(与椭圆的标准方程相对应).这个参数方程实际上是通过纯粹的代数和三角变换得到的,参数ϕ的几何意义并不明确.为此,教科书利用“思考”,引导学生类比圆的参数方程中参数的几何意义,探究椭圆参数方程中参数的几何意义.参数ϕ不是x轴正半轴沿逆时针方向旋转到OM的位置时所转过的角度(称为OM的旋转角),这一点与圆的参数方程中的参数有着显著差异.离心角ϕ容易与点M和中心O连∠混淆.线的倾斜角xOM应当说,由学生独立获得椭圆参数方程中参数的几何意义是困难的,因此教科书采用了直接讲解的方法.二、学情分析学生是在学习了选修2-1第二章《圆锥曲线与方程》、选修4-4《第一讲坐标系》2.平面直角坐标系中的伸缩变换与《第二讲参数方程》1.参数方程的概念、2.圆的参数方程等知识之后,自然而然地要研究椭圆的参数方程,而前面知识就作了相应的知识基础准备.其次,教学对象是我们学校高2013级的A层次的班级2班,学生的学习习惯较好,有较强的动手操作能力,有一定的自主学习基础与能力,也善于合作研究、讨论学习.这为学习新知提供了一定的能力基础.三、学习目标1.通过类比圆的参数方程,选择参数写出椭圆的参数方程,理解参数的几何意义.2.体会参数法的应用,能用椭圆参数方程解决一些简单问题,建立椭圆参数方程与代数变换、三角函数之间的联系.3.进一步学习建立参数方程的基本步骤,加深对参数方程的理解,从不同的角度认识椭圆的几何性质.四、教学重点和难点重点:根据问题的条件(椭圆的几何性质)引进适当的参数,写出椭圆的参数方程,体会参数的意义、椭圆参数方程的应用;难点:根据椭圆的几何性质选取恰当的参数,建立椭圆的参数方程以及椭圆的参数方程中参数的几何意义.1/ 72 / 7五、教学基本流程六、教学情景设计3/ 74/ 75/ 76/ 7(3)在椭圆中,还可以选取其它变量作为参数吗?请将你选取的参数与离心角作为参数进行比较.七、板书设计八、课后反思1.椭圆的参数方程一、1.圆的参数方程2.椭圆的参数方程参数的几何意义θM0rM(x, y)yxOMBAOyx三、课堂小结与作业布置三、应用举例[例]已知椭圆C的方程为22194x y+=.若2392z x y=+-,其中(),x y是椭圆C上的点.求z的最大值和最小值.xy23O7/ 7。
椭圆的参数方程教学设计
王丽萍
一、基本说明
1、教学内容所属模块:选修4-4
2、年级:高二
3、所用教材出版单位:人民教育出版社(A 版)
4、所属的章节:第二讲第二节第1课时
二、教学设计
(一)、内容分析
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。
本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。
在建立椭圆方程过程中,展示引进参数的意义和作用。
以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。
(二)、教学目标
(1)理解椭圆的参数方程及其参数的几何意义。
(2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。
(3)会根据条件构造参数方程实现问题的转化,达到解题的目的。
(三)、教学重点、难点
重点:椭圆的参数方程及其参数的几何意义
难点:巧用椭圆的参数方程解题
(四)、学情分析:
“坐标法 ”是现代数学最重要的基本思想之一。
坐标系是联系几何与代数的桥梁,是数形结合的有力工具。
虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。
因此我们必须从实际问题入手,由浅入深的帮助学生学习理解知识,通过“思考”、“探究”、“信息技术应用”等来启发和引导学生的数学思维,养成主动探索、积极思考的好习惯。
(五)、设计思路:
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。
教师首先应通过实例展示在建立椭圆方程过程中,引进参数的意义和作用。
使学生体会到有时用参数方程表示曲线比用普通方程表示更方便,理解参数的几何意义。
根据本节课的教学内容和学生实际水平,本节课采用“复习导入发现法”。
通过具体实例问题,引导和激发学生的探究热情,通过“师生”和“生生”的交流合作,掌握椭圆参数的深层实质。
教学流程为:复习回顾圆的参数方程和三角函数知识→创设情境引入新知→实例探究启发思维→例题讲解运用新知→课堂实践巩固新知→归纳总结完善→课外强化提升能力。
(六)、教具准备:
PowerPoint 课件、《几何画板》
(七)、教学过程:
一、复习回顾
1.圆的参数方程知识
圆心在原点,半径为r 的圆的标准方程:222r y x =+ 圆的参数方程是:⎩⎨⎧⋅=⋅=θ
θsin cos a y a x
2.三角函数的知识
二、创设情境引入新知
【例1】、如下图,以原点为圆心,分别以a,b(a>b>0)为半径作两个圆,点A 是大圆上任意一点,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥OX ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹的参数方程。
分析,利用点M 与A 、B 两点坐标之间的关系,
点M 的横坐标与点A 的横坐标相同,点M 的纵坐标
与点B 的纵坐标相同,通过A 、B 两点的坐标的参数
表示方法,得到点M 的轨迹的参数方程。
当半径OA 绕点O 旋转一周时,就得到了点
M 的轨迹,它的参数方程是
) (.
sin ,cos 为参数ϕϕϕ⎪⎩⎪⎨⎧==b y a x
动画演示椭圆的参数方程,动点M 的轨迹形成了椭圆,椭圆的长半轴就是大圆的半径a,短半轴就是小圆的半径b ,对称中心就是同心圆的圆心O 。
利用《几何画板》 演示体会当ϕ变化时点M 的轨迹的形状,得出结论:参数ϕ是点M 所对应的圆的半径OA (或OB )的旋转角(称为点M 的离心角)。
当堂练习:练习1.把下列普通方程化为参数方程。
(1)19422=+y x (2)116
2
2=+y x 练习2.把下列参数方程化为普通方程。
(3))(sin 5cos 3是参数ϕϕϕ⎩⎨⎧==y x (4))(sin 3cos 8是参数ϕϕ
ϕ⎩⎨⎧==y x
【变式训练】 如图:由椭圆 19
42
2=+y x 上的一点M 向x 轴作垂线,交x 轴于点N ,设P 是MN 的中点,求点P
的轨迹方程。
【例2】在椭圆4x2+9y2=36上一点M ,则M 到直线 l :x+2y-10=0
的距离最小,并求出最小距离.
分析1:平移直线至首次与椭圆相切,切点到直线的距离即为所
求。
()
222222sin cos sin cos sin b a b
b a a x b a x b x a +=+=
±+=±ϕϕϕ()2
22222sin cos cos sin cos b a b b a a x b a x b x a +=+=+=±ϕϕϕμa b =ϕtan a b =ϕtan
分析2:设5102y 423),,y 423(22-+-±=-±
y d y M 则
分析3:设5
10
sin 4cos 3),sin 2,cos 3(-+=ϕϕϕϕd M 则 总结:借助椭圆的参数方程,可以将椭圆上的任意一点的坐标用三角函数表示,利用三角知识加以解决。
【变式训练】:已知A,B 两点是椭圆
14
92
2=+y x 与坐标轴正半轴的两个焦点,在第一象限的椭圆弧上求一点P ,使四边
形OAPB 的面积最大
三、知识归纳
椭圆的参数方程为) (.
sin ,cos 为参数ϕϕϕ⎪⎩⎪⎨⎧==b y a x 四、课时作业
课时训练九:椭圆的参数方程。
五、课后反思:
本堂课中对涉及到代数变换、三角知识等及时进行了复习或提示,随时调整教学思路;用课外作业和课堂练习等方式收集反馈信息,通过观察学生完成作业情况,了解学生在知识技能和数学方法方面的收获和不足,为指导我今后教学提供依据,因而课堂气氛较活跃。
但在时间安排上把握不太好,在语言表达上还欠精简。