等差数列典型例题
- 格式:docx
- 大小:28.62 KB
- 文档页数:6
2023高考数学----等差等比数列的交汇问题规律方法与典型例题讲解【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例1.(2022·河南·一模(理))已知等比数列{}n a 的前n 项和为n S ,()121n n a S n *+=+∈N .(1)求数列{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项,,m k p d d d (其中,,m k p 是公差不为0的等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【解析】(1)当2n ≥时,由121n n a S +=+得:121n n a S −=+,11222n n n n n a a S S a +−∴−=−=,则13n n a a +=,{}n a 为等比数列,∴等比数列{}n a 的公比为3;当1n =时,2112121a S a =+=+,11321a a ∴=+,解得:11a =,()13n n a n −*∴=∈N(2)假设存在满足题意的3项,由(1)得:13nn a +=,又()11n n n a a n d +=++,1113323111n n n n n n a a d n n n −−+−−⋅∴===+++; ,,m k p d d d 成等比数列,2km p d d d ∴=⋅,即()()()2211224323234311111k m p m p m p m p k −−−+−⋅⋅⋅⋅=⋅=+++++, ,,m k p 成等差数列,2k m p ∴=+,()()()2224343111m p m p m p k +−+−⋅⋅∴=+++,()()()2111121k m p mp m p mp k ∴+=++=+++=++,整理可得:2k mp =,又222m p k +⎛⎫= ⎪⎝⎭,222224m p m mp p mp +++⎛⎫∴== ⎪⎝⎭, 即()20m p −=,解得:m p =,则m p k ==,与已知中,,m k p 是公差不为0的等差数列相矛盾,∴假设错误,即不存在满足题意的3项.例2.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,()12,2(1)N n n a n a n S n *=⋅=+⋅∈. (1)求数列{}n a 的通项公式;(2)判断数列231⎧⎫−⎨⎬+⎩⎭n n a n 中是否存在成等差数列的三项,并证明你的结论. 【解析】(1)N n *∈,2(1)n n n a n S ⋅=+⋅,则当2n ≥时,()12(1)−⋅−=+⋅n n n n S S n S ,即121−=⋅−n n S Sn n ,而121S =,因此,数列{}n S n 是公比为2的等比数列,则11221n n n S S n −=⋅=,即2n n S n =⋅,所以1(1)(1)22−+⋅==+⋅n nn n S a n n. (2)记231=−+nn n b a n ,由(1)知,123(1)2321−=−⋅+=−+n n n n n b n n ,不妨假设存在,,()<<m n p b b b m n p 三项成等差数列,则()2323232−=−+−n n m m p p ,因为(),,N m n p m n p *<<∈,所以1+≤n p ,令()()32N nnf n n *=−∈,则3()212⎡⎤⎛⎫=−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n nf n ,于是有()f n 对N n *∈是递增的,则()(1)≥+f p f n ,即113232++−≥−p p n n ,因此()1123232323232++−=−+−≥−+−n n m m p p m m n n ,即332n m m −≥−,其左边为负数,右边为正数,矛盾,所以数列231⎧⎫−⎨⎬+⎩⎭n n a n 中不存在成等差数列的三项. 例3.(2022·福建省福州华侨中学高三阶段练习)已知在正项等比数列{}n a 中13213,,22a a a 成等差数列,则2022202120202019a a a a +=+__________.【答案】9【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13213,,22a a a 成等差数列,所以31212322a a a ⨯=+,即211132a q a a q =+,又10a >,2230q q ∴−−=所以3q =或1q =−(不符合题意,舍去).所以20212020322202220211120192018202020191191a a a q a q q q q a a a q a q q ++===+=+++, 故答案为:9.例4.(2022·湖北·高三期中)已知{}n a 是等差数列,{}n b 是等比数列,n S 是数列{}n a 的前n 项和,1111S =,573b b =,则6326log a b =______. 【答案】−1【解析】因为{}n a 是等差数列,且n S 是数列{}n a 的前n 项和,所以()1111161111112a a S a +===,解得61a =,因为{}n b 是等比数列,所以25763b b b ==,则633261log log 13a b ==−. 故答案为:1−.例5.(2022·河南省淮阳中学模拟预测(理))已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______. 【答案】[)2,+∞【解析】因为9S ,5a ,1成等比数列,所以()192595992a a a S a +===,所以59a =,即149a d +=,即194a d =−.由20400S ≥,得()1201902094190400a d d d +=⨯−+≥,解得2d ≥,即{}n a 的公差d 的取值范围为[)2,+∞. 故答案为:[)2,+∞.例6.(2022·上海·华东师范大学第一附属中学高三阶段练习)已知等差数列{}n a 的公差d 不为零,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 的值可以是______. 【答案】12【解析】由题意知:{}n a 是首项为d ,公差为d ,且0d ≠的等差数列,{}n b 是首项为2d ,公比为q ,且01q <<的等比数列,∴()()()2222222123222222212323141411d d d a a a d b b b d d q d q q q d q q ++++===++++++++, 要使222123123a a ab b b ++++为正整数,即2141q q ++为正整数,∵01q <<,201q <<,∴2113q q <++<,设2141q q n ++=,()0n >,即1413n <<,即14143n <<, 又∵21414141n q q n==++,∴n 为正整数,则满足范围的n 的值有:5,6,7,8,9,10,11,12,13, 又221314124q q q n ⎛⎫++=++= ⎪⎝⎭,即111222q =−=−=−又由题意知:01q <<,且为有理数,∴12q =−8n =时,满足题意,此时:111112222q =−−−+=.故答案为:12.例7.(2022·贵州·顶效开发区顶兴学校高三期中(理))对于集合A ,B ,定义集合{|}A B x x A x B −=∈∉且. 己知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+.设数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将集合A B −的所有元素按从小到大依次排列构成一个新数列{}n c ,则数列{}n c 的前30项和30S =_________. 【答案】1632【解析】{}n b 为正项等比数列,则2221222n n n n n n b b b b q b q b q q ++=+⇒=+⇒=+,解得2q =或1q =−(舍),∴1122n nn b b −==;{}n a 为等差数列,则331222a a d =+=+,∴3d =,∴()41331n a n n =+−⋅=+.由231,*nn m b a m n m =⇒=+∈N 、,可得当2468n =、、、时,152185m =、、、, 故数列{}n c 的前30项包含数列{}n a 前33项除去数列{}n b 第2、4、6项,()3043331334166416322S +⨯+⨯=−−−=.故答案为:1632例8.(2022·全国·模拟预测(文))设数列{}n a ,{}n b 满足2n n a =,38n b n =−,则它们的公共项由小到大排列后组成新数列{}n c .在k c 和()1N*k c k +∈中插入k 个数构成一个新数列{}n e :1c ,1,2c ,3,5,3c ,7,9,11,4c ,…,插入的所有数构成首项为1,公差为2的等差数列,则数列{}n e 的前20项和20T =______. 【答案】1589【解析】2nn a =,∴数列{}n a 是以2首项,公比为2的等比数列,12a ∴=,24a =,38a =,416a =,因为38n b n =−,所以15b =−,22b =−,31b =,44b = 知1a 显然不是数列{}n b 中的项.424a b ==,2a ∴是数列{}n b 中的第4项,设2kk a =是数列{}n b 中的第m 项,则238(k m k =−、*N )m ∈.112222(38)616k k k a m m ++==⨯=−=−, 1k a +∴不是数列{}n b 中的项.222424(38)3(48)8k k k a m m ++==⨯=−=−−,2k a +∴是数列{}n b 中的项.21c a ∴=,42c a =,63c a =,⋯,2n n c a =,∴数列{}n c 的通项公式是224n n n c ==.因为12345520+++++=,所以{}n e 的前20项包括n c 的前5项,以及21n −的前15项,所以 1234520444441329T =++++++++()()5414129151589142−+⨯=+=−故答案为:1589.。
等差数列试题精选一、选择题:(每小题5分,计50分)1.等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )62.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)73.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .54.记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 2 5.等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8.已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9.如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项 二、填空题:(每小题5分,计20分)11设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a _____________.12.已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________13.已知数列的通项a n = -5n +2,则其前n 项和为S n = . 三、解答题:(15、16题各12分,其余题目各14分)14.等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.15.已知数列{}n a 是一个等差数列,且21a =,55a =-。
等差数列知识点、例题。
练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。
. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。
的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。
的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。
; 3__4,,,。
; __(2)2,-6,12,-20,30,。
; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。
等差数列典型例题一、选择题。
1.等差数列a的前n项和为Sn,若a₂=1. a₃=3.1则Sₐ=( )A. 12B.10C.8D.52. 已知(a) 为等差数列。
a₂+a=12则 a₃等于( )A.4B.5C.6D.73.设S是等差数列a的前 n项和,若 S₁=35. 则a=( )A.8B.7C.6D.54.记等差数列a的前n项和为S,若,S₂=4, S₄=20,则该数列的公差d=( )A.7B.6C.3D.25.等差数列{a}中, 已知a1=13,a2+a5=4,a n=33,则n为( )A.48B.49C.50D.516.等差数列{aₙ}中, a₁=1,a₃+a₃=14,其前n项和S,=100,则n=( )A.9B.10C.11D.127.设S₀是等差数列aₙ的前m项和,若a5a3=59则S9S2=()A.1B.-1C.2D.128.已知等差数列{a,}满足a1+a2+a5+⋯+a111=0则有( )A.a₁+aₙₐₓ>0B.α2+α1DC<0C.a₇+a₉₉=0D.a₅₁=519.如果a1,a2,⋯,a n为各项都大于零的等差数列,公差d≠0,则( )A.a₁a₃>a₄a₃B.aₙa₁<a₄a₅C.a1⃗⃗⃗⃗ +a6⃗⃗⃗⃗ >a4⃗⃗⃗⃗ +a5D.a₁₂₄“a₄₃10.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项二、填空题。
11.设数列a的首项a₁ =-7. 且满足aₙ₊₁=aₙ+2(n∈N).则a1+a2+⋯+a p=.12.已知[a₃]为等差数列。
a₃+a₃=22, a₄=7. 则:11= .13.已知数列的通项a=−5n+2则其前n项和为S₁= .三、解答题。
14. 等差数列{aₙ}的前m项和记为 SB.已知aₙ₀=30,a₂₀=50(1)求通项a。
(2)若S=242,求n。
高考数学-等差数列典型例题【例1】 在100以内有多少个能被7个整除的自然数?解 ∵100以内能被7整除的自然数构成一个等差数列,其中a 1=7,d =7,a n =98.代入a n =a 1+(n -1)d 中,有98=7+(n -1)·7解得n =14答 100以内有14个能被7整除的自然数.【例2】 在-1与7之间顺次插入三个数a ,b ,b 使这五个数成等差数列,求此数列.解 设这五个数组成的等差数列为{a n }由已知:a 1=-1,a 5=7∴7=-1+(5-1)d 解出d =2所求数列为:-1,1,3,5,7.【例3】 53122在等差数列-,-,-,-,…的相邻两项之间12插入一个数,使之组成一个新的等差数列,求新数列的通项.解 d =312 (5) d =d =34原数列的公差-=,所以新数列的公差′,期通项为--3212a n n n n =-+-=--534134234234()即 a =34n【例4】 在[1000,2000]内能被3整除且被4除余1的整数共有多少个? 解 设a n =3n ,b m =4m -3,n ,m ∈N令,则=-=为使为整数,令=,a =b 3n 4m 3n n m 3k n m ⇒-433m得n =4k -1(k ∈N),得{a n },{b m }中相同的项构成的数列{c n }的通项c n =12n -3(n ∈N).则在[1000,2000]内{c n }的项为84·12-3,85·12-3,…,166·12-3 ∴n =166-84+1=83 ∴共有83个数.【例5】 三个数成等差数列,其和为15,其平方和为83,求此三个数. 解 设三个数分别为x -d ,x ,x +d .则-+++-+++(x d)x (x d)=15(x d)x (x d)=83222⎧⎨⎩ 解得x =5,d =±2∴ 所求三个数为3、5、7或7、5、3说明 注意学习本题对三个成等差数列的数的设法.【例6】 已知a 、b 、c 成等差数列,求证:b +c ,c +a ,a +b 也成等差数列. 证 ∵a 、b 、c 成等差数列∴2b=a +c∴(b +c)+(a +b)=a +2b +c=a +(a +c)+c=2(a +c)∴b +c 、c +a 、a +b 成等差数列.说明 如果a 、b 、c 成等差数列,常化成2b =a +c 的形式去运用;反之,如果求证a 、b 、c 成等差数列,常改证2b=a +c .本例的意图即在让读者体会这一点.【例7】 a b a b 若、、成等差数列,且≠,求证:、、、不111a b cc 可能是等差数列.分析 直接证明a 、b 、c 不可能是等差数列,有关等差数列的知识较难运用,这时往往用反证法.证 假设a 、b 、c 是等差数列,则2b=a +c又∵、、成等差数列,∴,即=+.111211a b c b a c=+2ac b(a c) ∴2ac =b(a +c)=2b 2,b 2=ac .又∵ a 、b 、c 不为0,∴ a 、b 、c 为等比数列,又∴ a 、b 、c 为等差数列,∴ a 、b 、c 为常数列,与a ≠b 矛盾,∴ 假设是错误的.∴ a 、b 、c 不可能成等差数列.【例8】 解答下列各题:(1)已知等差数列{a n },a n ≠0,公差d ≠0,求证:①对任意k ∈N ,关于x 的方程a k x 2+2a k+1x +a k+2=0有一公共根;②若方程的另一根为,求证数列是等差数列;在△中,已知三边、、成等差数列,求证:、、也成等差数列.x (2)ABC a b c k {}cot cot cot 11222+x A B C k分析与解答(1)a k x 2+2a k+1x +a k+2=0∵{a n }为等差数列,∴2a k+1=a k +a k+2∴a k x 2+(a k +a k+2)x +a k+2=0∴(a k x +a k+2)(x +1)=0,a k ≠0∴=-或=- x 1x k a a x a a a a a a d k kk k kk k k k ++++=-=-=-22211112 ∵{a n }为等差数列,d 为不等于零的常数∴方程有一公共根-,数列是等差数列1{}11+x k(2)由条件得 2b=a +c∴4RsinB =2RsinA +2RsinC ,2sinB =sinA +sinC∴∵++=π∴∴4sin B 2cos B 2=2sin A +C 2cos A C 2A B C sin A +C 2=cos B 22sin B 2=cos A 2--C 分析至此,变形目标需明确,即要证2cot B 2=cot A 2cot C 2+ 由于目标是半角的余切形式,一般把切向弦转化,故有cot cot cos sin cos sin sin sin sin sin (cos cos )()cos sin sin cot A C A A C C A C A C A C A C A C B B B B 222222222212222222222+=+=+=+-+--=--=将条件代入 ∴、、成等差数列.cot A 2cot B 2cot C 2【例9】 若正数a 1,a 2,a 3,…a n+1成等差数列,求证:1111223111a a a a a a n a a n n n ++++++=+-+… 分析11111a a a a a a a a d n n n n n n n n +=--=--++++ 证明 设该数列的公差为d ,则a 1-a 2=a 2-a 3=…=a n -a n+1=-d∴a 1-a n+1=-nd∴-左式…d =a =a 11---+--++--+++a n a a a a a a a a a a a n n n n n 1212232311 =--=--=+=++++a a d a a a a nn a a n n n n 11111111右式 ∴ 原等式成立.【例10】 设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b b y b 234,,,均为等差数列,求.b b a a 4321-- 分析解 d =y x51(1)=y x52(2)可采用=由a a m na ab b m n----------21433264 (2)(1)÷,得b b a a 432183--=。
完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
数列专题一.等差数列练习题1.设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。
2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列3.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .514.首项为-24的等差数列,从第10项起开始为正数,则公差的范围是______。
5.如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么6.已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则公差为( )A .3或-3B .3或-1C .3D .-37.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.8.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-9.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.2410.设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 11.设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则12.{}n a 是公差为-2的等差数列,a 1+a 4+….. + a 97 =50,a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-8213.}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =14.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= 15.已知}{n a 为等差数列,a 1+a 8+ a 13+ a 18=100,求a 10= 16.已知数列{a n }的前n 项和S n =n (n -40),则下列判断正确的是( ) A.a 19>0,a 21<0B.a 20>0,a 21<0C.a 19<0,a 21>0D.a 19<0,a 20>017.等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n=18.等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
四年级等差数列【专题导引】和、差的变化规律见下表(m ≠0)一个加数(a ) 另一个加数(b ) 和(c ) ±m 不变 ±m 不变 ±m±m ±m m 不变【典型例题】【C 1】两个数相加,一个加数增加3,另一个加数减少3,和是否会起变化?【试一试】1、两个数相加,一个加数增加5,另一个加数减少5,和是否会起变化?2、两个数相加,一个加数减少6,另一个加数增加2,和是否会起变化?【C 2】如果a -b=20,那么a -(b -2)=20+( )。
【试一试】1、如果a -b=18,那么(a+2)-b=18+( )。
2、如果a -b=18,那么(a -2)-b=18-( )。
【B 1】两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【试一试】被减数(a )减数(b ) 差(c ) ±m 不变 ±m 不变 ±m m ±m±m不变 ++1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【B2【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?【B】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?3【试一试】(1)两数相减,如果被减数增加30,减数也增加30,差是否会起变化?(2)两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?1【试一试】(1)两数相减,被减数减少12,要使差增加8,减数应有什么变化?(2)两数相减,被减数减少36,要使差减少40,减数应有什么变化?】被减数、减数、差相加得2076,差是减数的一半。
高二数学
等差数列典型例题
【例1】 在100以内有多少个能被 7个整除的自然数?
解•/ 100以内能被7整除的自然数构成一个等差数列,其中 a 1 =7, d = 7, a n = 98
-
代入 a n = a 〔 + (n - 1)d 中,有 98= 7+ (n - 1) • 7 解得n = 14
答100以内有14个能被7整除的自然数.
【例2】 在—1与7之间顺次插入三个数 a , b , b 使这五个数成等差数列,
求此数列.
解 设这五个数组成的等差数列为 {a n } 由已知:a 〔 = — 1, = 7 ••• 7=— 1 + (5 — 1)d 解出 d = 2 所求数列为:—1 , 1, 3, 5, 7.
1 1
【例3】 在等差数列一5,— 3?,— 2,—
,…的相邻两项之间
插入一个数,使之组成一个新的等差数列,求新数列的通项.
3
3 23
a n 5 (n 1)
n
4
4 4 即a n
=3 23
n
4 4
【例
4】 在[1000 , 2000]内能被
解 设 a n =3n , b m = 4m — 3, n , m € N
令a n = b m ,则 3n = 4m — 3
n = 一3 为使 n 为整数,令 m = 3k ,
3
得n = 4k — 1(k € N),得{a n } , {b m }中相同的项构成的数列{c n }的通项c n = 12n
—3(n € N).
则在[1000 , 2000]内{c n }的项为 84 • 12 — 3, 85 • 12— 3,…,166 • 12— 3
••• n = 166 — 84+ 仁83 二共有 83 个数.
1
解原数列的公差d= 3
2
1 3 2
d =-,期通项为 2 4
3
(-5)=-,所以新数列的公差d
3整除且被 4除余1的整数共有多少个?
【例5】三个数成等差数列,其和为15,其平方和为83,求此三个数.
解设三个数分别为x—d, x, x+ d.
r (x —d) + x+ (x + d) = 15
则
(x —d)2+ x2+ (x + d)2 = 83
解得x= 5, d =± 2
•所求三个数为3、5、7或7、5、3
说明注意学习本题对三个成等差数列的数的设法.
【例6】已知a、b、c成等差数列,求证:b+ c, c+ a, a+ b也成等差数列.
证■/ a、b、c成等差数列
• 2b=a + c
•- (b + c) + (a+ b) = a+ 2b + c
=a+ (a+ c) + c
=2(a + c)
• b+ c、c+ a、a+ b成等差数列.
说明如果a、b、c成等差数列,常化成2b = a+ c的形式去运用;反之,如果求证
a、b、c成等差数列,常改证2b=a + c.本例的意图即在让读者体会这一点.
1 1 1
【例7】若-、一、-成等差数列,且b,求证:a、b、c、不a b c
可能是等差数列.
分析直接证明a、b、c不可能是等差数列,有关等差数列的知识较难运用,这时往往用反证法.
证假设a、b、c是等差数列,则2b=a+ c
1 1 1
又•••丄、11成等差数列,
a b c
2 1 1
…,即2ac= b(a+ c).
b a c
• 2ac= b(a+ c)=2b2, b2= ac.
又T a、b、c不为0,
• a、b、c为等比数列,
又• a、b、c为等差数列,
• a、b、c为常数列,与b矛盾,
•假设是错误的.
• a、b、c不可能成等差数列.
【例8】解答下列各题:
(1)已知等差数列{a n} , a n丰0,公差d丰0,求证:
①对任意k € N,关于x的方程
akX2+ 2ak+1 x+ ak+2 = 0 有一公共根;
⑵在△ ABC 中,已知三边a 、b 、c 成等差数列,求证:
B C
cot 、cot 也成等差数列.
2 2
分析与解答
(1)a k x2
+ 2a k+i x + a k+2 = 0 •••
{a
n }为等差数列,••• 2a k+1 = a k + a k+2
二 a
kX 2
+(a
k + a
k+2)x + ak+2
= 0
•(a k x + a k+2)(x + I =0, ak M 0
• x = — 1或 x k = 1 1
a k 2
a k
a k
a k
a k a k 2 2d
d 为不等于零的常数
1
•方程有一公共根—1,数列{—「}是等差数列
1 X k
⑵由条件得 2b=a + c
• 4Rs inB = 2Rs inA + 2Rsi nC , 2sinB = si nA + si nC
B B A +
C AC
…4sin cos = 2sin
cos -
2 2 2 2
B =cos —
2 B A C
• 2sin 2 =cos 丁
分析至此,变形目标需明确,即要证
B A
C 2cot = cot + cot —
2 2
2
I X k 1 a
k 2 a k
••• {a n }为等差数列,
②若方程的另一根为 X k ,求证数列
{彳
1
切是等差数列;
A cot —、 2
sin A +C
2
由于目标是半角的余切形式,一般把切向弦转化,故有
【例10】设x丰y,且两数列x, a「
a2,a3,y和b1,x,
A C cot cot —2 2
A
cos—
___ 2
A
sin
2
C
cos$
C
sin
2
A
sin —
2
A C si
n—
A C
sin sin
2 2
1 A C
(cos—
2 2
B
2 cos— 2
B
sin 2 si n
2 2
ABC
••• cot —、cot -、cot —成等差数列.
2 2 2 (将条件代入)
A C
cos 2 )
B
2 cot -
2
【例9】右正数a〔,a?,
83,
:.ai a2分析:a2. a3
a
d
…a n+1成等差数列,求证:
a
n
a
n 1
1
a
证明
..a n -:;a n 1
设该数列的公差为d,则
ai —a2=a2 —a3 =••• =a n —a n+1 = —
d
…a1 一a n+1 = _ nd
a 1 a
n 1
••— d =
n
左式-占1 W2.a2 a3
a2 a3 a n a n 1
d
弩a1
W a n 1
a1a n 1
n
n
;a1..a n 1右式
'■/ a1 订a n 1
【例10】
设x 丰y ,且两数列x , a 「
a
2, a 3, y 和 b 1, x ,
a 2 a 1 y x 解由
——1 = 3 2 5 1 b 4 b 3 = y x 6 4=52
b 2, b 3, y , b 4均为等差数列,求
b 4 b 3 a ? a i
分析可采用d =
a n
n
(2) 一(1),得
b 4 a 2
b a a i
(1)
⑵。