七年级下册数学知识点归纳
- 格式:doc
- 大小:62.00 KB
- 文档页数:6
【导语】学习效率的⾼低,是⼀个学⽣综合学习能⼒的体现。
在学⽣时代,学习效率的⾼低主要对学习成绩产⽣影响。
当⼀个⼈进⼊社会之后,还要在⼯作中不断学习新的知识和技能,这时候,⼀个⼈学习效率的⾼低则会影响他(或她)的⼯作成绩,继⽽影响他的事业和前途。
可见,在中学阶段就养成好的学习习惯,拥有较⾼的学习效率,对⼈⼀⽣的发展都⼤有益处。
下⾯是为您整理的《七年级数学下册知识总结》,仅供⼤家参考。
【篇⼀】七年级数学下册知识总结 1、整式的乘除的公式运⽤(六条)及逆运⽤(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p== 2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平⽅差公式:(a+b)(a-b)= 完全平⽅公式:(a+b)2(a-b)2 常⽤公式:(x+m)(x+n)= 4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余⾓和互为补⾓和 6、两直线平⾏的条件:(⾓的关系线的平⾏) ①相等,两直线平⾏; ②相等,两直线平⾏; ③互补,两直线平⾏. 7、平⾏线的性质:两直线平⾏。
(线的平⾏ 8、能判别变量中的⾃变量和因变量,会列列关系式(因变量=⾃变量与常量的关系) 9、变量中的图象法,注意:(1)横、纵坐标的对象。
(2)起点、终点不同表⽰什么意义(3)图象交点表⽰什么意义(4)会求平均值。
10、三⾓形 (1)三边关系:⾓的关系) (2)内⾓关系: (3)三⾓形的三条重要线段: (4)三⾓形全等的判别⽅法:(注意:公共边、边的公共部分对顶⾓、公共⾓、⾓的公共部分) (5)全等三⾓形的性质: (6)等腰三⾓形:(a)知边求边、周长⽅法(b)知⾓求⾓⽅法(c)三线合⼀: (7)等边三⾓形: 11、会判轴对称图形,会根据画对称图形,(或在⽅格中画) 12、常见的轴对称图形有: 13、(1)等腰三⾓形:对称轴,性质 (2)线段:对称轴,性质 (3)⾓:对称轴,性质 14、尺规作图:(1)作⼀线段等已知线段(2)作⾓已知⾓(3)作线段垂直平分线 (4)作⾓的平分线(5)作三⾓形 15、事件的分类:,会求各种事件的概率 (1)摸球:P(摸某种球)= (2)摸牌:P(摸某种牌)= (3)转盘:P(指向某个区域)= (4)抛骰⼦:P(抛出某个点数)= (5)⽅格(⾯积):P(停留某个区域)= 16、必然事件不可能事件,不确定事件 17、⽅法归纳:(1)求边相等可以利⽤ (2)求⾓相等可以利⽤。
人教版七年级数学下册各单元知识点汇总第五章相交线与平行线5.1 相交线邻补角、对顶角对顶角相等直线a与直线b互相垂直,记作a b。
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
在同一平面内,过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
同位角、内错角、同旁内角5.2 平行线及其判定5.2.1 平行线在同一平面内,当直线a与直线b不相交时,我们就说直线a与直线b互相平行,记作//a b. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果b a,c a,那么b c.5.2.2 平行线的判定判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
同位角相等,两直线平行。
判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
内错角相等,两直线平行。
判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
同旁内角互补,两直线平行。
5.3 平行线的性质5.3.1 平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
两直线平行,同旁内角互补。
5.3.2 命题、定理、证明判断一件事情的语句,叫做命题命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题通常可以写成“如果……那么……”的形式,这时“如果”后的部分是题设,“那么”后接的部分是结论。
如果题设成立,那么结论一定成立,这样的命题叫做真命题。
题设成立时,不能保证结论一定成立,这样的命题中做假命题。
一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
江苏初中七年级数学下册知识点
1. 同数代数运算
- 同数的加法和减法运算
- 同数的乘法和除法运算
- 同数的混合运算
2. 数轴与相反数
- 数轴的表示和使用方法
- 正数、负数和零在数轴上的表示
- 相反数的概念和计算方法
3. 数的大小比较
- 正整数、负整数和零之间的大小比较
- 小数的大小比较
- 小数与整数的大小比较
4. 有理数的加法和减法
- 同号有理数的加法和减法
- 异号有理数的加法和减法
- 有理数混合运算的步骤和方法
5. 有理数的乘法和除法
- 有理数的乘法和除法的基本概念- 同号有理数的乘法和除法
- 异号有理数的乘法和除法
- 有理数乘法与除法的运算法则
6. 百分数
- 百分数的概念和表示方法
- 百分号的意义和读法
- 百分数与分数之间的转换方法
7. 线段和角
- 线段的定义和性质
- 角的定义和表示
- 线段和角的度量单位
8. 平行线和平行四边形
- 平行线的定义和判定方法
- 平行四边形的定义和性质
- 平行四边形的判定方法
9. 直角三角形
- 直角三角形的定义和性质
- 斜边、直角边和斜角的概念
- 直角三角形的求解方法
10. 定义域和值域
- 函数的定义和基本概念
- 定义域和值域的意义和计算方法
- 函数定义域和值域的图示表示方法
以上是江苏初中七年级数学下册的知识点总结,希望能对同学们的学习有所帮助。
初一下学期的数学知识点主要包括以下几个方面:
1. 有理数:有理数是可以表示为两个整数的比的数,包括整数和分数。
学生需要掌握有理数的四则运算,包括加法、减法、乘法和除法。
2. 整式的加减:整式是由常数、变量、加、减、乘等运算符号组成的代数式。
学生需要学会整式的合并同类项和去括号等基本运算。
3. 一元一次方程:一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
学生需要掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤。
4. 图形初步认识:学生需要初步认识线段、角、相交线、平行线等基本图形,了解它们的基本性质和判定方法。
5. 数据的收集与整理:学生需要学会如何收集、整理和描述数据,包括数据的分类、频数、频率、直方图等基本概念和方法。
以上是初一下学期数学的主要知识点,通过学习这些知识点,学生可以打下坚实的数学基础,为后续的数学学习做好准备。
级下册数学笔记整理级数学知识点归纳(上下册)基础教育热门TOP1000开通VIP低至0。
3元、天级数学知识点归纳(上下册)第一章有理数1、1正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0a是正数;a≥0a是正数或0a是非负数;a<0a是负数;a≤0a是负数或0a是非正数。
1、2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:有理数⎩⎩⎩正有理数{正整数正分数零负有理数{负整数负分数有理数⎩⎩⎩整数⎩⎩⎩正整数零负整数分数{正分数负分数(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(6)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a的相反数是-a;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0;(即相反数之和为0)(11)a、b互为相反数或;(即相反数之商为-1)(12)a、b互为相反数,a,=,b,;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a的点到原点的距离叫做a的绝对值;(,a,≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:∣∣a∣∣=⎩⎩⎩a(a>0)0(a=0)−a(a<0)(16)a∣∣a∣∣=1⇔a>0;a∣∣a∣∣=−1⇔a<0;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
新人教版七年级下册数学知识点整理的两个角叫做同位角,它们的度数相等。
②在两条直线(被截线)的异侧,都在第三条直线(截线)的同一侧,这样的两个角叫做内错角,它们的度数相等。
③在两条直线(被截线)的同一侧,都在第三条直线(截线)的同一侧,这样的两个角叫做同旁内角,它们的度数互补。
7、平移是指在平面内,将一个图形沿着某个方向按照某个距离移动,移动后的图形与原图形形状、大小、方向都相同。
平移的性质:平移不改变图形的形状、大小和方向,只改变图形的位置。
本文介绍了平面几何中的角度和平行线的相关概念和性质。
其中,角度分为同位角、内错角和同旁内角,平行线的判定包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两条直线互相平行。
此外,文章还介绍了命题和定理的概念,以及平移变换的性质。
最后,文章对实数进行了分类,包括按定义分类和按性质符号分类。
科学记数法是一种将数表示为(1≤<10,n为整数)形式的记数方法。
平面直角坐标系由有序数对和两条互相垂直且有公共原点的数轴组成。
其中,有序数对是有顺序的两个数a与b组成的数对,记做(a,b)。
横轴是水平的数轴,也称为x轴或横轴;纵轴是竖直的数轴,也称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
坐标轴上的点不在任何一个象限内,而两条坐标轴将平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点有特殊的坐标特点,如x轴正半轴上的点的坐标为(a,0),y轴负半轴上的点的坐标为(0,-b)。
点P(a,b)到x 轴的距离是|b|,到y轴的距离是|a|。
对称点的坐标特点包括:关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
七年级下册数学知识点总结七年级下册的数学知识点分为多个模块,包括有分式与小数、比例与相似、平面几何、数据的收集、整式的加减乘除等,下面将对这些知识点进行详细的总结。
一、分式与小数1.1 分数的概念与用法分数由分子和分母组成,表示分子除以分母的值。
在进行分数的乘、除、加、减等运算时,将分数化为相同分母的通分数后再进行运算。
小数是数的一种表现形式,也可表示分数,比如$0.5$ 表示 $\frac{1}{2}$。
1.2 分数的混合运算混合运算指的是含有加减乘除多个运算符的运算。
在进行分数的混合运算时,先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。
1.3 分数的约分和通分分数的约分是指将分数的分子和分母同时除以一个相同的数,使得分子和分母互质,达到简化分数的目的。
通分是指将不同分母的两个或多个分数化为相同分母的分数,便于进行加减法运算。
1.4 小数的四则运算小数的四则运算和整数的四则运算类似,同样包括加、减、乘、除运算。
在进行小数的除法运算时,可以将被除数和除数乘以同一个倍数,使得除数化为整数,然后再进行运算。
二、比例与相似2.1 比例的概念和性质比例是指两个数的比相等的关系,通常用 $a:b$ 表示,其中$a$ 和 $b$ 都是有理数。
比例的性质包括反比例、比例的倒数、交叉乘积相等等。
2.2 相似的概念和判定相似是指两个形状相似的图形,它们的对应角度相等,对应边成比例,对应点的距离也成比例。
当两个图形相似时,它们的面积之比等于它们对应边的平方之比。
2.3 相似三角形的应用相似三角形广泛应用于衡量远离物体的高度、河流的宽度等问题。
通过计算物体到地面的距离和观察点到物体的角度,可以通过相似三角形计算出物体的高度。
三、平面几何3.1 角的概念和分类角是指由两条射线或线段以一个公共的端点所组成的图形,在平面几何中应用广泛。
根据角的大小和形状,可以将角分为钝角、直角、锐角等多种类别。
3.2 直线和平面的性质直线和平面是平面几何中最基本的图形,它们有许多独特的性质。
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
七年级数学下册知识点一、数的基本概念1、定义整数:整数是阿拉伯数字0,1,2,3,4,5,6,7,8,9组成的数字,如123、-10、0。
2、正数和负数:正数是由阿拉伯数字0-9组成的数字,其值是大于(或等于)0的数,如5、27、128等;负数是由带有“-”符号的正数组成,其值是小于0的数,如:-13、-20、-101等。
3、有理数:有理数是分数、小数及其整数倍构成的数。
所有正数和负数都是有理数,小数也是有理数。
二、算术运算1、加法运算:给出一组数,用“+”号连接,将数从左往右从低位数到高位数依次相加,将他们的和称为加法运算,如365+54=419。
2、减法运算:给出一组数,用“-”号连接,将被减数从左右从低位数到高位数依次减去减数,所得的差称为减法运算,如675-255=420。
3、乘法运算:给出一组数,用“乘号”“×”连接,将两个乘数的各个位的数相乘,加起来的积称为乘法运算,如765×43=32995。
4、除法运算:给出一组数,用“除号”“÷”连接,将被除数依次除以除数,所得的结果称为除法运算,如945÷5=189。
三、因式分解1、定义:因式分解是将一个多项式拆分为一系列单项式的乘积,每一系列单项式称为一个因子,例如:3x2+9x -4=(3x+4)×(x-1)。
2、目的:通过因式分解,可以将一个复杂的表达式简化,使其表达的更加清晰明了,也可以使算式更容易求解。
3、步骤:(1)列出多项式并将因式分子写成原因式。
(2)左右分别拆分因式成为两个不包括系数,最高次幂小于等于一的多项式;(3)将拆出来的因式乘起来,检验积与原式是否相等。
四、分式1、定义:分式是无限小数与一个正整数(或零)的比值标准表示法,由一个带有分子(分母为1的无限小数)和分母构成,如5/4表示5与4的比率,是一个分数。
2、形式:分式的形式可以是真分式、假分式、互分式以及真分数,当分子和分母皆为整数时为真分数。
初中数学七年级下册知识点总结初中数学七年级下册知识点总结在学习中,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
还在为没有系统的知识点而发愁吗?下面是店铺为大家整理的初中数学七年级下册知识点总结,欢迎阅读,希望大家能够喜欢。
初中数学七年级下册知识点总结1第一章整式的运算一、整式※1、单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
③一个单项式中,所有字母的指数和叫做这个单项式的次数。
※2、多项式①几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项。
其中,不含字母的项叫做常数项。
一个多项式中,次数最高项的次数,叫做这个多项式的次数。
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。
多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。
多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
※3、整式单项式和多项式统称为整式。
二、整式的加减¤1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
¤2、括号前面是"-"号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
三、同底数幂的乘法※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)四、幂的乘方与积的乘方※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
数学七年级下册知识点归纳一、整数与分数1. 整数- 整数的加法与减法- 整数的乘法与除法- 整数的性质与比较大小- 正整数、负整数和零- 整数的四则混合运算2. 分数- 分数的定义与表示- 分数的加法与减法- 分数的乘法与除法- 分数的化简与简化- 分数与整数的互化- 真分数与假分数二、小数与百分数1. 小数- 小数的表示与读法- 小数的加法与减法- 小数的乘法与除法- 小数的四则混合运算- 小数点的移动与小数大小的关系2. 百分数- 百分数的意义与表示- 百分数与小数、分数的互化- 百分数的实际应用(如利率、折扣等)三、比例与比例关系1. 比例- 比例的概念与表示- 比例的性质- 比例的计算2. 比例关系- 直接比例与反比例- 比例关系的应用问题- 比例尺与地图、图纸的比例关系四、代数初步1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的基本运算2. 一元一次方程- 方程的概念与解法- 方程的解的检验- 方程在实际问题中的应用五、几何图形1. 平面图形- 点、线、面的基本性质- 角的概念与分类- 三角形的基本性质与分类- 四边形的基本性质与分类2. 圆的基本性质- 圆的定义与性质- 圆的周长与面积公式- 扇形与弧长六、数据的收集与处理1. 统计- 数据的收集方法- 频数与频率- 统计表与统计图2. 概率- 随机事件与概率的初步概念- 简单事件的概率计算七、解题技巧与策略1. 审题与分析- 如何准确理解题目要求- 分析问题,寻找解题思路2. 常见解题方法- 列举法- 逆推法- 画图法- 假设法请注意,以上内容是一个基本的框架,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应根据实际情况进行调整和补充。
七年级下册
第五章相交线与平行线
一、知识结构图
相交线
相交线垂线
同位角、内错角、同旁内角
平行线
平行线及其判定平行线的判定
平行线的性质
平移命题、定理
二、知识定义
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质
对顶角的性质:对顶角相等。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
1
平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章实数
【自然数】表示物体个数的1、2、3、4•••等都称为自然数
【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】
【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式
【无理式】根号下含有字母的代数式叫做无理式
【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式
【分式】除式中含字母的有理式叫分式
2
第七章平面直角坐标系
一、知识结构图
有序数对
平面直角坐标系
平面直角坐标系
用坐标表示地理位置
坐标方法的简单应用
用坐标表示平移
二、知识定义
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
第八章二元一次方程组
3
4 二、知识定义
二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是 ax+by=c(a ≠0,b ≠0)。
二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
第九章 不等式与不等式组
一、知识结构图
设未知数,列不等式(组)
解
不
等
式
检验
二、知识定义
不等式:一般地,用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
不等式的解:使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
三、定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
第十章数据的收集、整理与描述
一、知识结构图
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查。
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
5
6。