座椅设计及人机工程学分析
- 格式:doc
- 大小:1.90 MB
- 文档页数:14
座椅人机工程分析座椅人机工程分析是一种综合研究方法,它将人类认知心理学、工程学、人体工学、运动学、生物力学等多个学科有机结合,以人为基础,以座椅作为载体,通过科学的手段探究人与座椅之间的相互作用及其对人的影响,从而为座椅的设计和开发提供科学依据。
座椅人机工程分析的研究内容主要包括:人体形态与运动特征、人体生理计量学、座椅体验感和舒适度、座椅的支撑力和稳定性、座椅的调节可靠性和可操作性等。
1. 人体形态与运动特征人体形态与运动特征是座椅人机工程分析研究的重要组成部分。
通过对人体形态、肌肉组织等方面的研究,可以为座椅的设计提供重要参考。
例如,不同身高的人在坐姿时需要的座椅高度、座椅前沿的扶手高度等都不同,设计合适的座椅角度和高度能够使人在长时间的使用过程中感到轻松和舒适。
2. 人体生理计量学在座椅人机工程分析中,人体生理计量学是指研究人体各项参数和生理反应的科学方法。
例如,对人的身体负荷进行量化可以获得不同体型和运动方式下各种身体部位所承受的负荷大小和部位,进而为座椅的设计提供科学依据。
另外,还可以通过生理学测试,获得关于人体反应的详细信息,例如人的视觉反应时间、手部反应能力等,这些信息可以帮助设计师优化座椅的设计,以适应用户的个体差异。
3. 座椅体验感和舒适度座椅体验感和舒适度是座椅人机工程分析的重要研究内容。
通过对座椅的体验感和舒适度进行分析,可以了解人体的感觉和满意程度,以便制定更好的座椅设计方案。
例如,座椅表面的材料和织物的质量和平稳性可以影响人们的感受,粗糙表面给人以不适的感觉,容易让人产生瘙痒等不适感。
而各类座垫、椅背的设计,更是提高座椅的基础舒适度的原因。
4. 座椅的支撑力和稳定性座椅的支撑力和稳定性,主要是指座椅的支撑力和稳定性,座椅的支撑力可以是人体重量在座椅上分布均衡,以减少人体在座椅上产生不适的感觉。
而座椅的稳定性则是指座椅在使用中的平衡性,以及座椅在众多动态能力的负载瞬间内,保持安全、平稳和运动平衡。
人体工程学与座椅设计一、坐姿分析1.坐姿的优势和缺点(1)优点a.可免去站立时人体的足踝、膝部、臀部和脊椎等关节部位受到静肌力,减少人体能耗,排除疲劳b.坐姿比站立更有利于血液循环c.有利于维持躯体的稳固,这对精细作业更适d.在脚操作场合,坐姿维持躯体处在稳固的姿势,有利于作业。
(2)缺点a.限制了人体活动范围,尤其是需要上肢出力的场合,往往需要站立作业,而频繁的起坐交替也会致使废劳。
b.长期维持坐姿也会阻碍人体健康,招致腹肌松弛,脊椎非正常弯曲,和对某些内脏器官造成损害,如消化器官与呼吸器官c.坐姿太久也会造成下肢肿胀,静脉压力增加.大腿局部受到压力,增加血液回流阻力,引发不适感。
(1)正常的姿势下,脊柱的腰椎部分前凸,而至骶骨时则后凹。
在良好的坐姿状态下,压力适当地分布于各椎间盘上,肌肉组织上承受均匀的静负荷。
(2)当处于非自然姿时,椎间盘内压力散布不正常,形成的压力梯度,严峻的会将椎间盘从腰椎之间挤出来,压迫中枢神,产生腰部酸痛、疲劳等不适感。
躯干完全挺直的坐姿使脊椎严峻弯曲,因椎间盘上压力不能正常散布,躯体上部的负荷加在腰椎部,引发不适,因此90度角的靠背椅是不良的设计,躯干前倾的姿势会使本来前凸的腰椎拉直乃至反向后凹,这种姿势因此也极不舒畅,阻碍了胸椎和颈椎的正常弯曲,使颈、背部疲劳➢故良好的坐姿:腰与大腿成135度,腰椎部有支撑F E D C B AG3.肌肉活动度脊椎骨依据其周围的肌肉和腱连接,椎骨的定位正是借助于肌腱的作使劲。
一旦脊椎偏离自然状态,肌腱组织就会受到彼此压力(拉或压)的作用,使肌肉活动度增加,招致疲劳酸痛。
3组不同坐姿的2-3腰椎背棘直肌肌电图在挺直坐姿下,腰椎部位肌肉活动度高,因为腰椎前向拉直使肌肉组织紧张受力。
提供靠背支承腰椎后,活动力则明显减小;躯干前倾时,背上方和肩部肌肉活动度高,以桌面作为前倾时手臂的支承并不能降低活动度。
根据矫形学原理和肌肉活动度分析可得出下列结论:A躯干挺直或前倾的坐姿很容易引起疲劳B 设置适当的靠背可使疲劳降低C 大于90度的靠背可防止骨盆的旋转,增加坐姿稳定性且使坐姿更接近自然状态二.座椅设计(一)设计原则和分类1. 座椅的形式与尺度及其功用有关2.座椅的尺度必须参照人体测量学数据确定3. 身体的主要重量应由臀部坐骨结节承担4. 座椅前缘处,大腿与椅子之间压力应尽量减小5. 腰椎下部应提供支承,设置适当的靠背以降低背部紧张度6. 椅垫必须有足够的垫料和适当的硬度,使其有助于体重压力均匀地分布于坐骨结节区域(二)当考虑坐姿动机时,座椅大体分为三类:1.休息为目的的安乐椅设计重点在于使人体得到最大的舒适感,消除身体的紧张与疲劳。
汽车座椅设计与人机工程学的研究作为现代交通工具的重要组成部分,汽车在我们的日常生活中发挥着极其重要的作用。
然而,长时间的驾驶可能会对司机和乘客的身体健康产生一定的影响。
因此,汽车座椅的设计变得尤为重要。
本文将探讨汽车座椅设计与人机工程学的研究,以期改善驾驶者和乘客的舒适度和安全性。
人机工程学是研究人类与机器相互作用的学科。
在汽车座椅设计中,人机工程学的原则可以帮助汽车制造商设计出符合人体工程学原理的座椅,提供更好的驾驶体验。
首先,一个好的汽车座椅应该具备良好的支撑性。
驾驶者长时间坐在座椅上,缺乏足够的支撑会导致脊柱曲度不正,引发腰椎疼痛和疲劳。
因此,座椅需要有适当的弧度和支撑结构,以保持驾驶者的自然姿势。
其次,座椅的舒适性也是一个重要的考虑因素。
舒适的座椅能减少驾驶者的疲劳感,提高对路况的注意力。
座椅的软硬度、支撑点的位置和材料的选择都会对舒适度产生影响。
例如,座椅背部通常应该具有适当的柔软度,以提供舒适的支撑。
而座椅底部则需要有适当的硬度,以保持合适的姿势。
此外,座椅的调整功能也是关键。
不同人高、体型各异,因此座椅需要具备能够调整的选项,以适应不同驾驶者的需求。
座椅高度、坡度和倾斜角度的调节功能,可以帮助驾驶者找到最符合自己身体特征的座椅位置,避免不必要的疲劳和不适感。
还有一个重要的考虑因素是座椅的安全性。
在发生碰撞时,座椅需要能够提供足够的保护,减轻驾驶者和乘客的受伤程度。
因此,座椅材料和结构的选择要能够吸收冲击力并稳定身体位置。
同时,座椅还应该具备安全带的固定点和适当的头枕设计,以确保乘车时的安全性。
除了上述因素外,座椅的通风和加热功能也值得考虑。
在夏季,高温下长时间坐在汽车上会让人感到闷热不适,而在冬季,冷座椅也会给驾驶者带来不便。
通过在座椅上加入通风和加热功能,可以提供更加舒适的驾驶环境。
综上所述,汽车座椅设计与人机工程学的研究是为了提供更佳的驾驶体验和舒适度。
良好的座椅设计需要考虑到支撑性、舒适性、调整功能、安全性以及通风和加热功能等方面。
基于人机工程学的汽车座椅设计研究1. 引言1.1 背景介绍随着科技的不断进步,汽车座椅设计越来越注重人体工学原理,以确保座椅能够最大限度地适应不同体型乘坐者的需求,降低乘坐者在行驶中的疲劳感。
人体工程学指导原则也成为设计师们制定设计方案的重要依据,从而提高汽车座椅的人性化设计水平。
本文将通过探讨人机工程学在汽车座椅设计中的应用、汽车座椅设计中的人体工学原理、以及基于人机工程学的汽车座椅设计实践案例,来深入探讨汽车座椅设计的现状及未来发展趋势。
1.2 研究意义汽车座椅是汽车内部最重要的部件之一,直接影响驾驶员和乘客的舒适度、安全性和健康。
通过人机工程学的研究和应用来设计汽车座椅具有重要的意义。
合理的汽车座椅设计可以提高驾驶员和乘客的舒适性,减轻长时间驾驶或乘坐过程中的疲劳感。
舒适的座椅设计可以减少背部、颈部和腰部的疲劳,提高驾驶员的注意力和反应速度,从而提升驾驶安全性。
人机工程学在汽车座椅设计中的应用可以减少因长时间错误的坐姿导致的健康问题,如脊柱疾病、颈椎病等。
通过科学的座椅设计,可以减少身体的不适,保护驾驶员和乘客的健康。
基于人机工程学的汽车座椅设计研究对于提高驾驶员和乘客的舒适性、安全性和健康至关重要。
通过深入研究和应用人体工学原理,可以不断改进汽车座椅的设计,为驾驶员和乘客提供更好的出行体验和保障。
1.3 研究目的本研究旨在探讨基于人机工程学的汽车座椅设计,旨在通过对汽车座椅设计中人机工程学原理的研究和应用,提高汽车座椅的舒适性、安全性和人体健康性,为驾驶员和乘客提供更好的乘坐体验。
具体目的包括:1. 分析人机工程学在汽车座椅设计中的重要性和应用价值;2. 探讨汽车座椅设计中的人体工学原理,为汽车座椅设计提供科学依据;3. 归纳总结汽车座椅设计中的人体工程学指导原则,为设计者提供实践指导;4. 分析并总结基于人机工程学的汽车座椅设计实践案例,为设计者提供借鉴和参考;5. 展望未来汽车座椅设计的发展趋势,探讨未来人机工程学在汽车座椅设计中的应用前景。
人机工程学在沙发椅设计中的应用与优化探究人机工程学是一门研究人体工作和生活环境之间的最佳匹配关系的学科,旨在改善人的舒适度、安全性和效率。
在沙发椅设计中,人机工程学也发挥着重要的作用。
本文将探讨人机工程学在沙发椅设计中的应用与优化。
首先,人机工程学在沙发椅设计中的应用包括人体工学原理的应用、座椅结构的优化以及材料选择的考虑。
人体工学原理是人机工程学的核心概念之一,它通过研究人体的生理和心理特征,来确定设计师应该如何设计沙发椅以满足人们的需求。
例如,根据人体脊椎的生理曲线,设计师可以使用曲线形状的背部支撑来提供良好的腰部支撑,保持人的脊柱正常弯曲,并避免腰部疼痛。
此外,考虑到不同体型的人群,沙发椅的座位高度、宽度和深度等也需要进行合理的设计,以适应不同身高和体型的人使用。
座椅结构的优化是人机工程学在沙发椅设计中另一个重要的应用方面。
良好的座椅结构能够提供稳定的支撑力和舒适的坐姿。
例如,合理的座位倾斜角度和腿部支撑结构可以促进血液循环,减轻腿部压力和疲劳感。
此外,沙发椅的座椅结构还应考虑到人体的自然姿势,并通过合理的曲线设计来提供充分的支撑和适当的弹性,以减少脊柱的压力。
材料选择也是人机工程学在沙发椅设计中需要考虑的重要因素。
柔软且透气的材料可以提供舒适的坐感,并允许空气流通,避免椅面过热和潮湿。
此外,对于椅背和扶手等部分,抗菌材料的使用可以减少细菌滋生,保持沙发椅的卫生。
在优化沙发椅设计中,人机工程学还强调以下几个方面:可调节性、安全性和美学性。
可调节性是指沙发椅具备适应不同用户需求的能力。
可调节的背倾斜角度和座位高度等可以帮助用户找到最舒适的坐姿。
可调节性还可以提供更大的灵活性,使沙发椅适用于多种场合和使用者。
安全性是人机工程学在沙发椅设计中另一个重要的考虑因素。
沙发椅的结构应能够提供稳定的支撑力,避免翻倒和滑动的风险。
此外,使用环保和抗火材料可以保障用户的安全和健康。
除了功能性和安全性,沙发椅的美学性也应纳入设计考虑。
办公座椅设计中人体工程学分析随着现代办公方式的普及,办公座椅的设计越来越受到人们的。
人体工程学在办公座椅设计中的应用,不仅可以提高员工的工作效率,还可以有效避免长时间坐姿工作带来的身体不适。
本文将从人体工程学的角度,对办公座椅设计进行分析和探讨。
人体工程学是一门研究人与机器、环境之间相互关系的学科,其目的是使这种关系更加和谐。
在办公座椅设计中,人体工程学的应用至关重要。
良好的办公座椅设计可以适应员工的身体需求,提高工作效率。
根据人体工程学的原理,合理的座椅设计可以有效地减轻员工的疲劳感,提高员工的舒适度,进而提高工作效率。
人体工程学在办公座椅设计中的应用可以预防职业病的发生。
长时间坐姿工作容易导致颈椎病、腰椎间盘突出等职业病。
根据人体工程学的要求,设计出符合人体生理结构的座椅,可以有效地减少这些职业病的发生率。
(1)提高员工舒适度:人体工程学在办公座椅设计中的应用,可以使座椅更加符合员工的身体需求,提高员工的舒适度。
(2)提高工作效率:合理的座椅设计可以有效地减轻员工的疲劳感,提高员工的舒适度,进而提高工作效率。
(3)预防职业病的发生:根据人体工程学的原理,设计出符合人体生理结构的座椅,可以有效地减少职业病的发生率。
(1)成本较高:人体工程学在办公座椅设计中的应用,需要投入更多的人力、物力和财力,因此成本相对较高。
(2)需要考虑员工个体差异:人体工程学在办公座椅设计中的应用,需要考虑到员工的个体差异,如身高、体重、性别等因素,这给设计带来了一定的难度。
为了更好地满足人体工程学的需求,办公座椅的设计应该遵循以下原则:(1)适应员工的身体需求:座椅的形状、尺寸和高度应该根据员工的身体结构进行调整,以满足员工的舒适度需求。
(2)提高支撑力:座椅应该具有良好的支撑力,以减轻员工长时间坐姿工作带来的疲劳感。
(3)可调节性:座椅应该具有一定的可调节性,以便于适应不同员工的个体差异。
为了使员工更好地适应人体工程学座椅的设计,企业应该加强相关的培训工作:(1)座椅使用培训:培训员工如何正确使用座椅,包括正确的坐姿、靠背角度等,以减少长时间坐姿工作带来的身体不适。
基于人机工程学的汽车座椅设计研究汽车座椅是汽车内部重要的组成部分,它不仅是提供乘客舒适性的重要设施,更是保障乘客安全的重要工具。
在汽车设计中,人机工程学起着至关重要的作用,它可以帮助设计师更好地理解用户的需求,并将这些需求转化为实际的产品设计。
本文将围绕基于人机工程学的汽车座椅设计展开研究,探讨其在汽车座椅设计中的应用和意义。
一、人机工程学在汽车座椅设计中的应用1.1 人体工程学的原理人体工程学是研究人体和工作环境之间的关系,以确保产品设计符合人体特征和需求。
在汽车座椅设计中,人体工程学原理帮助设计师分析人体的生理和心理特征,包括人体的尺寸、姿势、运动特征等,以便更好地设计符合人体工程学原理的汽车座椅。
1.2 座椅设计的人体测量数据通过人体测量数据,设计师可以了解不同人群的坐姿、身体尺寸等特征,从而为汽车座椅的设计提供准确的数据支持。
这种数据包括身高、坐高、背长、体重等参数,设计师可以根据这些数据更好地设计符合不同人群需求的汽车座椅。
1.3 动态人机工程学评估在汽车座椅设计中,动态人机工程学评估帮助设计师了解人体在坐姿状态下的动作、姿势变化等情况,以便更好地设计适应这些动作的座椅。
乘客在长途旅行时的坐姿变化,需要设计出符合人体工程学的座椅,使乘客在不同坐姿下都能获得舒适的体验。
2.1 提高乘坐舒适性基于人机工程学的汽车座椅设计可以提高乘坐的舒适性,使乘客在长时间的行驶中也能感到舒适和放松。
符合人体工程学原理的座椅设计可以减少身体的疲劳和不适感,使驾驶过程更加愉悦。
2.2 提高安全性人机工程学原理帮助设计师更好地理解人体的姿势、动作特征,从而设计出更加符合乘客需要的座椅。
这种设计可以提高座椅的支撑性和固定性,使乘客在行驶过程中更加稳定,减少受伤的可能性。
2.3 个性化设计3.1 挑战基于人机工程学的汽车座椅设计需要考虑众多的因素,包括人体的尺寸特征、坐姿状态、动态变化等,这需要设计师具备深厚的人机工程学知识和经验。
人机工程案例分析3篇案例一:人机工程在汽车设计中的应用人机工程(Human Factors Engineering)是一门研究人类与机器系统之间交互关系的学科,它旨在通过改进人机接口设计,提高人类在操作、控制和使用机器系统时的效率、安全性和舒适性。
在汽车设计中,人机工程的应用至关重要,本文将通过分析三个案例,探讨人机工程在汽车设计中的具体应用。
案例一:汽车座椅设计汽车座椅是人机接触最密切的部分之一,其设计直接影响驾驶员和乘客的舒适性和安全性。
在人机工程的指导下,汽车座椅的设计应考虑以下几个方面:1. 人体工学:座椅的形状、尺寸和角度应符合人体工学原理,以确保驾驶员和乘客的身体得到良好的支撑和舒适性。
2. 调节性能:座椅应具备多种调节功能,以适应不同驾驶员和乘客的身体特征和喜好。
例如,座椅的高度、倾斜角度、靠背角度和腰部支撑的调节。
3. 材料选择:座椅的材料应具备舒适性、透气性和耐久性。
同时,要避免使用过于滑腻或粗糙的材料,以防止驾驶员和乘客在行驶过程中滑动或受伤。
4. 安全性:座椅的设计应考虑到碰撞时的保护性能,如头枕的高度和角度、座椅背部的支撑性能等。
案例二:汽车仪表盘设计汽车仪表盘是驾驶员获取车辆信息的主要途径,其设计直接影响驾驶员对车辆状态的感知和操作的便利性。
在人机工程的指导下,汽车仪表盘的设计应考虑以下几个方面:1. 信息呈现:仪表盘上的信息应清晰、易读,以便驾驶员在行驶过程中快速获取所需信息。
例如,速度表、转速表、油量表等的位置、大小和颜色应符合驾驶员的视觉习惯。
2. 操作便利性:仪表盘上的控制按钮和开关应布局合理,易于驾驶员操作。
例如,音响控制、空调控制等功能的按钮应根据使用频率和操作顺序进行布置。
3. 反馈机制:仪表盘上的指示灯和警示器应具备明确的反馈机制,以便驾驶员在车辆故障或异常情况下及时采取相应措施。
4. 夜间可视性:仪表盘的设计应考虑到夜间行驶时的可视性,如采用背光设计、调节亮度等。
汽车中的座椅是影响驾驶和乘坐舒适程度的重要设施,而驾驶员的座椅就更为重要。
舒适而操纵便利的驾驶座椅,可以削减驾驶员乏累程度,降低故障的发生率[1]。
汽车驾驶员座椅设计优劣和否干脆关系到驾驶质量。
本文以人因分析为手段,以设计出公道的驾驶座椅来满足驾驶员人体平安、舒适为设计目标,得到结论:驾驶座椅平安性设计应着重考虑人(驾驶员)坐姿生理特性及人体对车内振动、微天气的反应等两大方面。
并从主动平安性设计、被动平安性设计两个方面详尽分析了驾驶座椅平安性设计的思路。
1. 人—座椅系统平安性设计中人的因素分析任何系统事实上都是人机系统,人机系统包括人、机、环境三个方面[2]。
明显驾驶员-座椅也属于人机系统探讨的范畴。
人机系统的平安模式多以人的行为为主体,即以人为本。
对人机系统的探讨始于其次次世界大战。
在设计和运用高度困难的军事装备中,人们逐步熟悉到必需把人和机器作为一个整体,在系统设计中必需考虑人的因素。
1.1 人(驾驶员)坐姿生理特性分析(1)坐姿时脊柱形态人坐着时,身体主要由脊柱、骨盆、腿和脚支承。
脊柱位于人体的背部中心,是构成人体的中轴。
人处于不同的坐姿时,脊柱形态不同,只有座椅的结构和尺寸设计使驾驶员的脊柱形态接近于正常自然状态,才会削减腰椎的负荷以及腰背部肌肉的负荷,防止驾驶乏累发生。
(2)坐姿体压分布当座椅上的人处于坐姿状态时,人的身体重量作用于座垫和靠背上的压力分布称作坐姿的体压分布[3]。
可见,坐姿体压分布包括座垫上的体压分布和靠背上的体压分布两部分。
①座垫上的体压分布依据人体组织的解剖学特性可知,坐骨结节处是人体最能耐受压力的部位,适合于承重,而大腿下靠近表面处因有下肢主动脉分布,故不宜承受重压。
据此座垫上的压力应依据臀部不同部位承受不同压力的原则来分布,即在坐骨处压力最大,向四周慢慢削减,自大腿部位时压力降至最低值,这是座垫设计的压力分布不匀整原则。
图1为坐姿时座垫上的体压分布[4]。
图 1坐姿时座垫上的体压分布②靠背上的体压分布靠背上的体压分布也以不匀整分布,压力相对集中在肩胛骨和腰椎两个部位。
基于安全人机工程学的汽车座椅系统设计与优化汽车座椅系统是车辆安全和舒适性的重要组成部分。
基于安全人机工程学的设计和优化能够提升座椅系统的性能,并为乘坐者带来更好的体验。
本文将介绍基于安全人机工程学的汽车座椅系统设计和优化的重要性,并探讨一些实现这一目标的方法。
首先,基于安全人机工程学的汽车座椅系统设计和优化能够提供更高的安全性。
一个合适的座椅设计可以减轻事故时乘坐者的伤害,起到保护乘坐者的作用。
例如,通过合理的座椅结构设计和优化,可以有效减少乘坐者在碰撞事故中的前方、侧方和后方碰撞对乘坐者的伤害。
此外,座椅还应能够提供良好的侧向支撑和头部支撑,以减少颈部和脊柱的受伤概率。
其次,基于安全人机工程学的汽车座椅系统设计和优化还可以提供更好的舒适性。
座椅是乘坐者与车辆之间的连接点,直接影响乘坐者的体验和舒适度。
一个合适的座椅设计可以减少乘坐者在长途驾驶中的疲劳感和不适感。
例如,座椅可以采用可调节的腰部支撑和头枕,以适应不同身体形态的乘坐者,并提供良好的腰部和颈部支撑。
在汽车座椅系统的设计和优化中,可以采用一些基于安全人机工程学的方法。
首先,可以进行人体工程学研究,以了解不同身体特征和需求对座椅设计的影响。
例如,通过测量人体尺寸、关节范围和肌肉活动等参数,可以为座椅设计提供准确的数据。
此外,还可以进行人体模型的建立和仿真,以评估不同座椅设计对人体的影响。
其次,可以采用数字化技术来辅助座椅系统的设计和优化。
例如,可以使用计算机辅助设计(CAD)软件来进行座椅结构的三维设计和模拟。
通过CAD软件的模拟功能,可以快速评估不同设计参数(如座椅高度、角度和形状等)对座椅性能的影响,并进行优化。
最后,可以进行人机工程学测试和评估,以验证座椅系统的性能和满足相关标准和规定。
通过进行人机工程学测试,可以评估座椅的舒适性、支撑性和安全性等特性,并根据测试结果进行优化。
综上所述,在汽车座椅系统的设计和优化中,基于安全人机工程学的方法可以提高座椅系统的性能,并为乘坐者带来更好的体验。
人机工程学汽车座椅设计研究第一篇:人机工程学汽车座椅设计研究人机工程学的汽车座椅设计研究【摘要】本文通过对重型商用车坐姿舒适性仿真的研究,并结合当今比较流行的舒适度建模方法,进行了适宜驾驶姿势规律的实验研究。
得到以人体姿势变量和汽车设计变量为预测因子的人体不舒适度预测模型,并将模型应用于实际项目的方案分析中。
【关键词】:驾驶员驾驶姿势人机工程技术人体舒适度【Abstract】 Based on the heavy commercial vehicle sitting comfort simulation studies, combined with the comfort of today's popular modeling method was suitable for Experimental study of the driving position.Get to the body posture variables and design variables as predictors of car's body is not comfortable forecasting model, and the model is applied to the analysis of the actual project proposal.【Key words】: driver driving posture ergonomic body comfort technology一、引言随着时代的发展,人们开始追求高品质的舒适生活,于是按照人体工程学设计的产品也就越来越受到大众的欢迎。
以汽车座椅为例,人体工程学的家具并不是人们头脑中所想象的仅有数据符合的座椅,它还包括除了人体生理数据之外的很多因素。
它的设计原则除了常见的尺度设计原则,人体机能和环境设计原则,健康设计原则外还应该讲求黄金分割比的设计原则。
汽车座椅与内饰设计的人机工程学考虑人机工程学是一门研究人类与机器之间交互关系的学科,其在汽车座椅与内饰设计方面扮演着重要的角色。
座椅和内饰设计的舒适性和人体工程学原则的应用不仅能提高驾驶员和乘客的舒适度,还能有效提升汽车的安全性和可用性。
本文将探讨汽车座椅与内饰设计中的人机工程学考虑。
一、人体工程学和驾驶员舒适性设计人体工程学是根据人体结构和功能的特点,为设计和组织生产规程等提供科学依据的一门科学。
在汽车座椅设计中,人体工程学的原则被广泛应用于驾驶员舒适性的设计。
1. 座椅形状和曲线设计汽车座椅的形状和曲线设计应该符合人体工程学原则,使其能够提供舒适的坐姿支持。
座椅背部和腰部的曲线应与驾驶员的脊柱曲线相匹配,以提供良好的腰部支撑和减少背部疲劳。
此外,座椅座垫的形状和角度也应适应不同人体尺寸的需求,以确保正确的坐姿和压力分布。
2. 座椅材质和通风设计座椅材质对于驾驶员的舒适度至关重要。
人机工程学原则指出,座椅材质应有适宜的柔软度和透气性,以减少驾驶员的背部压力和出汗不透气等问题。
高质量的座椅面料和材料还可以提供额外的吸湿性和保暖性,从而增加长时间驾驶的舒适感。
二、人体工程学和乘客舒适性设计在汽车内饰设计中,人体工程学原则同样适用于乘客舒适性的设计。
1. 空间布局和储物设计车内空间的合理布局对乘客的舒适度至关重要。
座位之间和座位与门板之间的距离应能够容纳不同身材乘客的需求,以确保他们能够舒适地进出和调整座椅姿势。
此外,合理设计的储物空间也可以帮助乘客更好地储存和访问他们的个人物品。
2. 控制装置和仪表板设计汽车内部的控制装置和仪表板的设计应符合人体工程学原则,以方便乘客的操作和使用。
按钮、开关和旋钮应易于触摸和触发,以减少乘客在操纵这些装置时的注意力分散。
此外,仪表板上的显示器和指示灯也应易于阅读和理解,以确保乘客能够准确获得所需的信息。
三、人体工程学和安全性设计在汽车座椅与内饰设计中,人体工程学原则对于提高汽车的安全性起着重要的作用。
车辆工程中的座椅设计与人机工程学在车辆工程领域,座椅设计是一个至关重要的环节,它不仅关系到驾驶者和乘客的舒适体验,更直接影响到行车安全和健康。
人机工程学作为一门研究人与机器相互关系的学科,在车辆座椅设计中发挥着不可或缺的作用。
当我们坐在汽车座椅上时,可能很少会去深入思考这个座椅背后所蕴含的科学原理和精心设计。
然而,每一个细节,从座椅的形状、材质到调节功能,都是为了适应人体的生理结构和行为习惯,以提供最佳的支撑和舒适度。
首先,让我们来谈谈座椅的形状设计。
一个符合人机工程学的座椅应该能够贴合人体的自然曲线,尤其是脊柱的“S”形曲线。
座椅的靠背要有适当的弧度和支撑点,以减轻腰部的压力。
如果靠背过于平坦或缺乏支撑,长时间驾驶或乘坐会导致腰部肌肉疲劳,甚至引发腰椎疾病。
此外,座椅的座面也需要有合理的倾斜角度和深度,以保证大腿能够得到充分的支撑,同时避免对腿部血液循环造成阻碍。
座椅的材质选择同样不容忽视。
常见的座椅材质包括织物、皮革和人造革等。
织物座椅具有良好的透气性,能够减少闷热感;皮革座椅则显得更加高档,且易于清洁。
然而,无论选择哪种材质,都要考虑其柔软度、耐磨性和摩擦系数等因素。
材质过硬会让人感到不舒适,而过软则可能无法提供足够的支撑。
此外,座椅的表面材质还应该具有一定的防滑性能,以防止在车辆行驶过程中身体滑动。
除了形状和材质,座椅的调节功能也是人机工程学的重要体现。
现代车辆的座椅通常具备多向调节功能,包括座椅的前后、上下、靠背角度以及头枕高度和角度等。
这些调节功能的目的是让不同身材的驾驶者和乘客都能够找到最适合自己的坐姿。
例如,较高的驾驶者可能需要将座椅调得更低,以获得更好的头部空间和视野;而身材较矮小的驾驶者则需要将座椅调得更靠近方向盘,同时调整头枕的高度,以保证颈部得到良好的支撑。
在长途驾驶或乘坐中,座椅的舒适性显得尤为重要。
为了减少疲劳感,一些高端车辆的座椅还配备了按摩、通风和加热功能。
按摩功能可以通过气囊或机械装置对身体的关键部位进行按摩,促进血液循环,缓解肌肉紧张;通风功能能够在炎热的天气中保持座椅的干爽,提高舒适度;加热功能则在寒冷的季节为身体提供温暖。
座椅设计
一、通过在网上调查,经过整理椅子的种类,按照坐姿动机可以将椅子分为三类:
1.休息为目的的安乐椅
设计重点在于使人体得到最大的舒适感,消除身体的紧张与疲劳。
合理的设计应使人体的压力感减至最小。
2.作业场所的工作椅
稳定性是主要因素,腰部应有适当的支持,重量要均匀分布于座垫(或座面)上,同时要适当考虑人体的活动性,操作的灵活性与方便等。
多用椅3.可能是工作、它可能与桌子配合,这类座椅以多种功能为设计重点。
休息兼用,也可能是作为备用椅可以折叠收藏起来。
二、座椅设计细则我国人体基本尺寸
测量尺寸名称数据(测量尺寸名称mm)mm数据()性别男女性别男女363 809 469 958 肩宽坐高
310 518 641 355 坐姿颈椎点高坐姿臀宽342
401
494
448
坐深小腿加足高
根据《工作座椅一般人类工效学要求》给定的工作座椅主要参数
数值参数
360-480 座高(mm)370-420 mm)座宽(360-390 )座深(mm320-340 腰靠长(mm)200-300 )mm腰靠宽(30-50
)mm腰靠厚(.
165-210腰靠高m400-700m腰靠圆弧半径0-5座面倾角(°95-115
靠腰倾角(°)
1.座高:休息用安乐椅38—45cm,工作椅43—50cm
2.座宽:43—45cm
3.座深:休息用椅40—43cm,工作用椅35—40cm
4.座面倾角:休息椅19—20度,工作椅小于3度
5.靠背的高度与宽度
a.因为人体背部处于自然形态时最舒适,此时腰椎部分前凸,座椅设计要从座面与靠背之间的角度和适当的腰椎支持来尽力保证。
成年人腰椎部中心位置约在座位上方23—26cm处,腰椎支点应略高于此尺度,以支持背部重量。
b.靠背由肩靠和腰靠两部份构成,大部份工作场合,腰靠最主要。
c.靠背的最大高度可达48—63cm,最大宽度可达35—48cm。
靠背的尺寸主要由臀部底面到肩部的高度(决定靠背高)和肩宽(决定靠背宽)有关,确定高度时还必须计入座椅的有效厚度。
d.为了使背部下方骶骨和臀部有适当的后凸空间,座面上方与靠背下部之间应有凹入或留一开口部分,其高度至少为12.5—20cm
6.靠背角度:103一112度
7.扶手高:座垫有效厚度以上21—22cm
8.椅垫
a.人体在坐姿状态下,与座面紧密接触的实际上只是臀部的两块坐骨结节,其上只有少量的肌肉,人体重且的75%左右由约25cm2的坐骨周围的部位来支承,这样久坐足以产生压力疲劳,导致臀部痛楚麻木感。
b.测试研究表明,坐于座垫上的臀部压力值大为降低,而接触支承面积也由900cm2增大到1050cm2,使压力分散。
c.椅垫的另一优点是能使身体采取一种较稳定的姿势,因为身体可以适应地陷入座垫。
尺寸(mm)
三、我的设计下面是我设计的一款多用椅,可以是书房里用的椅子,也可以是休闲椅。
所以一般但是造型过于僵硬,虽然考虑了人机工程学的因素,上面是椅子本身,是搭配着坐垫腰靠来使用。
所以在运输时降低了成这里将这个椅子设计成可拆卸的,考虑到运输成本问题,
本。
椅子的尺寸图为:
设计说明:这款椅子是书房里用的椅子。
材料为花梨木和钢化玻璃。
.黄花梨是中国家具(特别是明清家具)的主要材料,能很好地展示出
中国传统家具的风格。
钢化玻璃的厚度是1.5厘米,材料本身不易碎,所以不用担心会被坐碎。
座椅的造型上很大程度上沿用了明清时期的座椅,但是融合了古香古色的雕窗镂空元素。
就材料造型来讲,这款椅子走的是中国风。
但是,还是有现代风格在其中的。
现在比较流行在网上购物,这样使搬运的成本增多,所以我设计了一个可以拆卸拼装的椅子。
椅子分为四个部分,彼此靠榫连接在一起。
这样会降低搬运的成本。
座椅的尺寸都是参考人机工程学图表进行设计的,书房里的椅子可以划分为休息用的椅子,座高为38—45cm,这里的尺寸为39cm。
座宽为40cm,座深为30cm,座高加上腰靠的高度为78cm,这里设计的高度为79cm。
按照人机工程学参数,座面倾角:休息椅19—20度,6.靠背角度:103一112度,但是这里没有设计座面倾角,因为考虑木质材料、玻璃材料加工成曲面成本会增高。
现在的腰靠坐垫U所以这款椅子应该和腰靠坐垫搭配使并且保暖,型枕等做得也不错,
用。