激光焊接基础理论
- 格式:ppt
- 大小:8.58 MB
- 文档页数:41
激光焊接也是激光技术发展的一种,她在制造业种的应用不亚于激光打标机、激光切割机,今天我们来了解一下的她的基本原理:1.用激光束作为热源的焊接方法。
焊接时,将激光器发射的高功率密度(108~1012 瓦/厘米2 )的激光束聚缩成聚焦光束,用以轰击工件表面,產生热能,熔化工件(见图激光焊示意图)。
2.激光束是具有单一频率的相干光束,在发射中不产生发散,可用透镜聚缩为一定大小的焦点(直径为0.076~0.8毫米)。
小焦点激光束可用于焊接﹑切割和打孔﹔大焦点激光束可用于材料表面热处理。
激光束可利用反射镜任意变换方向,因而能焊接一般焊接方法无法接近的工件部位。
如采用光导纤维引导激光束,则更能增加焊接的灵活性。
激光器分固体激光器和气体激光器。
固体激光器所用材料为红宝石﹑釹玻璃等。
固体激光器输出能量小,约为1~50焦耳,产生脉冲激光,其加热脉冲持续时间极短(小于10毫秒),因而焊点可小到几十至几百微米,焊接精度高,适于0.5毫米以下厚度的金属箔片的点焊﹑连续点焊或直径0.6毫米以下的金属丝的对接焊,固体激光器广泛用于焊接微型﹑精密﹑排列密集﹑对受热敏感的电子元件和仪器部件。
气体激光器所用材料为二氧化碳或氬离子气等,功率大(15~25000瓦),可产生连续激光,能进行连续焊接,可焊0.12~12毫米厚的低合金钢﹑不锈钢﹑镍﹑鈦﹑铝等金属及其合金。
小功率二氧化碳激光器还可焊接石英﹑陶瓷﹑玻璃和塑料等非金属材料。
激光焊件质量高,有时超过电子束焊焊件的质量。
激光焊接机,,特别是大功率激光焊接机,成本高,效率甚低,一般只达5~10%,最佳为20%,穿透能力也不及电子束。
但用激光束可在空气中或保护气体中焊接,比电子束焊方便。
米亚奇公司Nd (枚):YAG 激光器激光焊接指南UNITEK MIYACHI■CORPORATION米亚奇公司2003年版此处包含的材料,未经米亚奇公司书面同意,严禁复制或用于任何用途联系方式:米亚奇公司Myrtle 大道 1820 号蒙罗维亚 CA, 91017-7133Tel.: 626 303 5676 Fax: 626 599 9636最新资料推荐目录1.激光基础1.1介绍1.2激光产生的原理1.3 Nd:YAG激光的介质1.4泵浦源1.5谐振器1.6激光安全2.激光焊接基本原理2.1脉冲激光焊接2.1. 1实时功率反馈2.1.2输出功率斜波2. 1. 3脉冲的成形2. 1.4时间的分配2. 1. 5能量分配2. 1. 6光束的传输2.1.7聚焦头2. 2激光是怎么实现焊接的2. 3主要焊接参数2. 3. 1接缝设计与配合2. 3. 2部分聚焦2. 3. 3材料的选择和其表面镀层2. 4激光的参数2. 4.1名词术语2. 4. 2光学系统2. 4. 3聚焦镜片2. 4. 4峰值功率和脉冲宽度2. 4. 5接缝的焊接2. 4. 6保护气体2. 5焊接举例長新资料推荐1.激光基础1.1介绍"激光” —词是 Light Amplification by Stimulated Emission of激光利用峰值功率进行焊接,反之连续激光使用的是平均功率,这使得脉冲激光只用很小的能量就能实现焊接,并形成了更小的热影响区,脉冲激光焊提供了无与伦比的点焊性能和极低的焊接热输入,米亚奇的就是脉冲激光焊机。
1. 2激光产生的原理激光本质上是分三步产生的,发生几乎是瞬间的。
1.泵浦源给介质提供能量,将介质内部原子激活,使得带电原子暂时被激发到高能级,处在此活跃级的带电原子是不稳定的,于是跃迁到低能级,在这个过程中,从泵浦源吸收能量的电子释放多余的能量并辐射出一个光子,这个过程叫做自发辐射,通过这种方式产生的光子是激光的种子。
激光焊接基本原理讲解激光焊接是一种高能密度、高速度、高精度的焊接技术,广泛应用于航空航天、汽车制造、电子制造、通信设备等领域。
激光焊接基本原理主要包括光学原理、热传导原理、材料相互作用原理和焊接过程控制原理。
光学原理是激光焊接的基础。
激光是一种特殊的光束,具有单色性、相干性和方向性。
激光器通过电子激发的方式产生一束具有高能量密度的光,然后经过光束整形、光束传输和光束聚焦等步骤,将光束聚焦到焊接接头上,形成一个焦点,使焊接接头处的工件局部加热至熔化或变软状态。
热传导原理是激光焊接中的重要因素。
激光焊接是通过加热工件表面使其熔化,并通过热传导使熔化区域扩散到接缝两侧,实现焊接连接。
当激光束聚焦到焊接接头上时,光能被吸收并转化为热能,工件表面温度迅速升高,超过了金属的熔点,从而使接头处的金属熔化。
然后,由于热传导作用,熔化区域的温度逐渐降低,热量向接头两侧传导,使熔化区域逐渐扩散到接头两侧的工件上,最终形成一道连续的焊缝。
材料相互作用原理是指激光和材料之间的相互作用过程。
激光通过与工件表面相互作用,使金属吸收激光能量并转化为热能,从而引发熔化和变形。
金属在激光束的作用下,表面的氧化物和附着物会蒸发或溶解,使金属表面得到净化。
同时,激光还能通过与金属表面的反射和散射以及与烟雾或气体的相互作用,影响激光束的传输和能量聚焦效果。
焊接过程控制原理是激光焊接的关键。
激光焊接过程中,需要控制激光功率、焦距、焊接速度和焊接时间等参数,以实现理想的焊接效果。
激光功率直接影响焊接接头的熔化和热影响区大小,过高或过低的功率都会影响焊接质量。
焦距决定焦点的位置和焦点大小,过大或过小的焦距都会导致焊接效果不理想。
焊接速度和焊接时间决定了焊缝的宽度和深度,过快或过慢的速度都会对焊接质量产生影响。
综上所述,激光焊接基本原理包括光学原理、热传导原理、材料相互作用原理和焊接过程控制原理。
通过理解和控制这些原理,可以实现高能量密度、高速度和高精度的激光焊接,提高焊接质量和生产效率。
激光焊接技术简介2017-8-1激光—全称为受激辐射光放大,它是一种新光源,其所具有的相干性、单色性、方向性与高输出功率等特点,是其它光源所无法比拟的。
激光焊接是通过光学系统将激光光束聚集在很小的区域,焦平面上的功率密度可达到10×10w/cm2,在极短的时间内,使被焊处形成一个能量高度集中的局部热源区,从而使被焊物熔化并形成牢固的焊点或焊缝。
激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105W/ cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/ cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
激光深熔焊接的原理。
激光深熔焊接原理:一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达25000C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
激光焊接工艺的基本知识概述激光焊接是一种高能量密度的热源焊接方法,利用激光束将工件加热到熔化或融合状态,实现金属材料的连接。
激光焊接具有高精度、高速度、低变形等优点,在航空航天、汽车制造、电子设备等领域得到广泛应用。
工作原理激光焊接主要通过激光束对工件表面进行聚焦,使其吸收激光能量产生热源,从而使工件局部区域迅速升温并达到熔化或融合状态。
通过控制激光束的功率、聚焦方式和运动轨迹,实现对工件的精确加热和连接。
设备与系统激光源激光源是激光焊接系统的核心部件,常见的激光源包括CO2激光器、固态激光器和纤维激光器等。
不同类型的激光源具有不同的特点和适用范围,选择合适的激光源对于实现高质量的焊接至关重要。
光学系统光学系统主要包括激光束传输系统和聚焦系统。
激光束传输系统用于将激光束从激光源传输到焊接头,常见的传输方式有光纤传输和反射镜传输。
聚焦系统用于将激光束聚焦到工件上,通常包括凸透镜、平凸透镜和聚焦镜等。
控制系统控制系统是激光焊接过程中的关键部分,用于控制激光功率、聚焦位置和运动轨迹等参数。
通过精确控制这些参数,可以实现对焊接过程的精确控制和优化。
工艺参数激光功率激光功率是影响焊接速度和质量的重要参数。
功率过低会导致无法达到熔化或融合状态,功率过高则容易引起气孔、裂纹等缺陷。
根据工件材料和厚度的不同,选择合适的激光功率进行焊接。
焦距焦距是指从聚焦镜到工件焊点的距离,影响激光束的聚焦效果和焊接质量。
焦距过大会导致焊缝变宽、深度不足,焦距过小则容易引起激光束的散射和偏离。
根据焊接要求和工件形状选择合适的焦距。
扫描速度扫描速度是指激光束在工件表面移动的速度,影响焊接线能量分布和熔池形态。
扫描速度过快会导致熔池不稳定、焊缝细节不清晰,扫描速度过慢则容易引起过热和变形。
根据工件材料和要求选择合适的扫描速度。
气体保护气体保护是激光焊接中常用的一种方法,通过向焊接区域供应惰性气体,如氩气或氮气等,可以有效防止氧化、脱氢和杂质的进入,提高焊接质量。
第六章激光焊第一节激光焊概述激光是利用原子受辐射的原理,使工件物质受激而产生的单色性高、方向性强、亮度高的光束。
激光是20世纪最伟大的发明之一,世界上第一台激光器问世于1960年。
一、激光的产生1、能级与辐射跃迁当原子或分子内部的电子与外界交换能量时,原子的内能也发生变化,但内能的变化是不连续的,其内能的状态称为能级。
一个粒子(原子或分子)可以处于许多不同的能级,其最低的能级称为基态。
当粒子从外界吸收能量时,从低能级跃迁到高能级;当粒子从高能级跃迁到低能级时,向外界释放能量。
若吸收或释放的能量是光能,则称此跃迁为辐射跃迁。
当粒子从高能级E2向低能级E1辐射跃迁时,辐射光子的能量E等于两个能级之差,即E=E2-E1=hv。
当粒子吸收的外来光子的能量恰好等于其两能级的能量之差时,则从其低能级跃迁到高能级。
当离子从高能级跃迁到低能级时,向外界释放能量。
2、激辐射处于高能级的粒子自发地向低能级跃迁并释放出一个光子的过程称为自发辐射。
自发辐射没有固定的相位、频率、传播方向和偏振方向。
处于高能级E2的粒子,受到一个能量恰为hv =E2-E1的光子作用后,跃迁到低能级E1并同时辐射出一个和入射光子完全一样的光子的过程成为受激辐射。
受激辐射在一个外来光子的作用下,出现了两个完全相同的光子,即受激辐射起到了光的放大作用。
3、浦与粒子数反转热平衡状态下,处于高能级的粒子数远远少于处于基态的粒子数。
当外界入射光进入介质后,受激辐射的放大作用总是小于受激发、吸收的的消弱作用,入射光必然受到衰减。
欲使入射光通过介质后得到增强与放大,就必须打破热平衡,使处于高能级的粒子数大于处于低能级的粒子数,称为粒子数反转。
凡是能够通过激励而实现粒子数反转的物质称为激光工作物质(或激活物质)。
Nd:YAG是典型的四能级系统激光工作物质,其波长为1.06μm。
4、激光产生的基本原理及主要元件激光工作物质在泵浦源的作用下,处于低能级的粒子不断向高能级跃迁,实现粒子数反转。
激光焊接技术的基本原理及其特点基本原理及特点激光焊接,一方面要求激光辐射能穿透零件,另一方面要求零件有很强的吸收性能。
重要的是,在两个焊接件之间要避免产生裂缝。
在激光焊接过程中,吸收性的零件升温并且局部熔化,通过热传导将能量传递到透光的零件,在外部的压力下两个零件结合在一起。
所吸收的近红外线激光转化为热能,将两个部件的接触表面熔化,最终形成焊接区。
这种焊接方法能够形成超过原材料强度的焊接缝。
目前国内市场上普遍使用的塑料焊接技术主要有振动摩擦焊接、热板式塑料焊接及超声波焊接等,主要用于连接敏感性塑料制品(含有线路板)、具有复杂几何形状的塑料件以及有严格洁净要求的塑料制品(医药设备)等。
应用激光焊接熔接塑料部件,其优点有:焊接缝尺寸精密、不透气及不漏水;焊接牢固,可以得到高精度的焊接件。
在焊接过程中树脂降解少、产生碎屑少,不会出现飞边,部件表面能够精密连接;焊接设备不需要和被黏结的塑料零部件相接触,与其他熔接方法比较,大幅减少制品的振动应力和热应力;最小化热损坏和热变形,可以将不同组成或不同颜色的树脂黏结在一起;可焊接尺寸极小或外形结构复杂的零件,对有些复杂零件甚至可以进行“穿透焊接”;无振动技术能产生气密性的或者真空密封结构;能够将多种不同塑料焊接起来,而其他焊接方法有较大限制;设备自动化程度高,能方便用于复杂塑料零部件加工。
擅长焊接具有复杂外形(甚至是三维)的制品;能够焊接其他方法不易达到的区域。
由于激光焊接具有上述优点,所以特别吸引那些寻求更清洁的方式来熔接复杂部件的加工商,如含有线路板的塑料制品、医疗设备等。
激光焊接技术是用通常存在于电磁光谱红外线区的集束强辐射波熔化接头区的塑料。
所用激光的类型和塑料的吸收特性决定焊接的程度。
激光焊接也极大地减小了制品的振动应力和热应力。
比采用其它连接方式所产生的振动应力和热应力小,意味着制品或者装置的内部组件的老化速率更慢。
这为将激光焊接应用于易损坏的制品(如电子传感器)提供了机会。
激光焊接知识集锦目录激光焊接基本原理...................................................................................................................... - 2 - 激光焊接概述.............................................................................................................................. - 4 - 激光传感器焊接技术的介绍与发展.......................................................................................... - 6 - 激光焊接技术及其在汽车制造中的应用.................................................................................. - 8 - 激光塑料焊接概述.................................................................................................................... - 13 -激光焊接基本原理一、激光基本原理1、LASER是什么意思Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅)的英语开头字母2、激光产生的原理激光——“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。
处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。
一、激光基本原理1、LASER是什么意思Light Amplification by Stimulated Emission of Radiation(通过诱导放出实现光能增幅)的英语开头字母2、激光产生的原理激光――“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。
处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光;这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光。
为了得到高能量密度、高指向性的激光,必须要有封闭光线的谐振腔,使观光束在置于激光发生介质两侧的反射镜之间往复振荡,进而提高光强,同时提高光的方向性。
含有钕(ND)的YAG结晶体发生的激光是一种人眼看不见的波长为1.064um的近红外光。
这种光束在微弱的受激发情况下,也能实现连续发振。
YAG晶体是宝石钇铝石榴石的简称,具有优异的光学特性,是最佳的激光发振用结晶体。
3、激光的主要特长a、单色性――激光不是已许多不同的光混一合而成的,它是最纯的单色光(波长、频率)b、方向性――激光传播时基本不向外扩散。
c、相干性――激光的位相(波峰和波谷)很有规律,相干性好。
d、高输出功率――用透镜聚焦激光后,所得到的能量密度是太阳光的几百倍。
二、YAG激光焊接激光焊接是利用激光束优异的方向性和高功么密度等特点进行工作。
通过光学系统将激光束聚焦在很小的区域内,在极短的时间内使被焊处形成一个能量高度集中的热源区,从而使被焊物熔化并形成牢固的焊点和焊缝。
常用的激光焊接方式有两种:脉冲激光焊和连续激光焊。
前者主要用于单点固定连续和薄件材料的焊接。
后者主要用于大厚件的焊接和切割。
l、激光焊接加工方法的特征A、非接触加工,不需对工件加压和进行表面处理。
B、焊点小、能量密度高、适合于高速加工。
C、短时间焊接,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合加工高熔点、高硬度、特种材料。
激光焊接原理激光焊接原理激光焊接是一种高精度、高效率的焊接方法,广泛应用于工业制造领域。
其原理是利用激光束的高能量密度和聚焦性,将材料加热至熔化点,使其发生熔合。
下面将详细介绍激光焊接的原理及其应用。
一、激光焊接的原理1. 激光的特性激光是一种具有高度聚焦性和单色性的光束,其能量密度高,可在短时间内提供足够的热量使材料熔化。
激光的单色性使其具有较小的光斑直径,从而实现高精度的焊接。
2. 热传导与熔池形成激光束照射到工件表面后,被吸收的能量迅速转化为热能,使工件表面局部区域升温。
热能通过热传导向周围区域传递,使材料迅速达到熔点。
同时,激光束的高能量密度使熔化的材料形成一个熔池,通过熔池的流动和混合,实现焊接。
3. 激光焊接的方式激光焊接可分为传导式焊接和深熔焊接两种方式。
传导式焊接是指激光束透过工件表面,照射到焊缝上方,热量通过热传导实现焊接。
深熔焊接是指激光束直接照射到焊缝上,使其瞬间加热至熔化点,形成深熔池,然后通过熔池的流动实现焊接。
二、激光焊接的应用1. 金属焊接激光焊接广泛应用于金属焊接领域,如汽车制造、航空航天、电子设备制造等。
激光焊接具有热影响区小、焊缝质量高、焊接速度快等优点,能够满足高精度、高强度的金属焊接需求。
2. 塑料焊接激光焊接也可用于塑料焊接。
塑料焊接通常采用透明塑料,激光束透过塑料表面照射到焊接区域,使其迅速加热至熔化点,然后通过熔池的混合实现焊接。
激光焊接可实现高强度的塑料焊接,广泛应用于光学器件、医疗器械等领域。
3. 精密焊接激光焊接由于其高度聚焦性和高能量密度,可实现微小尺寸的焊接。
这使得激光焊接成为精密器件的理想焊接方法,如电子器件、微电子封装等领域。
4. 自动化焊接激光焊接可与机器人技术相结合,实现自动化生产。
激光焊接的高精度和高效率使其成为自动化焊接的重要技术,可广泛应用于汽车制造、电子设备制造等领域,提高生产效率和产品质量。
总结:激光焊接是一种高精度、高效率的焊接方法,其原理基于激光束的高能量密度和聚焦性。
激光焊接工艺的基本知识激光焊接的定义激光焊接是利用激光束的高能量密度、高聚焦度和高一致性,将激光能量引入焊接区域,使焊缝区域被熔化并冷却形成焊缝的一种焊接方法。
激光焊接的原理激光焊接是利用激光束的高功率密度,将激光能量转化成热能,通过加热和熔融工件的材料,使其形成焊缝并实现材料的连接。
激光束可以通过光学系统进行聚焦,从而集中到焊接区域上。
激光焊接的优点•高能量密度:激光焊接可以将高能量聚焦在小面积上,使材料瞬间加热并熔化,从而实现快速的焊接。
•高一致性:激光焊接的激光束具有高一致性,焊接效果稳定且可重复。
•焊接速度快:激光焊接的瞬间加热和熔化速度非常快,可以实现高速焊接。
•焊缝质量好:激光焊接可以实现焊缝的精细化控制,焊缝形态美观且强度高。
•无接触式焊接:激光焊接是一种无接触式的焊接方法,可以避免材料变形和污染。
激光焊接的应用领域1.电子行业:激光焊接广泛应用于电子产品的组装和连接,如手机、电脑等电子元件的焊接。
2.汽车工业:激光焊接广泛应用于汽车零部件的制造,如发动机、变速器等的焊接。
3.航空航天工业:激光焊接在航空航天领域具有重要应用,如飞机结构件的焊接、航天器的焊接等。
4.家电行业:激光焊接在家电行业中应用广泛,如冰箱、洗衣机等产品的焊接。
5.医疗器械:激光焊接在医疗器械制造中具有重要地位,如手术器械、人工关节等的焊接。
激光焊接的工艺参数1.激光功率:激光功率决定了焊接过程中的能量输入,需要根据焊接材料的厚度和类型进行选择。
2.激光波长:激光波长决定了激光束在焊接材料中的穿透深度,需要根据焊接材料的吸收情况选择合适的波长。
3.聚焦方式:激光焊接可以采用具有不同聚焦方式的光学系统,如凸透镜、聚焦镜等,根据焊接材料的形态和要求选择合适的聚焦方式。
4.扫描速度:扫描速度决定了焊接速度,需要根据焊接材料的热导率和焊接质量要求进行调整。
5.激光频率:激光频率可以影响焊接的稳定性和效果,需要根据焊接材料的特性选择合适的频率。
何谓激光焊接?首先“激光”是取英文的“Light Amplification by Stimulated Emission of Radiation(通过受激释放辐射光扩大)”的含义的术语的开头字母而得到的造词。
激光焊接是将作为人造光的激光进行聚光并照射对象物、使金属局部熔融和凝固来接合金属的加工方法。
在钣金加工领域引入激光焊接的情况下,相比于以往加工方法的电弧焊,具有容易抑制热变形、容易管理焊接条件、焊道不明显等优点。
激光焊接的原理激光焊接中,使用激光振荡器产生成为热源的激光,并将其扩大,使用光纤进行传输,首先将光输送至工件附近。
在该阶段需要激光加工头。
激光加工头的内部设置有透镜,将传输来的激光聚光为适合加工的状态。
通过借助透镜对光进行聚光,能够使光能集中于较小的面积,从而能够获得熔化金属的较高能量。
为了防止熔融金属的氧化,通常会一边吹送氩气、氮气等保护气体一边焊接。
激光焊接的种类YAG激光焊接YAG是名为钇铝柘榴石(Yttrium Aluminum Garnet)的晶体,YAG激光器是向YAG晶体照射强光来产生激光。
YAG激光具有金属易于吸收的1064nm的波长,因此能以较少的能量熔融金属,这一点适合激光焊接。
另一方面,为了产生激光,需要使闪光灯闪烁,且因为发热多而需要使用制冷器对振荡器至焊炬进行冷却,因此耗电量大,与所使用的电力相比,用于加工的能量较少,故而也存在焊不透的情况。
冷却水、灯等易耗品的维护成本负担也较大,这也可以说是使用上的一大缺点。
光纤激光焊接光纤激光是使用光纤对所生成的励起光进行扩大和传输的激光,具有金属易吸收的1070nm的波长。
在众多激光中,能量密度特别高,具有容易将光束聚集的特点,对金属能够实现深熔是其一大优点。
与YAG激光相比,具有深熔、运行成本低、几乎没有调整和维护的麻烦和成本等诸多优点,近年来正在加速普及。
虽然光纤激光具有高功率、高效率的特点,但在钣金的手焊中,如果功率过高,会对作业者造成危险,因此制作产品时通常将功率限制在1kW左右。
史上最全激光焊接技术原理知识现代焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。
今天给大家介绍关于激光焊接内容。
激光焊接技术原理知识激光焊接可以采用脉冲或连续激光束加以实现;激光焊接的原理可分为热传导型焊接和激光深熔焊接。
热导焊:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
其特点:激光功率为105w/cm2左右,焊缝深度小于2.5mm,焊缝的深宽比最大为3:1。
图1)热导焊基本原理深熔焊:一般采用连续激光光束完成材料的连接.即能量转换机制是通过“小孔”(Key-hole)结构来完成的.激光照射,材料产生蒸发并形成小孔,吸收全部的入射光束能量,温度达25000C左右,使包围着这个孔腔四周的金属熔化.其特点:采用的功率密度在106~107w/cm2 之间,焊缝的深宽比最大可达12:1 ,目前最大焊接深度可以达到51mm。
图2)熔深焊技术原理说到这里相信大家都有疑问,说激光是怎么产生的?工作设备(产生激光):由光学震荡器及放在震荡器空穴两端镜间的介质所组成。
介质受到激发至高能量状态时,开始产生同相位光波且在两端镜间来回反射,形成光电的串结效应,将光波放大,并获得足够能量而开始发射出激光。
图3)激光焊接设备组成激光亦可解释成将电能、化学能、热能、光能或核能等原始能源转换成某些特定光频(紫外光、可见光或红外光)的电磁辐射束的一种设备。
图4)激光焊接设备简易图激光分类焊接用有两种激光:CO2 激光和Nd:YAG激光特点:都是肉眼不可见红外光。
红外光,又叫红外线,是波长比可见光要长的电磁波(光),波长为770纳米到1毫米之间。
CO2 激光:属于远红外光,波长为10. 6Lm, 大部分金属对这种光的反射率达到80% ~ 90%,需要特别的光镜把光束聚焦成直径为0. 75 - 0. 1mm。
功率可轻易达到20000W甚至更大。
激光焊接技术原理
激光焊接技术是利用激光束的高能量密度和高准直性进行焊接的一种先进的焊接技术。
它是将高能激光束对焊接接头进行瞬间加热,使焊缝两侧的金属材料迅速熔化,并形成均匀的熔池。
当激光束停止照射后,熔池迅速凝固,形成焊缝。
激光焊接技术具有以下几个基本原理:
1. 焦聚原理:激光束通过透镜或反射镜等光学元件进行聚焦,将光束能量集中在焊接接头上的一个小区域内,形成高能量密度的光斑。
这样可以使焊接接头迅速加热到熔化温度。
2. 吸收原理:金属材料对于激光的吸收能力与其表面的光学特性有关,如光学吸收率、反射率等。
激光束一般选择与焊接金属材料的波长吻合的激光,以提高其在金属表面的吸收率,从而实现高效的能量转换。
3. 反射原理:激光束在金属表面的反射情况对焊接质量有重要影响。
焊接接头表面应保持干净,并且需要适当的焊接角度来减少反射。
同时,适当的选择激光功率和焊接速度可以改善焊接接头表面的反射情况。
4. 池形成与液态传递:激光加热会使焊接接头瞬间熔化,形成液态金属熔池。
熔池会受到激光束和焊接速度等因素的影响,形成不同形状和尺寸的熔池。
激光束的运动和焊接速度会影响熔池的尺寸和形态,并且对接头的焊接质量和力学性能有重要影响。
通过控制激光束的焦距、功率、光斑形状等参数,可以实现对焊接接头的精确控制。
激光焊接技术具有热影响区小、焊接速度快、形变小、熔深大、焊缝质量高等优点,广泛应用于汽车制造、航空航天、电子设备、激光制造等领域。