弹性力学 第二章 应力状态分析
- 格式:doc
- 大小:712.50 KB
- 文档页数:28
弹性力学的应力分析与优化弹性力学是一门研究物体在受力作用下的变形和恢复性质的学科。
在工程领域中,弹性力学的应用十分广泛,特别是在结构设计和材料优化方面。
本文将探讨弹性力学中的应力分析与优化方法。
一、应力分析弹性力学的应力分析研究了物体在受力作用下的应力分布情况。
应力是物体内部分子间相互作用的结果,是描述物体抵抗外力的能力的物理量。
应力在弹性力学中分为三种类型:拉应力、剪应力和压应力。
拉应力(tensile stress)是指物体在受拉力作用下产生的应力,通常用符号σ表示。
拉应力的计算公式为:σ = F / A其中,F为物体上的拉力,A为物体上受力截面的面积。
拉应力越大,物体的变形程度越大。
剪应力(shear stress)是指物体在受剪力作用下产生的应力,通常用符号τ表示。
剪应力的计算公式为:τ = F / A其中,F为物体上的剪切力,A为物体上受力截面的面积。
剪应力越大,物体的变形程度越大。
压应力(compressive stress)是指物体在受压力作用下产生的应力,通常也用符号σ表示。
压应力的计算公式与拉应力相同,即:σ = F / A不同的是,压应力与拉应力的方向相反。
压应力越大,物体的变形程度越大。
在应力分析过程中,我们可以通过解析法或数值模拟法来求解物体内部的应力分布情况。
解析法主要适用于简单几何形状的物体,例如直杆或简支梁。
数值模拟法则可以用来求解复杂几何形状的物体,例如复杂结构的建筑或机械零件。
二、优化设计在弹性力学的应用中,我们常常需要通过优化设计来提高物体的性能或减少材料的使用量。
优化设计旨在寻找最优的结构形式或材料参数,使得物体在给定的约束条件下达到最佳的性能指标。
优化设计可以分为两种类型:形状优化和拓朴优化。
形状优化主要是通过改变物体的几何形状来优化结构。
例如,在某一受力部位增加材料的厚度或减小切削孔的直径,以提高物体的刚度或承载能力。
形状优化的方法有很多,包括拟合法、参数法和拓扑有机化等。
第二章应力和应变地震波传播的任何定量的描述,都要求其能表述固体介质的内力和变形的特征。
现在我们对后面几章所需要的应力、应变理论的有关部分作简要的复习。
虽然我们把这章作为独立的分析,但不对许多方程进行推导,读者想进一步了解其细节,可查阅连续介质力学的教科书。
三维介质的变形称为应变,介质不同部分之间的内力称为应力。
应力和应变不是独立存在的,它们通过描述弹性固体性质的本构关系相联系。
2.1 应力的表述——应力张量2.1.1应力表示考虑一个在静力平衡状态下,均匀弹性介质里一个任意取向的无限小平面。
平面的取向可以用这个平面的单位法向矢量nˆ来规定。
在nˆ方向的一侧施加在此面单位面积上的力叫做牵引力,用矢量),,()ˆ(zyxtttnt=表示。
在nˆ相反方向的另一侧施加在此面上的力与其大小相等,方向相反,即)ˆ()ˆ(ntnt-=-。
t在垂直于平面方向的分量叫做法应力,平行于平面方向的分量叫做剪应力。
在流体的情况下,没有剪应力,nptˆ-=,这里P 是压强。
上面的表示这是一个平面上的应力状况,为表示固体内部任意平面上的应力状态,应力张量τ在笛卡尔坐标系(图 2.1)里可以用作用于xyxzyz,,平面的牵引力来定义(:ˆˆˆ()()()ˆˆˆ()()()ˆˆˆ()()()xx xy xzx x xy y y yx yy yzz z z zx zy zzt x t y t zt x t y t zt x t y t zττττττττττ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2.1)在右式的表示中,第一个下角标表示面的法线方向,第二个下角标表示该面上应力在该坐标轴上的投影。
图2.1 在笛卡尔坐标系里描述作用在无限小立方体面上的力的牵引力矢量)ˆ(),ˆ(),ˆ(z t y t xt 。
应力分量的符号规定如下:对于正应力,我们规定拉应力为正,压应力为负。
对于剪应力,如果截面的外法线方向与坐标轴一致,则沿着坐标轴的正方向为正,反之为负;如果截面方向与外法线方向相反,则沿着坐标轴反方向为正。
第二章知识点: (1)应力矢量()0limS FSνσ∆→∆∆其中,ν是S ∆的法向量(2)应力张量()()()111121321222323132333σσσσσσσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭其中,()()()123,,σσσ 分别是123,,e e e方向的应力矢量,且()()()111122133121122223323113223333e e e e e e e e e σσσσσσσσσσσσ=++=++=++上式可以写为张量形式ij i j e e σσ=或者用正应力剪应力将应力张量写为x xy xz yx y yz zx zy z σττστστττσ⎛⎫ ⎪= ⎪ ⎪⎝⎭(3)柯西公式(应力矢量和应力张量的关系)()νσνσ=⋅其中,ν是斜面的法向量,对于表面来说,就是外法向量。
可以将柯西公式写成如下形式()i i mj m j i mj i m j i mj im j i ij j e e e e e e e e νσνσνσνσνσδνσ=⋅=⋅=⋅== 即()i ij j νσνσ=这其实是三个式子,分量形式为()()()111122133112112222332231132233333++++i i i i i i νννσνσνσνσνσσνσνσνσνσσνσνσνσνσ==++====在表面上,所求出的()νσ就是外载荷。
(4)应力张量的转轴公式''''m n ij m i n j σσββ=证明如下:'''''''''''''''''''',ij i j m n m n i m i m j n j n ij m i n j m n m n m n m n ij m i n je e e e e e e e e e e e σσσββσββσσσββ====∴=∴=也可以将转轴公式写为矩阵形式[][][][]'Tσβσβ=其中,[]σ、[]'σ是坐标系变换前后的应力张量的分量,[]()'m i ββ=,'m i β是i e 在'm e上的分量,可以用如下公式计算()''cos ,m ii m e e β=(5)剪应力互等定理根据微元体的力矩平衡,可以得到 ,,yz zy xz zx xy yx ττττττ===也就是说ij ji σσ=应力张量是一个二阶对称的张量 (6)主应力由于应力张量是二阶对称的,所以可以将其对角化[][][]123Tσσβσβσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦并且123,,σσσ从大到小排列,他们称为主应力,[]β是三个主应力的方向。
弹性力学的应力弛豫与塑性变形分析弹性力学是研究物体在变形后能够恢复原状的力学学科。
在实际应用中,很多材料在受力后会发生塑性变形,即不能完全恢复原来的形状。
本文将重点探讨弹性力学中的应力弛豫和塑性变形现象,并分析其原因和应用。
一、应力弛豫应力弛豫是指材料在受力后,其内部应力随时间逐渐减小的过程。
这种现象可以在实验中观察到,常见于高分子材料、液晶等多种物质中。
应力弛豫的形成可以归结为材料内部的结构重排和分子运动。
在弹性力学中,材料受力后会发生分子位移和能量重分布,导致内部结构的变化。
这些变化需要一定的时间来完成,因此材料内部的应力也会随时间逐渐减小。
这种时间相关的应力变化称为弛豫,表现为应力-时间的曲线。
应力弛豫的具体原因可以从分子层面进行解释。
在材料受力后,分子会发生位移和转动,从而改变原有的排列和结构。
这些结构的变化需要时间来完成,直到达到新的力平衡状态。
因此,在应力弛豫过程中,材料内部的分子会经历一系列的位移和调整,导致应力逐渐减小。
应力弛豫对材料的影响是多方面的。
首先,它可以改变材料的物理性质,如导电性、热传导性等。
其次,它还可以影响材料的力学性能,如强度、刚度等。
因此,对于需要长时间保持稳定性能的材料,在设计和选择时需要考虑应力弛豫的效应。
二、塑性变形分析与应力弛豫不同,塑性变形指的是在外力作用下,材料发生的不可逆性变形。
这种变形无法通过解除外力或应力恢复为原始状态。
塑性变形是金属材料等多种材料中常见的力学现象。
塑性变形的发生需要材料达到一定的应力水平,使其超过了其弹性极限。
当材料达到弹性极限后,其内部原子会发生塑性畸变,从而导致整体的变形。
这种塑性畸变包括原子间的位移和滑移等,使得材料的晶格结构变得不规则。
塑性变形的原因可以从晶体结构和材料缺陷两个方面进行解释。
首先,晶体结构本身在受力时会发生弹性和塑性的变化。
其次,材料中的晶界、位错和孔隙等缺陷也会在受力时起到重要作用,促进塑性变形的发生。
第二章 应力分析研究弹性力学问题要从三方面规律(条件):平衡、几何、物理来建立,本章就是研究第一个规律:平衡规律。
第1节 内力和外力1.1 外力:物体承受外因而导致变形,外因可以是热力作用、化学力作用、电磁力作用和机械力作用;另一方面从量纲分类,外力主要为体积力和表面积力。
我们讨论的外力是属于机械力中的体力和面力的范围。
1. 外部体力:作用在物体单位体积(质量)上的力如重力(惯性力)。
量纲:力/(长度)3。
求V 中任意点P 上承受体力采用极限方法:X X 2X X 2第2节 应力和应力张量2.1 应力当变形体受外力作用时,要发生变形,同时引起物体内部各点之间相互作用力(抵抗力)——内力,为了描述物体内任意点P 的内力可采取如下方法:过P 点设一个截面S 将V 分为两部分:(作用力与反作用力)FF -l n n x ==1、m n n y ==2、n n n z ==3。
即n t m t l t n t n t n t n t t z y x i i n )()()(3)3(2)2(1)1()()( ++=++==,,1S n P B C S A B C ∆∆∆∆==0)()(=++-V f S t S t i i n ∆∆∆而 S n S t t i i i i ∆∆=-=-,)()(代入上式,并忽略高阶微量 0)()(=-S n t S t i i n ∆∆或 )()(i i n t n t =展开为 3)3(2)2(1)1()(n t n t n t t n++= 或n t m t l t t z y x n )()()()( ++=2.1 应力张量每个坐标面上的应力矢量又可以沿三个坐标面分解三个分量,比如坐标面法线为x 1jxj j j z xz y xy x xx x e e e e e e e e t t σσσσσσσσ==++=++==1313212111)()1(x 2x 1 x 1(x)x 3,,32S n PAB S n PAC ∆=∆∆=∆同理,得j yj j j z yz y yy x yx y e e e e e e e e t t σσσσσσσσ==++=++==2323222121)()2(jzj j j z zz y zy x zx z e e e e e e e e t t σσσσσσσσ==++=++==3333232131)()3(将法线方向n 取为单位长度,则将式(3.25)代入式(3.26),得3.3.2.讨论:) ( 333333222222253.l p l p l p l p ⎪⎪⎪⎭⎪⎬====σσσσ) (2631232221.l l l =++7)=1 ()()+() (23322222311.p p p σσσ+(1):如果以p 1,p 2,p 3为坐标轴建立直角坐标系,则在此坐标系中,上式为一椭球面方程,主半轴分别为σ1,σ2,σ3,称为应力椭球面。
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。
面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。
体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。
学习要点:1、体力;2、面力。
1、体力作用于物体的外力可以分为两种类型:体力和面力。
所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。
例如物体的重力,惯性力,电磁力等等。
面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。
为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示设△V 的体力合力为△F,则P点的体力定义为令微小体积元素△V趋近于0,则可以定义一点P的体力为一般来讲,物体内部各点处的体力是不相同的。
物体内任一点的体力用F b表示,称为体力矢量,其方向由该点的体力合力方向确定。
体力沿三个坐标轴的分量用F b i( i = 1,2,3)或者F b x, F b y, F b z表示,称为体力分量。
体力分量的方向规定与坐标轴方向一致为正,反之为负。
应该注意的是:在弹性力学中,体力是指单位体积的力。
2、面力类似于体力,可以给出面力的定义。
对于物体表面上的任一点P,在P点的邻域取一包含P点的微小面积元素△S,如图所示设△S 上作用的面力合力为△F,则P 点的面力定义为面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。
一般条件下,面力边界条件是弹性力学问题求解的主要条件。
面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。
面力的方向规定以与坐标轴方向一致为正,反之为负。
弹性力学中的面力均定义为单位面积的面力。
§2.2 应力和应力状态学习思路:物体在外界因素作用下,物体内部各个部分之间将产生相互作用,物体内部相互作用力称为内力。
为讨论弹性体的强度,将单位面积的内力,就是内力集度定义为应力。
p n为过任意点M,法线方向为n的微分面上的应力矢量。
应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。
一点所有截面的应力矢量的集合称为一点的应力状态。
讨论一点各个截面的应力变化趋势称为应力状态分析。
凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。
应力状态对于研究物体的强度是十分重要的。
显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一定的关系。
不可能也不必要写出一点所有截面的应力。
为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。
为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。
学习要点:1、应力矢量;2、应力矢量的分解;3、应力分量。
1、应力矢量物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力称为内力。
内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。
内力的分布一般是不均匀的。
为了描述任意一点M的内力,在截面上选取一个包含M的微面积单元ΔS,如图所示则可认为微面积上的内力主矢ΔF的分布是均匀的。
设ΔS 的法线方向为n,则定义:上式中p n为微面积ΔS 上的平均应力。
如果令ΔS 逐渐减小,并且趋近于零,取极限可得上述分析可见:p n是通过任意点M,法线方向为n的微分面上的应力矢量。
应力p n是矢量,方向由内力主矢ΔF确定,又受ΔS方位变化的影响。
应力矢量不仅随点的位置改变而变化,而且即使在同一点,也由于截面的法线方向n的方向改变而变化。
这种性质称为应力状态。
因此凡是应力均必须说明是物体内哪一点,并且通过该点哪一个微分面的应力。
一点所有截面的应力矢量的集合称为一点的应力状态。
应力状态对于研究物体的强度是十分重要的。
显然,作为弹性体内部一个确定点的各个截面的应力矢量,就是应力状态必然存在一定的关系。
不可能也不必要写出一点所有截面的应力。
为了准确、明了地描述一点的应力状态,必须使用合理的应力参数。
2、应力矢量的分解讨论一点各个截面的应力变化趋势称为应力状态分析。
为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解。
应力矢量的一种分解方法是将应力矢量p n在给定的坐标系下沿三个坐标轴方向分解,如用p x, p y, p z表示其分量,则p n=p x i + p y j+ p z k,这种形式的分解并没有工程实际应用的价值。
它的主要用途在于作为工具用于推导弹性力学基本方程。
另一种分解方法,如图所示,是将应力矢量p n沿微分面ΔS的法线和切线方向分解。
与微分面ΔS 法线n方向的投影称为正应力,用 n表示;平行于微分面ΔS的投影称为切应力或剪应力,切应力作用于截面内,用τn表示。
弹性体的强度与正应力和切应力息息相关,因此这是工程结构分析中经常使用的应力分解形式。
由于微分面法线n的方向只有一个,因此说明截面方位就确定了正应力σn的方向。
但是平行于微分面的方向有无穷多,因此切应力τn不仅需要确定截面方位,还必须指明方向。
3、应力分量为了表达弹性体内部任意一点M 的应力状态,利用三个与坐标轴方向一致的微分面,通过M点截取一个平行六面体单元,如图所示。
将六面体单元各个截面上的应力矢量分别向3个坐标轴投影,可以得到应力分量σij。
应力分量的第一脚标i 表示该应力所在微分面的方向,即微分面外法线的方向;第二脚标j 表示应力的方向。
如果应力分量与j 坐标轴方向一致为正,反之为负。
如果两个脚标相同,i=j,则应力分量方向与作用平面法线方向一致,这是正应力,可以并写为一个脚标,例如σx。
如果两脚标不同,i≠j,则应力分量方向与作用平面法线方向不同,这是切应力,例如τxy。
六面体单元的3对截面共有九个应力分量σij。
应该注意:应力分量是应力矢量在坐标轴上的投影,因此是标量,而不是矢量。
在已知的坐标系中应力状态通常用应力张量表示。
使用应力张量可以完整地描述一点的应力状态。
§2.3 斜截面上的应力应力矢量与应力分量学习思路:应力矢量不仅随点的位置改变而变化,而且也由于截面的法线方向n的方向改变而变化,研究这一变化规律称为应力状态分析。
如果应力分量能够描述一点的应力状态,那么应力分量与其它应力参数必然有内在联系。
本节分析应力矢量与应力分量之间的关系,为深入讨论应力状态作准备。
利用三个坐标平面和一个任意斜截面构造微分四面体单元,通过四面体单元探讨坐标平面的应力分量和斜截面上的应力矢量的关系。
根据平衡关系,推导任意斜截面的应力矢量、法线方向余弦和各个应力分量之间的关系。
分析表明:一点的应力分量确定后,任意斜截面的应力矢量是确定的。
学习要点:1、分四面体单元;2、应力矢量与应力分量。
1、微分四面体单元一点的九个应力分量如果能够完全确定一点的应力状态,则其必须能够表达通过该点的任意斜截面上的应力矢量。
为了说明这一问题,在O点用三个坐标面和一任意斜截面截取一个微分四面体单元,如图所示。
斜截面的法线方向矢量为n,它的三个方向余弦分别为l,m和n。
设斜截面上的应力为p n,i,j和k 分别为三个坐标轴方向的单位矢量,p n 在坐标轴上的投影分别为p x, p y, p z。
则应力矢量可以表示为p n= p x i+ p y j+ p z k同样,把单位体积的质量所受的体积力F b沿坐标轴分解,有F b= F b x i+ F b y j+ F b z k设S为ΔABC的面积,则ΔOBC=lS, ΔOCA=mS, ΔOAB=nSΔABC的法线方向的单位矢量可表示为n= l i+ l j + m k2、应力矢量与应力分量微分四面体在应力矢量和体积力作用下应满足平衡条件,设h为O点至斜面ABC的高,由x方向的平衡,可得将公式代入上式,则对于微分四面体单元,h与单元体棱边相关,因此与1相比为小量,趋近于零,因此同理如果采用张量记号,则上述公式可以表示为上式给出了物体内一点的9个应力分量和通过同一点的各个微分面上的应力之间的关系。
这一关系式表明,只要有了应力分量,就能够确定一点任意截面的应力矢量,或者正应力和切应力。
因此应力分量可以确定一点的应力状态。
§2.4 平衡微分方程学习思路:物体在外力作用下产生变形,最后达到平衡位置。
平衡不仅是指整个物体,而且弹性体的任何部分也是平衡的。
本节通过微分平行六面体单元讨论弹性体内部任意一点的平衡。
应该注意:在讨论微分单元体平衡时,考虑到坐标的微小变化将导致应力分量的相应改变。
即坐标有增量时,应力分量也有对应的增量。
这个增量作为高阶小量,如果不涉及微分单元体平衡时是可以不考虑的。