版人教A版高中数学必修一测试题含答案
- 格式:docx
- 大小:23.54 KB
- 文档页数:5
……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教A版高中数学必修第一册全册测试卷(含答案)一、单选题
1.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知集合,则()
A.B.
C.D.
3.若集合,0,1,,则
A.B.C.D.
4.已知正数x,y满足:,则x+y的最小值为( )
A .B.C.6D.
5.函数,其中,记在区间,上的最小值为(a),则函数(a)的最大值为()
A.B.0C.1D.2
6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()
A.B.
C.D.
7.设函数,则函数的定义域为()A.B.C.D.
8.函数的定义域为()A.B.C.D.
9.函数的图象大致为()
A.B.C.D.
10.设,则的大小关系是()A.B.C.D.
11.“”是“直线和直线互相垂直”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件。
1.1 集合的概念一、单选题1.下列叙述正确的是( ).A .方程2210x x -+=的根构成的集合为{}1,1-B .{}22401030x x R x x R x ⎧⎫+>⎧∈+==∈⎨⎨⎬+<⎩⎩⎭C .集合(){,5M x y x y =+=且}20x y -=表示的集合是{}2,3D .集合{}1,2,3与集合{}3,2,1是不同的集合答案:B解析:解出2210x x -+=、520x y x y +=⎧⎨-=⎩可判断AC 的正误,由集合的无序性可得D 的正误,{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,可得B 的正误. 详解:方程2210x x -+=的根为1x =,故A 错误;{}22401030x x R x x Rx ⎧⎫+>⎧∈+==∈=∅⎨⎨⎬+<⎩⎩⎭,故B 正确; 由520x y x y +=⎧⎨-=⎩可解得53103x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 错误; 集合{}1,2,3与集合{}3,2,1是相同的集合,故D 错误故选:B2.定义集合运算:{|()(),A B z z x y x y ⊗==+⨯-,}x A y B ∈∈,设A =,{1B =,则集合A B ⊗的真子集个数为A .8B .7C .16D .15答案:B详解:由题意A =,{B =,则A B ⊗有)))111,0,112,⨯=⨯==1= 四种结果,由集合中元素的互异性,则集合A B ⊗由3个元素,故集合A B ⊗的真子集个数为3217-=个,故选B3.已知M =x|x≤5,x∈R},a =b ( )A .a∈M,b∈MB .a∈M,b MC .a M ,b∈MD .a M ,b M答案:B解析:∵5a =,5b ,{|5}M x x x R =≤∈,,∴ a M b M ∈∉,,故选B. 4.设集合A={1,4,5},若a∈A,5-a∈A,那么a 的值为A .1B .4C .1或4D .0 答案:C详解:试题分析:当1a =时54a A -=∈成立;当4a =时51a A -=∈成立;当5a =时50a A -=∉,舍. 所以1a =或4a =.故C 正确.考点:元素与集合间的关系.5.已知集合A =3|,2x x Z Z x 且⎧⎫∈∈⎨⎬-⎩⎭,则集合A 中的元素个数为( ) A .2B .3C .4D .5 答案:C详解: 试题分析:32Z x ∈-,2x -的取值有3-、1-、1、3,又x Z ∈, x ∴值分别为5、3、1、1-,故集合A 中的元素个数为4,故选C.考点:数的整除性6.集合(x ,y)|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y)C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图像上的所有点组成的集合答案:D解析:由集合中的元素的表示法可知集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.详解:集合(x ,y )|y=2x ﹣1}中的元素为有序实数对(x ,y ),表示点,所以集合(x ,y )|y=2x ﹣1}表示函数y=2x ﹣1图象上的所有点组成的集合.故选D .点睛:本题考查了集合的分类,考查了集合中的元素,解答的关键是明确(x ,y )表示点,是基础题.7.已知集合{}1,2,3A =,则下列说法正确的是( )A .2A ∈B .2A ⊆C .2A ∉D .∅=A答案:A解析:根据元素与集合之间关系,可直接得出结果.详解:因为集合{}1,2,3A =,所以2A ∈.故选:A点睛:本题主要考查元素与集合之间关系的判断,熟记元素与集合之间的关系即可,属于基础题型.8.集合8,,3M y y x N y N x ⎧⎫==∈∈⎨⎬+⎩⎭的元素个数是 A .2B .4C .6D .8答案:A 解析:根据题中给出的条件,x y N ∈,分别从最小的自然数0开始给x 代值,求出相应的y 的值,直到得出的1y <为止,求出y N ∈的个数.详解: 因为8|,,3M y y x y N x ⎧⎫==∈⎨⎬+⎩⎭, 所以:当0x =时,83y N =∈/; 当x 1=时,8213y N ==∈+; 当x 2=时,88235y N ==∈/+; 当3x =时,84333y N ==∈/+; 当x 4=时,88437y N ==∈/+;当5x =时,8153y N ==∈+; 当6x ≥时,813y x =<+,且0y ≠,所以y N ∉. 综上,8|,,{2,1}3M y y x y N x ⎧⎫==∈=⎨⎬+⎩⎭,元素个数是2个. 故选A.点睛:本题考查了集合中元素的个数,关键根据,x y N ∈用赋值法分析和解决问题,属于基础题.9.下面对集合1,5,9,13,17}用描述法表示,其中正确的是( )A .x|x 是小于18的正奇数}B .x|x =4s +1,s∈N,且s <5}C .x|x =4t -3,t∈N,且t<5}D .x|x =4s -3,s∈N ,且s<6}答案:B解析:根据描述法的定义,依次判断选项即可.详解:A :集合含有元素3,故A 错误;B :当s 01234=、、、、时,1591317x =、、、、,故B 正确; C :当0t =时,3x =-,故C 错误;D :当0s =时,3x =-,故D 错误.故选:B二、填空题1.已知{}20,,A a a =,若1A ∈,则实数a 的值是______.答案:1-解析:利用元素和集合的关系,以及集合的互异性可求解.详解:1A ∈,1a 或21a =,当1a =时,21a =,则{0,1,1}A =,不满足集合的互异性,舍去.当21a =时,解得:1a =-,1a =(舍去),此时{0,1,1}A =-符合题意.故答案为:1-2.已知集合123A x N y Z x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 用列举法表示为__________________答案:{}0,1,3,9解析:由y Z ∈,x ∈N ,可得3x +是12不小于3的因数,列出因数,求解即可详解:由x ∈N ,y Z ∈,则3x +是12不小于3的因数,则3x +可为3,4,6,12,即x 为0,1,3,9, 则集合A 用列举法表示为{}0,1,3,9点睛:本题考查描述法与列举法的转换,列举法表示集合,数集的应用3.设集合{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9,则实数a 的值为______.答案:3-解析:先通过已知可得219a -=或29a =,解方程求出a ,然后带入集合验证,满足互异性即可.详解:∵{}24,21,A a a =--,{}9,5,1B a a =--,且A ,B 中有唯一的公共元素9, ∴219a -=或29a =.当219a -=时,5a =,此时{}4,9,25A =-,{}9,0,4B =-,A ,B 中还有公共元素4-,不符合题意;当29a =时,3a =±,若3a =,{}9,2,2B =--,集合B 违背互异性.若3,{4,7,9},{9,8,4},{9}a A B A B =-=--=-=,∴3a =-.故答案为:3-.点睛:本题考查元素与集合的关系,以及集合中元素的互异性,是基础题.4.集合[]{}cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示)答案:2,33ππ⎧⎫⎨⎬⎩⎭ 解析:由已知得cos 2x ππ=,或cos 2x ππ=-,由此能得出结果. 详解: 集合[]{}cos(cos )0,0,x x x ππ=∈,cos 2x ππ∴=,或cos 2x ππ=-, 1cos 2x ∴=或1cos 2x =-, 3x π∴=或23x π=. []{}2cos(cos )0,0,,33x x x ππππ⎧⎫∴=∈=⎨⎬⎩⎭. 故答案为:2,33ππ⎧⎫⎨⎬⎩⎭. 点睛:本题主要考查的是三角函数以及列举法表示集合,是基础题.5.用描述法表示图中的阴影部分(包括边界)___________.答案:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭ 解析:根据阴影部分所在象限,确定xy 的范围,再结合图像,判断出,x y 的取值范围,由此求得可以表示出阴影部分的集合.详解:由于阴影部分所在象限为第一、三象限,且在,x y 轴上都有点,故0xy ≥;根据图像可知211,132x y -≤≤-≤≤,所以描述法表示图中的阴影部分(包括边界)为(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 故填:(){,0,x y xy ≥且211,132x y ⎫-≤≤-≤≤⎬⎭. 点睛:本小题主要考查用集合表示区域,考查数形结合的数学思想方法,属于基础题.三、解答题1.已知53,⎛ ⎝⎭和3)都是集合{}22(,)|1A x y ax by =-=中的元素,求实数,a b 的值.答案:1,14a b ==解析:把3,⎛ ⎝⎭和代入方程221ax by -=列出方程组,即可求出实数,a b 的值. 详解:由题:3,⎛ ⎝⎭和都是集合{}22(,)|1A x y ax by =-=中的元素,所以3,⎛ ⎝⎭和满足方程221ax by -=, 59141631a b a b ⎧-=⎪⎨⎪-=⎩,解得:141a b ⎧=⎪⎨⎪=⎩, 所以1,14a b ==.点睛:此题考查根据集合中的元素求参数的值,关键在于准确代值列出方程组,解方程组即可得解.2.若a ,b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭. 求:(1)a b +;(2)20222019a b +.答案:(1) 0; (2) 2;解析:(1)根据{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭可得出0a b +=, (2)由(1)得=-a b ,即1b a=-,根据元素的互异性可得1a =-, 1b =,代入20222019a b +计算即可. 详解: (1)根据元素的互异性,得0a b +=或0a =,若0a =,则b a无意义,故0a b +=; (2) 由(1)得=-a b ,即1b a =-,据元素的互异性可得:1b a a ==-,1b =, ∴()2022202220192019112a b +=-+=.点睛:本题考查集合中元素的互异性,属于基础题.3.在平面直角坐标系中,O 为坐标原点,对任意的点(),P x y ,定义OP x y =+,任取点()()1122,,,A x y B x y ,记()()''1221,,,A x y B x y ,若此时2222''OA OB OA OB +≥+成立,则称点,A B 相关.(1)分别判断下面各组中两点是否相关,并说明理由.①()()2,1,3,2A B -;②()()4,3,2,4C D -.(2)给定*N ,3n n ∈≥,点集(){},,,,n x y n x n n y n x y Z Ω=-≤≤-≤≤∈,求集合n Ω中与点()1,1A 相关的点的个数.答案:(1)见解析(2)245n +解析:(1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.(2)根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合n Ω中与点(1,1)A 相关的点的个数;详解:若点()11,A x y ,()22,B x y 相关,则()12,A x y ',()21,B x y ,而OP x y =+不妨设11220,0,0,0x y x y ≥≥≥≥ 则由定义2222OA OB OA OB ''+≥+可知()()()()222211221221x y x y x y x y +++≥+++ 化简变形可得()()12120x x y y --≥(1)对于①(2,1)A -,(3,2)B ;对应坐标取绝对值,代入可知(23)(12)0--≥成立,因此相关;②对应坐标取绝对值,代入可知(42)(34)0--<,因此不相关.(2)在第一象限内,(1)(1)0x y --≥,可知1x n ≤≤且1y n ≤≤,有2n 个点;同理可知,在第二象限、第三象限、第四象限也各有2n 个点.在x 轴正半轴上,点()1,0满足条件;在x 轴负半轴上,点1,0满足条件;在y 轴正半轴上,点0,1满足条件;在y 轴负半轴上,点0,1满足条件;原点()0,0满足条件;因此集合n Ω中共有245n +个点与点(1,1)A 相关.点睛:本题考查了集合中新定义的应用,对题意的理解与分析能力的要求较高,属于难题.。
第一章章末检测题一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的)1 .全集U = {0, 1, 2, 3}且?U A={0, 2},那么集合A的真子集共有()A.3个B.4个C.5个D.6个答案 A2 .设S, T是两个非空集合,且它们互不包含,那么SU(SAT)等于()A.SATB.SC.?D.T答案 B解析,.,sn T? S, . .su(SAT)= S.3 .全集U = Z, A = {- 1, 0, 1, 2}, B = {x|x2=x},那么An(?uB)为( )A.{ -1 , 2}B.{ - 1, 0}C.{0 ,1}D.{1 , 2}答案 A4 .A = {0, 1}, B = {-1, 0, 1}, f是从A到B的映射,那么满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.2个答案 Ax-5x2(x<5),…,一5 .f(x)= 那么f(8)的函数值为()f (x —2) (x>5),A.-312B. — 174C.174D.-76答案 D6 .函数y=f(x)在区间[—5, 5]上是增函数,那么以下不等式中成立的是()A.f(4)>f(—兀)>f(3)B.f(兀)>f(4)>f(3)C.f(4)>f(3)>f(兀)D.f( — 3)>f(—兀)>f( — 4)答案D精品文档7 .设f(x)是R上的偶函数,且当xC(0, +8)时,f(x) =x(1 + 3x),那么当xC( —8, 0)时, f(x)等于()A.x(1 + 就)B. — x(1 + 版)C. — x(1 —3X)D.x(1 — 3X)答案C8 .当1WxW3时,函数f(x) =2x2 —6x+c的值域为(),,,,3A.[f(1) , f(3)]B.[f(1),0]C.[f(2), f(3)]D.[c, f(3)]答案 C9 .集合M? {4, 7, 8},且M中至多有一个偶数,那么这样的集合共有()A.5个B.6个C.7个D.8个答案 B解析M 可能为?,{7} , {4} , {8} , {7, 4} , {7 , 8}共6 个.f (2x)10 .假设函数f(x)的定义域是[0, 2],那么函数g(x)= :的定义域是( )x 1A.[0 , 2]B.(1 , 2]C.[0, 1)D.以上都不对答案C11 .二次函数f(x) =x2—2x+m,对任意xC R有( )A.f(1 —x) = f(1+x)B.f( -1-x) = f(- 1 + x)C.f(x-1) = f(x+1)D.f( —x) = f(x)答案Ac g (x),假设f (x) > g (x),12 . f(x) =3—2|x|, g(x) =x2-2x, F(x)= 那么F(x)的最值是f (x),右f (x) <g (x).( ) A.最大值为3,最小值—1 B.最大值为7— 25,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案B二、填空题(本大题共4小题,每题5分,共20分)13 .集合A = {x C N|B X C N}用列举法表示A,那么人=.答案{0, 1}8 .解析由------ C N,知 2 —x=1, 2, 4, 8,又xCN,2- x. .x=1或0.14 .集合A = {1 , 3, m} , B = {3 , 4} , A U B= {1 , 2, 3, 4},那么m =.答案215 .国家规定个人稿费的纳税方法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元的14%纳税;超过4 000元的按全部稿酬的11%纳税.某人出版了一本书, 共纳税420元,那么这个人的稿费为元.答案 3 80016 .假设直线y=1与曲线y=x2—|x|十a有四个交点,那么a的取值范围是. 55答案1<a<54解析由图知a>1且抛物线顶点的纵坐标小于 1.a>1,一一 5即4a- 1 ? 1<a<4.丁<1三、解做题(本大题共6个小题,共70分,解容许写出文字说明,证实过程或演算步骤)17.(10 分)全集U = {x|x —2>0 或x—1W0}, A = {x|x<1 或x>3} , B = {x|x < 1 或x>2}, 求A AB, AU B, (?U A) A (?U B),(?U A) U (?U B).解析全集U = {x|x > 2 或xW 1},,A CB = A ={x|x<1 或x>3};AU B=B = {x|x <1 或x>2} ; (?U A) A (?U B)=?U(A U B) = {2};(?U A) U (?U B)=?U(A A B) = {x|2 WxW 3 或x= 1}.18.(12 分)设A={ —3, 4}, B = {x|x2-2ax+b=0}, B w ?,且A n B= B,求a, b 的值.解析. An B=B, .£? A,.6=?或{—3}或{4}或{ —3, 4}.精品文档(1)假设B=?,不满足题意.,舍去.A= (— 2a) 6 7—4b=0,(2)假设 B = { —3},那么 9+6a+b= 0,a= - 3, 解得 b= 9.A= (一 2a) 2—4b=0,a=4, ⑶假设B = {4},那么解得16-8a+b=0,b=16.⑴判断函数f(x)在( — 8, 0)上的单调性,并证实你的结论; (2)求出函数f(x)在[ — 3, — 1]上的最大值与最小值.1 1斛析 (1)设任思 X 1 , X 2 C ( — 8 , 0),且 X 1<X 2 ,而 f(x 1) — f(X 2)= ------------------------------- - - --------- ;1+X 12 1+X 22(X2+ X1) ( X2— X1)2 ---------- 21,由 X 1+X 2<0, X 2-X 1>0,得 f(x 1)— f(X 2)<0,得 f(X 1)<f(X 2),故函数 f(x) (1 +X 12) ( 1+ X 22)1 , ......... .. .. ......= -------- 2在(—00 , 0)上为单倜递增函数. 1 + x 2 1 (1)(2)f(x) min= f( - 3) = 10, f(x) max = f(- 1)=2,6 1 - 1故f(x)在[-3, —1]上的取大值为2,取小值为 —.20.(12分)某厂生产某种零件,每个零件的本钱为 40元,出厂单价为60元,该厂为鼓励销 售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为 51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P=f(x)的表达式;(3)当销售商一次订购 500个零件时,该厂获得的利润是多少元?如果订购 1 000个,利润又 是多少元(工厂售出一个零件的利润=实际出厂单价一本钱价 )?解析(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为X 0个,那么x 0 = 100 +(4)假设 B = { —3, 4},那么 19.(12分)函数f(x)=A= (— 2a) 2-4b>0,9+ 6a+b=0,16-8a+b=0,1a=3,解得b=- 12.1 + x 2.因此,当一次订购量为 550个时,每个零件的实际出厂价格为 51元.(2)当 0<xw 100 时,P=60., —x当 100Vx<550 时,P= 60-0.02(x- 100) = 62- — 当 x>550 时,P= 51.60, 0<x< 100所以 P=f(x)= 62 —高,100Vx<550, xCN 5051 , x>550.(3)设销售商的一次订购量为 x 个时,工厂获得的利润为 L 元,那么20x, 0<x< 100,小〜 “ x 2 ................................. ......... L = (P-40)x= 22x--, 100Vx<550, (xCN) 5011x, x> 550.当 x= 500 时,L= 6 000; 当 x= 1 000 时,L= 11 000. 因此,当销售商一次订购 500个零件时,该厂获得的利润是6 000元;如果订购1 000个,禾I 」润是11 000元.21 .(12分)求函数f(x) =x 2-2ax- 1在区间[0, 2]上的最值.解析 f(x) = x 2 — 2ax — 1 = (x — a)2 — a 2 — 1, (1)当aW0时,f(x)在[0, 2]上为增函数,f(x)的最小值为f(0) = —1,最大值为f(2)=3—4a.(2)当0<aW1, f(x)在[0, a ]上为减函数,在[a, 2]上为增函数,且 f(2)>f(0).f(x)的最大值为 f(2) = 3-4a, f(x)的最小值为一a 2 — 1.(3)当1<a<2时,f(x)在[0, a ]上为减函数,在[a, 2]上为增函数,且f(0)>f(2) ,,f(x)的最大值 为 f(0) = - 1, f(x)的最小值为 f(a) = - a 2-1.(4)当a>2时,f(x)在[0, 2]上为减函数,f(x)的最大值为f(0)=—1, f(x)的最小值为3-4a. 22 .(12分)函数f(x)的定义域是(0, +8), 当 x>1 时,f(x)>0,且 f(x • y)f(x) +f(y).60— 510.02 = 550.(1)求f(1);(2)证实f(x)在定义域上是增函数;(3)如果f(1)= — 1 ,求满足不等式f(x) — f(x — 2) > 2的x的取值范围. 3解析(1)令x=y=1,得f(1) = 2f(1),故f(1) = 0.(2)证实:令y = 11,得f(1) = f(x) +f(1)= 0,故f(1) = — f(x).任取x1,xzC (0, + 00),且x1<x2, -, , , .1 . x2那么f(x 2) - f(x1) = f(x2) + f( -) = f(—).x 1 x 1,一x2 _ x2 __由于媪>1,故f(G>°,从而f(x 2)>f(x 1 ).x1 x 1. f(x)在(0, + 8)上是增函数.(3)由于f(1)=- 1,而f(1)=-f(3),故f(3)= 1. 3 3在f(x -=y(x) + f(y)中,令x=y=3,得f(9) = f(3) + f(3) = 2................... .... .... 9 一故所给不等式可化为f(x) — f(x —2)>f(9),.」仅)>f[9(x—2)], ..xwz.又x-2>0,9 . 2<x W4.一,...一9,x的取值范围是(2, 4].1.集合A = {x|x>1} , B = {x| — 1<x<2},那么APB 等于()A.{x| — 1<x<2} C.{x| — 1<x<1} B.{x|x> — 1} D.{x|1<x<2}答案D2 .函数f: A-B〔A, B为非空数集〕,定义域为M,值域为N,那么A, B, M, N的关系是〔〕A.M = A, N= BB.M? A, N = BC.M = A, N? BD.M? A, N? B答案C解析值域N应为集合B的子集,即N? B,而不一定有N=B.3 .根据市场调查,某种新产品投放市场的30天内,每件销售价格P〔元〕与时间t〔天tCN*〕的关系满足以下图,日销售Q〔件〕与时间t〔天〕之间的关系是Q=—t+40〔tC N*〕.〔1〕写出该产品每件销售价格P与时间t的函数关系;〔2〕在这30 天内,哪一天的日销售金额最大?〔日销售金额=每件产品销售价格X日销量〕解析〔1〕根据图像,每件销售价格P 与时间t 的函数关系为:_ *.t+30 (0<t<20, te N ),P=50 (20<t<30, tCN*).(t+30) (― t+40) (0<tw20, te N ), (2)设日销售金额为y元,那么y =-50t+2 000 (20<t<30, tC N )-t2+10t + 1 200 (0<t<20, tCN*), =-50t+2 000 (20<t<30, tCN*).假设0<tW20, tC N*时,y=-t2+10t+ 1 200=- (t-5)2+ 1 225,・・・当t=5 时,y max= 1 225;假设20<tW30, tC N* 时,y=—50t+2 000 是减函数.•♦.y< —50X20+2 000 =1 000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1 225元.1c 3..4.右函数f(x) =/2—x + 2的7E义域和值域都是[1, b],求b的值.1 一3斛析由条件知,f(b) = b,且b>1 ,即2b2—b +2 = b.解得b= 3.。
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。
第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .AB =∅∩ 2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x =的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )x1 2 3 ()f x 2 3 1 ()g x 1 3 2 ()()f g xA .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()0f x =定义域为M ,则M =R ( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x --成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( ) A .()01,B .(]01,C .()()1001-,∪,D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( ) A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ ;(2)若()U A B B =∩ ,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C . 2.【答案】B【解析】 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,.3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1 .故选C .8.【答案】C【解析】 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x 是奇函数,()()11f f -=-. 又()g x 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-= ,.① ()()()()114114f g f g +-=∴+= ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤. 11.【答案】B【解析】(){}2min 26f x x x x x =-- ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B .12.【答案】D【解析】()4y f x =+ 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56 <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D .二、13.【答案】3-【解析】{}24A t =- ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意. 14.【答案】()()2131x x -+≥1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥.15.【答案】[]19,【解析】 函数y =的定义域为R ,()()2221101a x a x a ∴-+-++恒成立.当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f = ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称.又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭ ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x = ≤≤,{}|13U A x x x ∴=<或> , (){}|34U A B x x ∴=∩<< .(2)若()U A B B =∩ ,则U B A ⊆ . ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -= ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤, 1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x 在[]22-,上是单调函数, 222k -∴--或222k --,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=- ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =, 所以()()225210f x x x x x =-=-. (2)由(1)知()f x 的对称轴为52x =,当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤> (3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.。
人教A版高中数学必修一练习和习题答案第一章集合与函数的概念习题1.2(第24页)练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3(第39页)1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x=-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为xm ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.复习参考题(第44页)A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P POcm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a=时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a =-,或11a =,得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---,即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. .5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++, 121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤,25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.第二章 基本初等函数(I )习题2.1(第59页)习题2.3(第79页)第三章函数的应用练习(第91页)。
第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。
1.1 集合的概念一、单选题1.设集合{1,2,3}A =,{2,3,4}B =,{|}M x x ab a A b B ==∈∈,,,则M 中的元素个数为( )A .5B .6C .7D .8答案:C解析:根题意求出集合M 即可得出.详解:{1,2,3}A =,{2,3,4}B =,{}{|}2,3,4,6,8,9,12M x x ab a A b B ∴==∈∈=,,, 所以M 中的元素个数为7.故选:C.2.下列语句能构成集合的是A .大于2且小于8的实数全体B .某班中性格开朗的男生全体C .所有接近1的数的全体D .某校高个子女生全体答案:A解析:根据集合元素的确定性进行判断.详解:选项A:符合集合元素的确定性,可以构成集合;选项B:确定不了什么叫性格开朗,故不能构成集合;选项C:确定不了接近1的数的标准是什么,故不能构成集合;选项D:不符合集合的确定性,因为不知道高个子女生的标准是什么,故不能构成集合,因此本题选A.点睛:本题考查了集合元素的确定性,准确理解集合元素的确定性是解题的关键.3.下列集合符号运用不正确的是( )A .2Z ∈B .}{}{1,2,31,2⊆C .{}12⋂∅=∅,D .N R R ⋃=答案:B解析:根据集合知识,逐项分析,即可求得答案.详解:对于A,由2Z ∈,故A 正确;对于B,因为}{}{1,21,2,3⊆,故B 错误;对于C,因为{}12⋂∅=∅,,故C 正确; 对于D,因为N R R ⋃=,故D 正确.故选:B.点睛:解题关键是掌握集合的基础知识,考查了分析能力,属于基础题.4.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②*0N ∈;③集合{}2| 1 y y x =-与集合(){}2,| 1 x y y x =-是同一个集合;④空集是任何集合的真子集.A .0个B .1个C .2个D .3个答案:A解析:根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.详解:对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N *,错误;对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合(x ,y )|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选A .点睛:本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.5.集合{|13}A x Z x =∈-<<的元素个数是( )A .1B .2C .3D .4答案:C解析:根据集合A 的代表元素及需满足的条件,用列举法表示出集合A ,即可得到结果. 详解:解:{}{|13}0,1,2A x Z x =∈-<<=所以集合A 中含有3个元素故选:C点睛:本题考查列举法表示集合及集合元素的个数问题,属于基础题.6.下列关系式中,正确的关系式有几个(1)2∈Q (2)0∉N (3)1,2} (4)φ=0} A .0B .1C .2D .3 答案:B详解:(1)因为2为无理数,所以错;(2)O 属于N ,错;(3)正确;(4){}0φ⊆,错.7.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( )A .5B .4C .3D .2 答案:C详解:,,或是,,根据集合元素的互异性,集合为,共含有3个元素,故选C. 考点:元素与集合8.已知集合{A =第二象限角},{B =钝角},{C =小于180°的角},则A ,B ,C 关系正确的是( )A .B AC =⋂B .AC C .C C =B ∪D .A B C ==答案:C解析:由集合A ,B ,C ,求出B 与C 的并集,判断A 与C 的包含关系,以及A ,B ,C 三者之间的关系即可.详解:由题意得B A C ⋂,故A 错误; A 与C 互不包含,故B 错误;由{B =钝角}{小于180°的角},所以C C =B ∪,故C 正确 .由以上分析可知D 错误.故选:C .9.下列说法中正确的是( )A .联合国所有常任理事国(共5个)组成一个集合B .宜丰二中年龄较小的学生组成一个集合C .{}1,2,3与{}2,1,3是不同的集合D .由1,0,5,1,2,5组成的集合有六个元素答案:A解析:根据集合中的元素的性质逐一判断可得选项.详解:年龄较小不确定,所以B 选项错误;{1,2,3}与{2,1,3}是相同的集合,故C 错误;由1,0,5,1,2,5组成的集合有4个元素,故D 错误;故选:A.点睛:本题考查集合中的元素的性质和判断两个集合是否是同一集合,属于基础题.二、多选题1.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A .{(2,1)}-B .{2,1}-C .{(,)|2,1}x y x y ==-D .{2,1}x y ==- E.{(1,2)}-答案:AC 解析:解方程组可得集合中的元素为有序数对(2,1)-,根据集合的表示方法可得答案. 详解:由1,30x y x y +=⎧⎨--=⎩得2,1,x y =⎧⎨=-⎩即(){}2,1M =-, 所以根据集合的表示方法知A ,C 与集合M 表示的是同一个集合,故选:AC.点睛:本题考查同一集合问题,考查集合的表示方法,属于基础题.2.(多选题)设集合{}1,A x x a x R =-<∈,{}15,B x x x R =<<∈,则下列选项中,满足A B =∅的实数a 的取值范围的有( )A .[]0,6B .(][),24,-∞+∞C .(][),06,-∞+∞ D .[)8,+∞答案:CD 解析:先解集合A 得{}11A x a x a =-<<+,再根据题意求解即可.详解: 由题得{}11A x a x a =-<<+,{}15,B x x x R =<<∈,又因为A B =∅,所以11a +≤ 或15a -≥,即0a ≤或6a ≥.所以满足题意的有选项C ,D.故选:CD.点睛:本题考查绝对值不等式的解法,集合的交集运算,是中档题.3.下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有() A .(0,0) B .(0,1) C .(1,0) D .(2,1)-E.(1,2)-答案:ABC解析:用列举法表示集合,进而判断选项即可详解:∵{(,)|1,,}M x y x y x y =+≤∈∈N N ,∴00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或10x y =⎧⎨=⎩,∴{(0,0),(0,1),(1,0)}M =故选ABC点睛:本题考查列举法表示集合,考查点集,考查元素与集合的关系4.下面表示同一个集合的是( )A .{}2|10,,P x x x R Q =+=∈=∅B .{2,5},{5,2}P Q ==C .{(2,5)},{(5,2)}P Q ==D .{|21,},{|21,}P x x m m Z Q x x m m Z ==+∈==-∈答案:ABD解析:对选项中的集合元素逐一分析判断即可.详解:A 选项中,集合P 中方程210x +=无实数根,故P Q ==∅,表示同一个集合;B 选项中,集合P 中有两个元素2,5,集合Q 中页有两个元素2,5,表示同一个集合;C 选项中,集合P 中有一个元素是点(2,5),集合 Q 中有一个元素是点(5,2),元素不同,不是同一集合;D 选项中,集合{|21,}P x x m m Z ==+∈表示所有奇数构成的集合,集合{|21,}Q x x m m Z ==-∈也表示所有奇数构成的集合,表示同一个集合.故选:ABD.5.已知非空集合M 满足:①{2,1,21,,3,4}M ⊆--,②若x M ∈,则2x M ∈,则满足上述要求的集合M 有( )A .1,1,{}2,4-B .1,2,{}2,4-C .{1,1}-D .{1}答案:CD解析:由集合M 的元素所满足的两个性质,找出集合M 的元素,从而确定集合M 有哪些可能.详解:由题意可知3M ∉且4M ∉,而-2或2与4同时出现,所以2M -∉且2M ∉,所以满足条件的非空集合M 有{1,1}-,{1}.故选:CD .点睛:本题考查满足条件的集合的求法,考查元素与集合的关系,是基础题.三、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______.答案:1解析:根据两个集合的相等关系,可求得,a b 的值,即可得解.详解: 由题意可知,两个集合相等,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,由0a ≠所以只能是0ba=,即0b =,所以{}{}2,0,1,,0a a a =, 由集合互异性可知1a ≠,则21a =,解得1a =-,符合题意,所以20142015101a b +=+=,故答案为:1.本题考查了集合相等的应用,由集合互异性和相等求参数,属于基础题.2.已知集合A 中元素x 满足2x +a>0,a∈R.若1∉A ,2∈A,则实数a 的取值范围为________.答案:42a -<≤-解析:根据已知条件列不等式组,解不等式组求得a 的取值范围.详解:因为1∉A ,2∈A,所以210220a a ⨯+≤⎧⎨⨯+>⎩, 即42a -<≤-.故答案为:42a -<≤-3.用描述法表示所有偶数组成的集合__________.答案:{}2,x x n n Z =∈解析:利用描述法的定义求解即可详解: 解:所有偶数组成的集合为{}2,x x n n Z =∈, 故答案为:{}2,x x n n Z =∈4.设集合{}22,,A x x =,若1A ∈,则x 的值为___________.答案:1-解析:根据集合中元素的互异性可知,1x ≠,再根据1A ∈,可得1x =-.详解:根据集合中元素的互异性可知,2x x ≠,所以1x ≠且0x ≠,因为1A ∈,所以21x =,解得1x =-或1x =(舍),故答案为:1-点睛:本题考查了集合中元素的互异性,考查了元素与集合的关系,属于基础题.5.用描述法表示被4除余3的正整数集合:______.答案:x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式.设该数为x ,则该数x 满足x =4n+3,n∈N;∴所求的正整数集合为x|x =4n+3,n∈N}.故答案为:x|x =4n+3,n∈N}.点睛:本题主要考查集合的表示方法,属于基础题.四、解答题1.用适当的方法表示下列集合:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*};(2)不等式3x-8≥7-2x 的解集;答案:(1)列举法:{}(1,3),(2,2),(3,1)B =;(2)描述法:{}|3x x ≥.解析:(1)根据代表元素的特征将元素一一列举即可.(2)根据描述法表示集合即可求解.详解:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*}{}(1,3),(2,2),(3,1)=.(2)3x-8≥7-2x 解得3x ≥,所以不等式的解集为{}|3x x ≥.2.已知集合A=x|x=m 2-n 2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于A .答案:(1)见解析;(2)见解析.详解:试题分析:(1)由3=22-12即可证得;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,分当m ,n 同奇或同偶时和当m ,n 一奇,一偶时两种情况进行否定即可.试题解析:(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,1、当m ,n 同奇或同偶时,m-n ,m+n 均为偶数,∴(m-n )(m+n )为4的倍数,与4k-2不是4的倍数矛盾.2、当m ,n 一奇,一偶时,m-n ,m+n 均为奇数,∴(m-n )(m+n )为奇数,与4k-2是偶数矛盾.综上4k-2不属于A .3.由实数组成的集合A 具有如下性质:若a A ∈,b A ∈且a b <,那么1a A b+∈.(1)若集合A 恰有两个元素,且有一个元素为43,求集合A ;(2)是否存在一个含有元素0的三元素集合A ;若存在请求出集合,若不存在,请说明理由.答案:(1)4{4,}3A =或44{,}39A =或4{3A =;(2)存在,A =. 解析:(1)根据题意设集合4{,}3A x =,然后分类讨论x 与43的大小,根据集合的性质解出x ,即可得解;(2)假设存在一个含有元素0的三元素集合A {0,,}a b =,根据集合中元素的性质可知,0a <,0b <,进一步可知,1A ∈,不妨设集合{,0,1},(0A x x =>且1)x ≠,再根据集合中元素的性质可求得结果.详解:(1)集合A 恰有两个元素且43A ∈.不妨设集合4{,}3A x =, 当43x <时,由集合A 的性质可知,314x A +∈,则314x x +=或34143x +=, 解得4x =(舍)或49x =,所以集合44{,}39A = 当43x >时,由集合A 的性质可知,413A x +∈,则413x x +=或44133x +=,解得36x =或36x =(舍)或4x =所以集合4{,4}3A =或43{,}36A +=综上所述:4{4,}3A =或44{,}39A =或4{3A =. (2)假设存在一个含有元素0的三元素集合A {0,,}a b =,即0A ∈,当0a >时,则10a +无意义,当0b >时,则10b +无意义, 所以0a <,0b <,并且01A a +∈,01A b +∈,即1A ∈, 不妨设集合{,0,1},(0A x x =>且1)x ≠,当1x >时,由题意可知,11A x+∈,若11x x +=,即210x x --=,解得x =或x =(舍),此时集合A =; 若111x +=,则10x =不成立; 若110x+=,即1x =-(舍), 当01x <<时,由题意可知,1x A +∈,若10x +=,则1x =-(舍),若11x +=,则0x =(舍),若1x x +=,则10=不成立,综上所述,集合A 是存在的,A =. 点睛:本题考查了元素与集合的关系,考查了分类讨论思想,属于中档题.。
人教A版高一数学必修第一册全册复习测试题卷5(共30题)一、选择题(共10题)1.设实数x,y满足x+2y+1=0,则2x+4y的最小值是( )A.√2B.2√2C.3√2D.4√22.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<c B.a<c<b C.b<a<c D.b<c<a3.设a,b,c依次为方程x+3=log13x,(13)x=log13x,(13)x=x+3的实根,则有( )A.a<b<c B.c<b<a C.b<a<c D.c<a<b4.已知全集U={−2,−1,0,1,2,3},集合A={0,1},B={1,2},则∁U(A∪B)=( )A.{1,2}B.{0,1,2}C.{−2,−1,3}D.{−2,−1,0,3}5.函数f(x)=x a满足f(2)=4,那么函数g(x)=∣log a(x+1)∣的图象大致为( )A.B.C.D.6.若a<1,b>1,则下列命题中正确的是( )A.1a >1bB.ba>1C.a2<b2D.ab<a+b−17.设S,T是两个非空集合,且它们互不包含,那么S∪(S∩T)等于( )A.S∩T B.S C.∅D.T8.已知集合A={1,2,4},B={2,4,8},则A∩B=( )A.{1,4}B.{2,4}C.{2,4,8}D.{1,2,4,8}9.函数y=x2+4∣x∣+5在定义域内有( )A.最小值1B.最大值1C.最小值5D.最大值510. 函数 y =xln∣x∣∣x∣的图象是 ( )A .B .C .D .二、填空题(共10题)11. 已知集合 A ={1,2},集合 B 满足 A ∪B ={1,2,3},则集合 A 的子集个数有 个;这样的集合 B 有 个.12. 已知 cos (π6−α)=13,则 cos (5π6+α)= ,sin (2π3−α)= .13. 将函数 f (x )=sin (4x −π6) 的图象上各点的横坐标伸长到原来的 2 倍,纵坐标不变,得到函数y =g (x ) 的图象,则 g (x ) 的最小正周期是14. 函数 y =cosx 在区间 [−π,a ] 上为增函数,则 a 的取值范围是 .15. 若集合 A ={x∣ ∣ x∣ <2},B ={x ∣ 1x+1>0},则 A ∩B = .16. 函数 f (x )=x −12 的定义域为集合 .17. 下列命题中,是全称量词命题的是 ;是存在量词命题的是 .①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.18.设a,b为正实数,有下列命题:①若a2−b2=1,则a−b<1;②若1b −1a=1,则a−b<1;③若∣∣√a−√b∣∣=1,则∣a−b∣<1.其中正确的命题为(写出所有正确命题的序号).19.已知定义在R上的偶函数f(x)满足f(x−4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=log a x有三个不同的实根,则a的取值范围为.20.已知全集U={x∣ 1≤x≤5},A={x∣ 1≤x<a},若∁U A={x∣ 2≤x≤5},则a=.三、解答题(共10题)21.判断下列元素的全体是否组成集合,并说明理由.(1) 与定点A,B等距离的点;(2) 高中学生中的游泳能手.22.已知定义域为R的函数f(x)=−2x+b2x+1+a是奇函数.求a,b的值.23.画出下列函数的图象,观察其变化规律:(1) f(x)=x.①从左至右图象上升还是下降?;②在区间上,随着x的增大,f(x)的值随之.(2) f(x)=−2x+1.①从左至右图象上升还是下降?;②在区间上,随着x的增大,f(x)的值随之.(3) f(x)=x2.①在区间上,f(x)的值随着x的增大而;②在区间上,f(x)的值随着x的增大而;24.求下列函数的定义域.(1) y=log2(x2−4x−5);(2) y=√log0.5(4x−3).≤1,x∈R},集合B={x∣ ∣x−a∣≤1,x∈R}.25.已知集合A={x∣∣ 2x−1x+1(1) 求集合A;(2) 若B∩∁R A=B,求实数a的取值范围.26.在平面直角坐标系中,用阴影部分表示下列集合.(1) {α∣ 30∘+k⋅360∘≤α≤60∘+k⋅360∘,k∈Z};(2) {α∣ 30∘+k⋅180∘≤α≤60∘+k⋅180∘,k∈Z}.27.已知函数y=f(x)是R上的奇函数,x>0时,f(x)=1.求:x2+1(1) y=f(x)的解析式;(2) y=f(x)的值域.28.求下列函数的定义域.(1) y=√x2−x−2..(2) y=√4−x+1∣x∣−1.(3) y=0√∣x∣−x29.子集(1)对于两个集合A和B,如果集合A中都属于集合B(若a∈A,则a∈B),那么集合A叫做集合B的子集,记作或,读作“ ”或“ ”.可用文氏图表示为(2)子集的性质:①A⊆A,即任何一个集合是它本身的子集;②∅⊆A,即空集是任何集合的子集.问题:集合A是集合B的子集的含义是什么?30.回答下列问题.(1) 已知f(x)是奇函数,定义域为D,g(x)是偶函数,定义域也是D.设F(x)=f(x)g(x),判断函数F(x)的奇偶性;(2) 已知f(x),g(x)的定义域都是D,若F(x)=f(x)g(x)是偶函数,研究f(x)和g(x)的奇偶性.答案一、选择题(共10题)1. 【答案】A【知识点】均值不等式的应用2. 【答案】C【解析】因为函数y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.又c=1.50.6>1,所以b<a<c.【知识点】对数函数及其性质、指数函数及其性质3. 【答案】D【知识点】函数的零点分布4. 【答案】C【知识点】交、并、补集运算5. 【答案】C【知识点】对数函数及其性质、幂函数及其性质6. 【答案】D【解析】由a<1,b>1,得a−1<0,b−1>0,所以(a−1)(b−1)<0,即ab<a+ b−1.【知识点】不等式的性质7. 【答案】B【解析】因为(S∩T)⊆S,所以S∪(S∩T)=S.【知识点】交、并、补集运算8. 【答案】B【解析】因为集合A={1,2,4},B={2,4,8},所以A∩B={1,2,4}∩{2,4,8}={2,4}.【知识点】交、并、补集运算9. 【答案】C【知识点】函数的最大(小)值10. 【答案】B【解析】易知函数y=xln∣x∣∣x∣为奇函数,故排除A,C;当x>0时,y=lnx,只有B项符合.【知识点】函数图象、函数的奇偶性二、填空题(共10题)11. 【答案】4;4【知识点】交、并、补集运算12. 【答案】−13;13【知识点】诱导公式13. 【答案】π【解析】依题意可得g(x)=sin(2x−π6),故T=2π2=π.【知识点】Asin(ωx+ψ)形式函数的性质14. 【答案】(−π,0]【解析】∵y=cosx在[−π,0]上是增函数,在[0,π]上是减函数,∴只有−π<a≤0时满足条件,故a∈(−π,0].【知识点】余弦函数的性质15. 【答案】(−1,2)【知识点】交、并、补集运算16. 【答案】x∈(0,+∞)【解析】f(x)=x−12=√x f(x)有意义,则x>0,故f(x)=x−12的定义域为x∈(0,+∞).【知识点】函数的定义域的概念与求法17. 【答案】①②③;④【解析】①可表述为“每一个正方形的四条边相等”,是全称量词命题;②是全称量词命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根都不等于0”,是全称量词命题;④是存在量词命题.【知识点】全(特)称命题的概念与真假判断18. 【答案】①【解析】对于①,由题意a,b为正实数,则a2−b2=1⇒a−b=1a+b⇒a−b>0⇒a>b>0,故a+b>a−b>0.若a−b≥1,则1a+b≥1⇒a+b≤1≤a−b,这与a+b>a−b>0矛盾,故a−b<1成立.对于②,取特殊值,a=3,b=34,则a−b>1;对于③,取特殊值,a=9,b=4时,∣a−b∣>1.【知识点】不等式的性质19. 【答案】(√6,√10)【解析】由f(x−4)=f(x)知,函数的周期为4,又函数为偶函数,所以f(x−4)=f(x)= f(4−x),所以函数图象关于x=2对称,且f(2)=f(6)=f(10)=2,要使方程f(x)=log a x有三个不同的根,则满足{a>1,log a6<2, log a10>2,如图,解得√6<a<√10.故a的取值范围是(√6,√10).【知识点】函数的零点分布20. 【答案】2【解析】因为A={x∣ 1≤x<a},∁U A={x∣ 2≤x≤5},所以A∪(∁U A)=U={x∣ 1≤x≤5},且A∩(∁U A)=∅,所以a=2.【知识点】交、并、补集运算三、解答题(共10题)21. 【答案】(1) 是,即线段 AB 的垂直平分线.(2) 不是,因为游泳能手与不是能手没有具体的划分标准.【知识点】集合的概念22. 【答案】因为 f (x ) 是定义域为 R 的奇函数,所以 f (0)=0,即 −1+b 2+a=0,解得 b =1.从而 f (x )=−2x +12x+1+a,又由 f (−1)=−f (1),即 −12+11+a=−−2+14+a,解得 a =2.【知识点】函数的奇偶性23. 【答案】(1) 上升;(−∞,+∞);增大 (2) 下降;(−∞,+∞);减小 (3) (−∞,0);减小;(0,+∞);增大 【知识点】函数图象、函数的单调性24. 【答案】(1) 要使函数有意义,需 x 2−4x −5>0, 即 (x −5)(x +1)>0, 所以 x <−1 或 x >5,故所求函数的定义域为 (−∞,−1)∪(5,+∞).(2) 要使函数有意义,需 log 0.5(4x −3)≥0, 即 log 0.5(4x −3)≥log 0.51, 故 0<4x −3≤1, 解得 34<x ≤1,故所求函数的定义域为 (34,1].【知识点】函数的定义域的概念与求法、对数函数及其性质25. 【答案】(1) 由2x−1x+1≤1,得 x−2x+1≤0,所以 A =(−1,2].(2) ∁R A =(−∞,−1]∪(2,+∞),B =[a −1,a +1],由 B ∩∁R A =B ,得 B ⊆∁R A ,所以 a +1≤−1 或 a −1>2, 所以 a 的取值范围为 (−∞,−2]∪(3,+∞). 【知识点】分式不等式的解法、交、并、补集运算26. 【答案】(1) (2)【知识点】任意角的概念27. 【答案】(1) f (x )={1x 2+1,x >00,x =0−1x 2+1,x <0. (2) (−1,1).【知识点】函数的解析式的概念与求法、函数的值域的概念与求法、函数的奇偶性28. 【答案】(1) 由 x 2−x −2≥0 得 x ≤−1或≥2. 所以定义域为 (−∞,−1]∪[2,+∞).(2) 因为 {4−x ≥0,∣x ∣−1≠0⇒{x ≤4,x ≠±1,所以所求定义域为 (−∞,−1)∪(−1,1)∪(1,4]. (3) 由 {x +1≠0,∣x ∣−x >0⇒{x ≠−1,x <0,所以所求定义域为 (−∞,−1)∪(−1,0). 【知识点】函数的定义域的概念与求法29. 【答案】(1)任何一个元素;A ⊆B ;B ⊇A ;A 包含于 B ;B 包含 A(2)集合 A 中的任何一个元素都是集合 B 中的元素,即由 x ∈A 能推出 x ∈B .例如 {0,1}⊆{−1,0,1},则由 0∈{0,1} 能推出 0∈{−1,0,1}. 【知识点】包含关系、子集与真子集30. 【答案】(1) 奇函数,(2) f (x ) 和 g (x ) 同是奇函数或同是偶函数,则 F (x ) 为偶函数;若 f (x ) 和 g (x ) 都是非奇非偶函数,F (x ) 也可以为偶函数,比如 f (x )=x +1,g (x )=x −1.【知识点】函数的奇偶性11。
1.1 集合的概念一、单选题1.若集合{}2|(2)210A x k x kx =+++=有且仅有1个真子集,则实数k 的值是( ).A .2-B .1-或2C .1-或2±D .1-或2-答案:C解析:集合A 中有且只有1个真子集,等价为集合A 只有一个元素,然后分20k +=、20k +≠两种情况讨论即可.详解:集合2{|(2)210}A x k x kx =+++=有且仅有1个真子集,∴集合A 只有一个元素. 若20k +=,即2k =-时,方程等价为410x -+=,解得14x =,满足条件.若20k +≠,即2k ≠-时,则方程满足△0=,即244(2)0k k -+=,220k k ∴--=,解得2k =或1k =-. 综上:2k =-或2k =或1k =-.故选:C2.已知集合{(2)(2)0}M xx x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}-答案:C 解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C3.已知集合M=6*,5aN a ⎧∈⎨-⎩且}a Z ∈,则M 等于( ) A .2,3}B .1,2,3,4}C .1,2,3,6}D .1-,2,3,4}答案:D解析:由元素具有的性质,5a -是6的正约数,由此可得a 的值.详解:因为集合M=6*,5a N a⎧∈⎨-⎩且}a Z ∈,,所以5-a 可能为1,2,3,6, 即a 可能为4,3,2,1-.所以M=1-,2,3,4},故选:D.点睛:本题考查集合的概念,确定集合的元素是解题关键.元素所具有的性质是解题的根据.4.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5C .37D答案:D解析:首项R 代表实数集,Q 代表有理数集,对四个数判断是无理数即可.详解:由题意知a 是实数,但不是有理数,故a 应为无理数,故a .故选:D点睛:本题主要考查了元素与集合的关系,涉及了专用数集符号,属于基础题.5.下列表示正确的是A .0N ∈B .12N ∈C .R π∉D .0.333Q ∉答案:A解析:要判断表示是否正确,掌握N 、R 和Q 各数集的定义,并能够用正确的符号表示元素和集合的关系.详解:对于A ,0是自然数,所以0N ∈,故A 正确;对于B ,12是分数,但不满足12N ∈,故B 不正确; 对于C ,π是无理数,属于实数,即有R π∈,故C 不正确;对于D ,0.333是有理数,即有0.333Q ∈,故D 不正确;故选:A点睛:本题考查了判断元素和集合之间的关系是否正确,需要熟练掌握各数集的范围,而且能够用属于符号正确表示元素和集合之间的关系,本题较为简单.6.下列命题中的真命题是( )A是有理数B .是实数C .e 是有理数D .0 不是自然数答案:B解析:根据数集的定义,实数的运算判断.详解:和 e 都是无理数;0 是自然数. 故选:B .7.设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9答案:B解析:求出集合N 后可求M N ⋂.详解:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.8.下列说法正确的是A .我校爱好足球的同学组成一个集合B .{}1,2,3是不大于3的自然数组成的集合C .集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合D .由1,0,12,325个元素答案:C解析:根据集合中的元素具有:确定性,互异性,无序性对选项逐一判断可得正确选项. 详解:对于选项A:不满足集合中的元素的确定性,所以A 错误;对于选项B:不大于3的自然数组成的集合是{0,1,2,3},所以B 错误;对于选项C:由于集合中的元素具有无序性,所以集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合,所以C 正确;;对于选项D 12,集合中的元素具有互异性,所以由1,0,12,32有4个元素, 所以D 错误;故选C.点睛:本题考查了集合中的元素的特征:确定性,无序性,互异性,属于基础题.9.下面有四个语句:①集合N*中最小的数是0;②-a ∉N ,则a∈N;③a∈N,b∈N,则a+b 的最小值是2;④x 2+1=2x 的解集中含有两个元素.其中说法正确的个数是( )A .0B .1C .2D .3答案:A解析:根据题意依次判断即可.详解:因为N*是不含0的自然数,所以①错误;取∉N , ∉N ,所以②错误;对于③,当a=b=0时,a+b 取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A二、填空题1.若a ,b R ∈,且0a ≠,0b ≠,则a b ab a b ab ++的可能取值所组成的集合中元素的个数为________.答案:2解析:对,a b 分三种情况讨论:1、0,0a b >>;2、,a b 两者中一正一负;3、0,0a b <<,对每一种情况分别求,,a b ab a b ab 的值,从而可得a b ab a b ab ++的值,可得答案. 详解:当0,0a b >>时,0ab > ,所以1,1,1a b ab a b ab ===,所以3a b ab a b ab++=; 当,a b 两者中一正一负时,0ab < ,所以0,1a b ab a b ab +==-,所以1a b ab a b ab ++=-; 当0,0a b <<时,0ab > ,所以1,1,1a b ab a b ab =-=-=,所以1a b ab a b ab++=-;所以a b ab a b ab++的取值可能是3或-1,组成的集合中的元素为3,-1.即元素的个数为2. 故答案为:2.点睛:本题考查集合的元素的个数,注意对每一种情况进行讨论,集合的元素具有互异性,属于基础题.2.已知集合{}22(,)3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为_____.答案:9解析:根据列举法,写出集合中元素,即可得出结果.详解:将满足223x y +≤的整数,x y 全部列举出来,即(1,1),(1,0),(1,1),(0,1)-----(0,0),(0,1),(1,1),(1,0),(1,1)-,共有9个.故答案为:9.点睛:本题主要考查判断集合中元素个数,属于基础题型.3.若{}20x N x mx *∈+<恰有三个元素,则实数m 的取值范围为___________.答案:[)4,3--解析:根据题意可知34m <-≤,解出即可.详解:{}20x Nx mx *∈+<恰有三个元素,{}{}{}2001,2,3x N x mx x N x m **∴∈+<=∈<<-=, 34m ∴<-≤,即43m -≤<-.故答案为:[)4,3--.点睛:本题考查根据集合元素个数求参数,其中涉及一元二次不等式的求解,属于基础题.4.已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.答案:2或32解析:由题意知M 中各元素为描述中方程的解,由集合的性质讨论23,x x 是否相等即可求实数a . 详解:由题意知:2{|()(1)0}M x x a x ax a =--+-=中元素,即为2()(1)0x a x ax a --+-=的解, ∴0x a -=或210x ax a -+-=,可知:1x a =或23x x a +=∴当23x x ≠时,23a =;当23x x =时,332a =,∴2a =或32a =,故答案为:2或32点睛:本题考查了集合的性质,根据集合描述及元素之和,结合互异性讨论求参数,属于基础题.5.已知{}201,2x x x ∈+--,则x =_____________答案:2解析:讨论10x +=和220x x --=两种情况,再验证得到答案.详解:{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足.故答案为:2点睛:本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.三、解答题1.已知集合(){}2|220A x x a x a =-++=,{}22,5,512B a a =+-.(1)若3A ∈,求实数a 的值;(2)若{}5B C A =,求实数a 的值.答案:(1)3a =(2)6a =-解析:(1)化简得到()(){}|20A x x x a =--=和3A ∈,代入计算得到答案.(2)根据题意得到2512a a a +-=,计算得到2a =或6a =-,再验证互异性得到答案. 详解:(1)因为3A ∈,()(){}|20A x x x a =--=,所以3a =.(2)因为{}5B C A =,所以A 中有两个元素,即{}2,A a =,所以2512a a a +-=,解得2a =或6a =-,由元素的互异性排除2a =可得6a =-.点睛:本题考查了根据元素与集合的关系,集合的运算结果求参数,意在考查学生对于集合性质的综合应用.2.坐标平面内抛物线y=x 2-2上的点的集合;答案:答案见解析解析:利用描述法即可求解.详解:由集合的表示法,抛物线y=x 2-2上的点用描述法:{}2(,)|2x y y x =-.3.若集合A=x ∣28160kx x -+=}中只有一个元素,试求实数k 的值,并用列举法表示集合A.答案:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =解析:集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,再讨论当0k =时,当0k ≠时方程的解的个数,再求集合A 即可.详解:解:由集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,①当0k =时,方程为8160x -+=,解得2x =,即{}2A =;②当0k ≠时,方程28160kx x -+=只有一个解,则2(8)4160k ∆=--⨯⨯=,即1k =, 即方程为28160x x -+=,解得4x =,即{}4A =,综合①②可得:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =.点睛:本题考查了方程的解的个数问题,重点考查了分类讨论的数学思想方法,属基础题.。
人教a版高中数学必修一试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin x \)D. \( y = \cos x \)2. 已知 \( a \) 和 \( b \) 是方程 \( x^2 - 5x + 6 = 0 \) 的两个实数根,则 \( a + b \) 的值为()A. 2B. 3C. 4D. 53. 函数 \( y = \frac{1}{x} \) 的图象在第一象限内是()A. 递减B. 递增C. 先递增后递减D. 先递减后递增4. 已知 \( \sin A = \frac{1}{2} \),\( A \) 为锐角,则\( \cos A \) 的值为()A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{1}{2} \)D. \( \frac{\sqrt{5}}{2} \)5. 函数 \( y = 2x - 3 \) 的图象与 \( x \) 轴的交点坐标为()A. (1, 0)B. (3, 0)C. (-3, 0)D. (0, -3)6. 函数 \( y = \sqrt{x} \) 的定义域为()A. \( x \geq 0 \)B. \( x \leq 0 \)C. \( x > 0 \)D. \( x < 0 \)7. 已知 \( \tan A = 2 \),则 \( \sin A \) 的值为()A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{3}} \)D. \( \frac{1}{\sqrt{3}} \)8. 函数 \( y = \log_2 x \) 的值域为()A. \( x > 0 \)B. \( x \geq 1 \)C. \( x \leq 0 \)D. \( \mathbb{R} \)9. 函数 \( y = \frac{x^2 - 1}{x - 1} \) 的定义域为()A. \( x \neq 1 \)B. \( x \neq -1 \)C. \( x \neq 0 \)D. \( x \neq 2 \)10. 函数 \( y = \frac{1}{x} \) 的图象关于()A. \( x \) 轴对称B. \( y \) 轴对称C. 原点对称D. 无对称性二、填空题(每题4分,共20分)1. 已知 \( \cos A = \frac{3}{5} \),\( A \) 为锐角,则\( \sin A \) 的值为 ________。
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,,a b c ÎR ,那么下列命题中正确的是( )A .若a b >,则22ac bc >B .若a bc c>,则a b>C .若33a b >,且0ab <,则11a b >D .若22a b >,且0ab >,则11a b<2.如果a ÎR ,且20a a +<,那么2,,a a a -的大小关系为( )A .2a a a ->>B .2a a a ->>C .2a a a ->>D .2a a a->>3.若函数14(2)2y x x x =+-->,则函数y 有( )A .最大值0B .最小值0C .最大值2-D .最小值2-4.不等式1021x x -+的解集为( )A .1|12x x ìü-íýîþ<≤B .1|12x x ìü-íýîþ≤C .1| 12x x x ìü-íýîþ<或≥D .1|| 12x x x x ìü-íýîþ≤或≥5.若不等式220ax bx ++<的解集为11|| 23x x x x ìü-íýîþ<或>,则a b a -的值为( )A .16B .16-C .56D .56-6.若不等式()(2)3x a x a a --->对任意实数x 都成立,则实数a 的取值范围是( )A .(1,3)-B .(3,1)-C .(2,6)-D .(6,2)-7.若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .114ab B .111a b+≤C 2D .228a b +≥8.不等式3112x x--≥的解集是( )A .3|24x x ìüíýîþ≤B .3|24x x ìüíýîþ≤<C .3| 24x x x ìüíýîþ≤或>D .{|2}x x <9.若命题“0x $ÎR ,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是( )A .26m ≤≤B .62m --≤≤C .26m <<D .62m --<<10.若正数,x y 满足35x y xy +=,则34x y +的最小值是( )A .245B .285C .5D .611.已知210a +<,关于x 的不等式22450x ax a -->的解集是( )A .{|5 }x x a x a -<或>B .{|5 }x x a x a ->或<C .{|5}x a x a -<<D .{|5}x a x a -<<12.某厂以x 千克/时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是310051x x æö+-ç÷èø元.若使生产该产品2小时获得的利润不低于3 000元,则x 的取值范围为( )A .{|3}x x ≥B .1| 35x x x ìü-íýîþ≤或≥C .{|310}x x ≤≤D .{|13}x x ≤≤二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.若1x ->,则当且仅当x =________时,函数111x x y +++=的最小值为________.14.若不等式20x ax b ++<的解集为{}|12x x -<<,则不等式210bx ax ++<的解集为________.15.已知,x y +ÎR ,且满足22x y xy +=,那么34x y +的最小值为________.16.若x ÎR ,不等式224421ax x x ++-+≥恒成立,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]已知不等式2340x x --<的解集为A ,不等式260x x --<的解集为B .(1)求A B I ;(2)若不等式20x ax b ++<的解集为A B I ,求,a b 的值.18.[12分]已知命题p :方程210x mx ++=有两个不相等的实根,命题p 是真命题.(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a ---<的解集为N ,若x N Î是x M Î的充分条件,求a 的取值范围.19.[12分](1)若0,0x y >>,且281x y+=,求xy 的最小值;(2)已知0,0x y >>满足21x y +=,求11x y+的最小值.20.[12分]要制作一个体积为39m ,高为1m 的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元.求该长方体容器的长为多少时总造价最低,最低为多少元?21.[12分]已知,,a b c 均为正实数.求证:(1)()2()4a b ab c abc ++≥;(2)若3a b c ++=+.22.[12分]设2()1g x x mx =-+.(1)若()0g x x对任意0x >恒成立,求实数m 的取值范围;(2)讨论关于x 的不等式()0g x ≥的解集.第二章综合测试答案解析一、1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】A 5.【答案】C 6.【答案】D 7.【答案】D 8.【答案】B 9.【答案】A 10.【答案】C【解析】由35x y xy +=可得13155y x+=,所以139431213131234(34)5555555555x y x y x y y x y x æö+=++=++++=+=ç÷èø,当且仅当31255x yy x =且35x y xy +=,即1x =,12y =时取等号.故34x y +的最小值是5.11.【答案】A【解析】方程22450x ax a --=的两根为,5a a -.1210,,52a a a a +\-\-Q <<>.结合2245y x ax a =--的图像,得原不等式的解集是{|5 }x x a x a -<或>.12.【答案】C【解析】根据题意,得3200513000x x æö+-ç÷èø≥,整理,得35140x x --≥,即251430x x --≥.又110x ≤≤,可解得310x ≤≤.即要使生产该产品2小时获得的利润不低于3000元,x 的取值范围是|310{}x x ≤≤.二、13.【答案】0214.【答案】1| 1 2x x x ìü-íýîþ<或>15.【答案】5+16.【答案】2|3a a ìü-íýîþ≥【解析】不等式224421ax x x ++-+≥恒成立2(2)430a x x Û+++≥恒成立220443(2)0a a +>ìïÛí-´´+ïî≤23a Û-≥,故实数a 的取值范围是2|3a a ìü-íýîþ≥.三、17.【答案】(1)解:{|14},{|23}A x x B x x =-=-<<<<,{|13}A B x x \Ç=-<<.(2)解:Q 不等式20x ax b ++<的解集为{|13}x x -<<,1,3\-为方程20x ax b ++=的两根.10,930,a b a b -+=ì\í++=î2,3.a b =-ì\í=-î18.【答案】(1)解:命题p :方程210x mx ++=有两个不相等的实根,所以240m D =->,解得2m >或2m -<.所以{| 2 2}M m m m =->或<.(2)解:因为x N Î是x M Î的充分条件,所以N M Í.因为{|2}N x a x a =+<<,所以22a +-≤或2a ≥,所以4a -≤或2a ≥.19.【答案】(1)解:0,0x y Q >>且281x y+=,281x y \=+=≥,8,当且仅当82x y =且281x y+=即4x =,16y =时取等号.64xy \≥..故xy 的最小值是64.(2)解:0,0,21x y x y >>+=Q11112(2)1233x y x y x y x y y x æö\+=++=++++=+ç÷èø≥当且仅当x =且21x y +=.即x =,y =.故11x y+的最小值是3+20.【答案】解:设该长方体容器的长为m x ,则宽为9m x.又设该长方体容器的总造价为y 元,则9991021510019010y x x x x æöæö=´++´´+=++ç÷ç÷èøèø.因为96x x +=≥(当且仅当9x x =即3x =时取“=”).所以min 250y =.即该长方体容器的长为3m 时总造价最低,最低为250元.答:该长方体容器的长为3m 时总造价最低,最低为250元.21.【答案】(1)证明:因为,,a b c 均为正实数,由基本不等式得a b +≥,2ab c +≥,两式相乘得()2()4a b ab c abc ++≥,当且仅当a b c ==时取等号.所以()2()4a b ab c abc ++≥..(2)解:因为,,a b c 12322a a +++=,当且仅当12a +=时取等号;12322b b +++=,当且仅当12b +=时取等号;12322c c +++=.当且仅当12c +=时取等号.以上三式相加,得962a b c ++++=≤,当且仅当1a b c ===时取等号.22.【答案】(1)解:由题意,若()0g x x≥对任意0x >恒成立,即为10x m x-+对0x >恒成立,即有1(0)m x x x+≤>的最小值.由12(0)x x x +≥>,可得1x =时,1x x+取得最小值2.所以2m ≤.(2)解:2()1g x x mx =-+对应的一元二次方程为210x mx -+=.当240m D =-≤,即22m -≤≤时,()0g x ≥的解集为R ;当0D >,即2m >或2m -<时,方程的两根为x =可得()0g x ≥的解集为|x x x ìïíïî.。
第一章章末检测题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3}且?U A={0,2},则集合A的真子集共有( )A.3个B.4个C.5个D.6个答案A2.设S,T是两个非空集合,且它们互不包含,那么S∪(S∩T)等于( )A.S∩TB.SC.?D.T答案B解析∵S∩T?S,∴S∪(S∩T)=S.3.已知全集U=Z,A={-1,0,1,2},B={x|x2=x},则A∩(?U B)为( )A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}答案A4.已知A={0,1},B={-1,0,1},f是从A到B的映射,则满足f(0)>f(1)的映射有( )A.3个B.4个C.5个D.2个答案A5.已知f(x)=则f(8)的函数值为( )A.-312B.-174C.174D.-76答案D6.已知函数y=f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是( )A.f(4)>f(-π)>f(3)B.f(π)>f(4)>f(3)C.f(4)>f(3)>f(π)D.f(-3)>f(-π)>f(-4)答案D7.设f(x)是R上的偶函数,且当x∈(0,+∞)时,f(x)=x(1+),则当x∈(-∞,0)时,f(x)等于( )A.x(1+)B.-x(1+)C.-x(1-)D.x(1-)答案C8.当1≤x≤3时,函数f(x)=2x2-6x+c的值域为( )A.[f(1),f(3)]B.[f(1),f()]C.[f(),f(3)]D.[c,f(3)]答案C9.已知集合M?{4,7,8},且M中至多有一个偶数,则这样的集合共有( )A.5个B.6个C.7个D.8个答案B解析M可能为?,{7},{4},{8},{7,4},{7,8}共6个.10.若函数f(x)的定义域是[0,2],则函数g(x)=的定义域是( )A.[0,2]B.(1,2]C.[0,1)D.以上都不对答案C11.已知二次函数f(x)=x2-2x+m,对任意x∈R有( )A.f(1-x)=f(1+x)B.f(-1-x)=f(-1+x)C.f(x-1)=f(x+1)D.f(-x)=f(x)答案A12.已知f(x)=3-2|x|,g(x)=x2-2x,F(x)=则F(x)的最值是( ) A.最大值为3,最小值-1 B.最大值为7-2,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案B二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A={x∈N|∈N}用列举法表示A,则A=________.答案{0,1}解析由∈N,知2-x=1,2,4,8,又x∈N,∴x=1或0.14.已知集合A={1,3,m},B={3,4},A∪B={1,2,3,4},则m=________.答案215.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________元.答案380016.若直线y=1与曲线y=x2-|x|+a有四个交点,则a的取值范围是________.答案1<a<解析由图知a>1且抛物线顶点的纵坐标小于1.即?1<a<.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,A∪B,(?U A)∩(?U B),(?U A)∪(?U B).解析全集U={x|x≥2或x≤1},∴A∩B=A={x|x<1或x>3};A∪B=B={x|x≤1或x>2};(?U A)∩(?U B)=?U(A∪B)={2};(?U A)∪(?U B)=?U(A∩B)={x|2≤x≤3或x=1}.18.(12分)设A={-3,4},B={x|x2-2ax+b=0},B≠?,且A∩B=B,求a,b的值.解析∵A∩B=B,∴B?A,∴B=?或{-3}或{4}或{-3,4}.(1)若B=?,不满足题意.∴舍去.(2)若B={-3},则解得(3)若B={4},则解得(4)若B={-3,4},则解得19.(12分)已知函数f(x)=.(1)判断函数f(x)在(-∞,0)上的单调性,并证明你的结论;(2)求出函数f(x)在[-3,-1]上的最大值与最小值.解析(1)设任意x1,x2∈(-∞,0),且x1<x2,而f(x1)-f(x2)=-=,由x1+x2<0,x2-x1>0,得f(x1)-f(x2)<0,得f(x1)<f(x2),故函数f(x)=在(-∞,0)上为单调递增函数.(2)f(x)min=f(-3)=,f(x)max=f(-1)=,故f(x)在[-3,-1]上的最大值为,最小值为.20.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?解析(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+=550.因此,当一次订购量为550个时,每个零件的实际出厂价格为51元.(2)当0<x≤100时,P=60.当100<x<550时,P=60-0.02(x-100)=62-.当x≥550时,P=51.所以P=f(x)=(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.21.(12分)求函数f(x)=x2-2ax-1在区间[0,2]上的最值.解析f(x)=x2-2ax-1=(x-a)2-a2-1,(1)当a≤0时,f(x)在[0,2]上为增函数,∴f(x)的最小值为f(0)=-1,最大值为f(2)=3-4a.(2)当0<a≤1,f(x)在[0,a]上为减函数,在[a,2]上为增函数,且f(2)>f(0).∴f(x)的最大值为f(2)=3-4a,f(x)的最小值为-a2-1.(3)当1<a<2时,f(x)在[0,a]上为减函数,在[a,2]上为增函数,且f(0)>f(2),∴f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a2-1.(4)当a≥2时,f(x)在[0,2]上为减函数,f(x)的最大值为f(0)=-1,f(x)的最小值为3-4a.22.(12分)已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y).(1)求f(1);(2)证明f(x)在定义域上是增函数;(3)如果f()=-1,求满足不等式f(x)-f(x-2)≥2的x的取值范围.解析(1)令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明:令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈(0,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)由于f()=-1,而f()=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x-2)≥f(9),∴f(x)≥f[9(x-2)],∴x≤.又∴2<x≤.∴x的取值范围是(2,].1.已知集合A={x|x>1},B={x|-1<x<2},则A∩B等于( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}答案D2.已知函数f:A→B(A,B为非空数集),定义域为M,值域为N,则A,B,M,N的关系是( )A.M=A,N=BB.M?A,N=BC.M=A,N?BD.M?A,N?B答案C解析值域N应为集合B的子集,即N?B,而不一定有N=B.3.根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天t∈N*)的关系满足下图,日销售Q(件)与时间t(天)之间的关系是Q=-t+40(t∈N*).(1)写出该产品每件销售价格P与时间t的函数关系;(2)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品销售价格×日销量)解析(1)根据图像,每件销售价格P与时间t的函数关系为:P=(2)设日销售金额为y元,则y==若0<t≤20,t∈N*时,y=-t2+10t+1200=-(t-5)2+1225,∴当t=5时,y max=1225;若20<t≤30,t∈N*时,y=-50t+2000是减函数.∴y<-50×20+2000=1000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1225元.4.若函数f(x)=x2-x+的定义域和值域都是[1,b],求b的值.解析由条件知,f(b)=b,且b>1,即b2-b+=b.解得b=3.。