2020江苏省中考数学选择填空压轴题专题:《几何变换问题》(含答案)
- 格式:doc
- 大小:428.50 KB
- 文档页数:17
中考数学压轴题分类试题(2020江苏版)专题06 几何综合探究变化型问题【真题再现】1.(2019年宿迁中考第28题)如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.2.(2019年连云港中考第27题)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C 重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.3.(2019年无锡中考副卷第28题)如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.(1)请找出图中与△ABE相似的三角形,并说明理由;(2)求当A、E、F三点在一直线上时CD的长;(3)设AE的中点为M,连接FM,试求FM长的取值范围.4.(2019年盐城中考第25题)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.5.(2019•扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.6.(2019年南京中考第26题)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【专项突破】【题组一】1.(2020•海门市校级模拟)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正方形ABCD固定,正方形BPEF绕点B旋转一周,设AB=4,BP=a,若在旋转过程中△ACE面积的最小值为4,请直接写出a的值.2.(2019秋•青龙县期末)在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是.3.(2019秋•张家港市期末)在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.4.(2020•兴化市模拟)如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的面积为S,求S的取值范围.【题组二】5.(2019秋•娄星区期末)在△ABC中,AB=AC,点D为射线CB上一个动点(不与B、C重合),以AD 为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作EF∥BC,交直线AC于点F,连接CE.(1)如图①,若∠BAC=60°,则按边分类:△CEF是三角形;(2)若∠BAC<60°.①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;②当点D在线段CB的延长线上移动时,△CEF是什么三角形?请在图③中画出相应的图形并直接写出结论(不必证明).6.(2019秋•东海县期末)已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC′的长度.7.(2019秋•江都区期末)在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三角形时,直接写出AD的长度.8.(2019秋•泰兴市期末)已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E 是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【题组三】9.(2019秋•镇江期末)△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,点D、E分别在AB、AC上,则BD、CE满足怎样的数量关系和位置关系?(直接写出答案)(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD、CE,则BD、CE满足怎样的数量关系和位置关系?请说明理由.(3)如图3,点D、E都在△ABC外部,连结BD、CE、CD、EB,BD与CE相交于H点.已知AB=4,AD=2,设CD2=x,EB2=y,求y与x之间的函数关系式.10.(2019秋•射阳县期末)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=.(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长.11.(2019秋•溧水区期末)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=.我们把这个数学模型称为“K字”模型或“一线三等角”模型;【模型应用】(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE 与直线AF交于点G.求证:点G是DE的中点;②如图3,在平面直角坐标系xOy中,点A的坐标为(2,4),点B为平面内任一点.若△AOB是以OA为斜边的等腰直角三角形,请直接写出点B的坐标.12.(2019•邗江区校级一模)阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.4,AC=3.6,求BC得长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三角形(2)求BC的长为多少?(3)参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=4√3,BC=3√3,求AD的长.【题组四】13.(2019•鼓楼区二模)提出问题:用一张等边三角形纸片剪一个直角边长分别为2cm和3cm的直角三角形纸片,等边三角形纸片的边最小值是多少?探究思考:几位同学画出了以下情况,其中∠C=90°,BC=2cm,△ADE为等边三角形.(1)同学们对图1,图2中的等边三角形展开了讨论:①图一中AD的长度图②中AD的长度(填“>”,“<”或“=”)②等边三角形ADE经过图形变化.AD可以更小.请描述图形变化的过程.(2)有同学画出了图3,但老师指出这种情况不存在,请说明理由.(3)在图4中画出边长最小的等边三角形,并写出它的边长.经验运用:(4)用一张等边三角形纸片剪一个直角边长为1cm和3cm的直角三角形纸片,等边三角形纸片的边长最小是多少?画出示意图并写出这个最小值.14.(2019•南京二模)【概念提出】如图①,若正△DEF的三个顶点分别在正△ABC的边AB、BC、AC上,则我们称△DEF是正△ABC的内接正三角形.(1)求证:△ADF≌△BED;【问题解决】利用直尺和圆规作正三角形的内接正三角形(保留作图痕迹,不写作法).(2)如图②,正△ABC的边长为a,作正△ABC的内接正△DEF,使△DEF的边长最短,并说明理由;(3)如图③,作正△ABC的内接正△DEF,使FD⊥AB.15.(2020•河南一模)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB 的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.16.(2019•亭湖区二模)【阅读材料】小明遇到这样一个问题:如图1,点P在等边三角形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.小明发现,以AP 为边作等边三角形APD ,连接BD ,得到△ABD ;由等边三角形的性质,可证△ACP ≌△ABD ,得PC =BD ;由已知∠APC =150°,可知∠PDB 的大小,进而可求得PB 的长. (1)请回答:在图1中,∠PDB = °,PB = . 【问题解决】(2)参考小明思考问题的方法,解决下面问题:如图2,△ABC 中,∠ACB =90°,AC =BC ,点P 在△ABC 内,且P A =1,PB =√17,PC =2√2,求AB 的长. 【灵活运用】(3)如图3,在Rt △ABC 中,∠ACB =90°,∠BAC =α,且tan α=43,点P 在△ABC 外,且PB =3,PC =1,直接写出P A 长的最大值.【题组五】17.(2019秋•海安市期末)(1)如图①,小明同学作出△ABC 两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分∠ACB ,你觉得有道理吗?为什么?(2)如图②,Rt △ABC 中,AC =5,AC =12,AB =13,△ABC 的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数)小季、小何同学经过探究,有以下发现: 小季发现:d 的最大值为6013.小何发现:当d =2时,连接AI ,则AI 平分∠BAC . 请分别判断小季、小何的发现是否正确?并说明理由.18.(2019秋•常熟市期中)如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC内一点,∠ABD =∠ACD=20°,E为BD延长线上的一点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.19.(2019秋•常熟市期中)如图,在平面直角坐标系中,已知点A(8,0),点C(0,6),点B在x轴负半轴上,且AB=AC.(1)求点B的坐标;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A 匀速运动,设点M运动的时间为t(秒);①若△OME的面积为2,求t的值;②如图③,在点M运动的过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的点M 的坐标;若不能,请说明理由.20.(2019秋•崇川区期末)已知△ABC 中,AB =AC .(1)如图1,在△ADE 中,AD =AE ,连接BD 、CE ,若∠DAE =∠BAC ,求证:BD =CD ;(2)如图2,在△ADE 中,AD =AE ,连接BE 、CE ,若∠DAE =∠BAC =60°,CE ⊥AD 于点F ,AE =4,AC =√7,求BE 的长;(3)如图3,在△BCD 中,∠CBD =∠CDB =45°,连接AD ,若∠CAB =45°,求AD AB的值.【题组六】21.(2018秋•崇川区校级期末)如图,锐角△ABC 中,AB =AC ,点D 是边BC 上的一点,以AD 为边作△ADE ,使AE =AD ,∠EAD =∠BAC .(1)过点E 作EF ∥DC 交AB 于点F ,连接CF (如图1), ①请直接写出∠EAB 与∠DAC 的数量关系; ②试判断四边形CDEF 的形状,并证明;(2)若∠BAC =60°,过点C 作CF ∥DE 交AB 于点F ,连接EF (如图2),那么(1)②中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.22.(2019秋•淮阴区期末)A ,B ,C ,D 是长方形纸片的四个顶点,点E 、F 、H 分别是边AB 、BC 、AD 上的三点,连结EF 、FH .(1)将长方形纸片ABCD 按图①所示的方式折叠,FE 、FH 为折痕,点B 、C 、D 折叠后的对应点分别为B '、C '、D ',点B '在FC '上,则∠EFH 的度数为 ;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为.23.(2019秋•丹阳市期末)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当ANAB=35且AMAC=67时,求CP的长.24.(2020春•鼓楼区校级月考)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF =45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,请直接写出使△CGH是等腰三角形的m值.。
2020年江苏中考数学填空压轴题专题一.填空题1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是.2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是.19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为cm.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为.21.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为.28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.37.在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为.38.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三.解答题39.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.参考答案与试题解析一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是P(5,2),P(8,8),P(0,﹣8),P(3,﹣2).【解答】解:∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣8,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==2,∴AP=4,∴m2+(2m)2=(4)2,∴m=±4,当m=4时,PC=8,OC=8,P点的坐标为(8,8),当m=﹣4时,如图2,PC=8,OC=0,P点的坐标为(0,﹣8),如图3,若△PAD∽△BPA,则==,PA=AB=×2=,则m2+(2m)2=()2,∴m=±1,当m=1时,PC=2,OC=5,P点的坐标为(5,2),当m=﹣1时,如图4,PC=2,OC=3,P点的坐标为(3,﹣2);则所有满足此条件的点P的坐标是:P(5,2 ),p(8,8),P(0,﹣8),P (3,﹣2).故答案为:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是3<x<7.【解答】解:如图所示:∵抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),∴抛物线与x轴的另一个交点为:(7,0),∴不等式ax2+bx+c>0的解集是:3<x<7.故答案为:3<x<7.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为和.【解答】解:∵∠ABC=90°,AC=10,BC=8,∴AB==6,∵AD是∠BAC的平分线,∴∠BAD=∠EAD,在△ABD与△AED中,,∴△ABD≌△AED,∴∠AED=∠B=90°,BD=DE,如图1,过M作MP⊥DE于P,∵EM平分∠PEC,∴∠PEM=45°,∴PE=PM,∵△EC′M是△ECM沿EM折叠得到的,∴EC′=EC=AC﹣AE=4,设PE=PM=x,则PC′=4﹣x,∵tanC=tanC′=,∴,解得:x=,∴EM=PM=;如图2,∵tanC=,∴DE=BD=3,∴CD=C′D=5,∴C′E=2,∵tanC′=tanC=,∴EM=,∴DM===.综上所述:折痕的长度为:和.故答案为:和.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为或或.【解答】解:(1)当BD=BQ,∠C=∠F=90°,AC=DF=3,BC=EF=4,则AB=5,过D作DM⊥BC与M,DN⊥AC于N,如图,∵D为AB的中点,∴DM=AN=AC=,BD=AB=,DN=BM=BC=2,∴BQ=BD=,QM=﹣2=,∴∠3=90°﹣∠B,而∠2+∠3=90°,∴∠2=∠B,又∵Rt△ABC≌Rt△DEF,∴∠EDF=∠A=90°﹣∠B,而∠1+∠EDF+∠2=90°,∴∠1=∠B,即∠1=∠2,∴△DQM∽△DPN,∴PN:QM=DN:DM,即PN:=2:,∴PN=,∴AP=+=;(2)当DB=DQ,则Q点在C点,如图,DA=DC=,而Rt△ABC≌Rt△DEF,∴∠EDF=∠A,∴△CPD∽△CDA,∴CP:CD=CD:CA,即CP:=:3,∴CP=,∴AP=3﹣=;(3)当QB=QD,则∠B=∠BDQ,而∠EDF=∠A,∴∠EDF+∠BDQ=90°,即ED⊥AB,如图,∴Rt△APD∽Rt△ABC,∴AP:AB=AD:AC,即AP:5=:3,∴AP=.故答案为或或.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.【解答】解:∵AB=4,AD=3,∴BD=5,∵把△EBC沿BC折叠得到△BC′E,∴C′E=CE,BC′=BC=AD=3,∵当点C落在矩形ABCD的对角线上,∴D,C′,B三点共线,∴C′D=2,∠DC′E=90°,∵DE=4﹣CE,∵DE2=DC′2+C′E2,即(4﹣CE)2=22+CE2,∴CE=.故答案为:.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为2或5或18.【解答】解:由题意可知,AF⊥BE,∴∠BAF+∠ABE=90°,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,∴∠BAF+∠DAM=90°,∴∠DAM=∠ABE,∴△ABE∽△DAM,∴=,∴=,∴DM=8,AM===10,①当MN=MD时,AN=AM﹣DM=10﹣8=2或AN=AM+DM=10+8=18,②当ND=NM时,易知点N是AM中点,所以AN=AM=5,综上所述,当AN=2或5或18时,△DMN是等腰三角形.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=﹣1或.【解答】解:连接AE,∵四边形ABCD、APEF是正方形,∴A、E、C共线,①当CD=CE=时,AE=AC﹣EC=2﹣,∴AP=AE=﹣1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,∴AE=AC﹣EC=1,∴AP=AE=.∴当△CDE为等腰三角形时,AP=﹣1或.故答案为﹣1或.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,=×CD×DB′=×1×=,∴S△CDB′S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=4﹣2、2或2.【解答】解:①当HD=HC时,过点H作HE⊥CD于点E,延长EH交AB于点F,连接DP,如图1所示.∵HD=HC,∴点E为CD的中点,∵EF∥AD,∴FH为△ABP的中位线,∴AH=HP.∵DH⊥AP,∴△DAP为等腰三角形,∴AD=DP.设BP=a,则CP=4﹣a,由勾股定理得:DP2=CD2+CP2,即16=8+(4﹣a)2,解得:a=4﹣2,或a=﹣4﹣2(舍去);②当DH=DC时,如图2所示.∵DC=AB=2,∴DH=2.在Rt△AHD中,AD=4,DH=2,∴AH==2,∴AH=DH,∴∠DAH=∠ADH=45°.∵AD∥BC,∴∠APB=∠DAH=45°,∵∠B=90°,∴△ABP为等腰直角三角形,∴BP=AB=2;③当CH=CD时,过点C作CE⊥DH于点E,延长CE交AD于点F,如图3所示.∵CH=CD,CE⊥DH,∴DE=HE=DH.∵DH⊥CF,DH⊥AP,∴CF∥AP,∵AF∥CP,∴四边形AFCP为平行四边形,∴AF=CP.∵EF∥AH,DE=HE,∴DF=AF=AD=2,∴BP=BC﹣CP=BC﹣AF=4﹣2=2.综上所述:BP的长度为4﹣2、2或2.故答案为:4﹣2、2或2.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为:=,则其面积为:×2×=.故答案为:2或.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=或1.【解答】解:∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,设BP=BP'=a,AP=CP'=b,则PP'=a,在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,∴CP'==,∵BP的长a为整数,∴满足上式的a为1或2,当a=1时,AP=CP'=,当a=2时,AP=CP'=1,故答案为:或1.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.【解答】解:根据△B′FC与△ABC相似时的对应情况,有两种情况:①△B′FC∽△ABC时,=,又因为AB=AC=6,BC=8,B′F=BF,所以=,解得BF=;②△B′CF∽△BCA时,=,又因为AB=AC=6,BC=8,B′F=CF,BF=B′F,又BF+FC=8,即2BF=8,解得BF=4.故BF的长度是或4.故答案为:或4.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.【解答】解:如图所示,设PF⊥CD,∵BP=FP,由翻折变换的性质可得BP=B′P,∴FP=B′P,∴FP⊥CD,∴B′,F,P三点构不成三角形,∴F,B′重合分别延长AE,CD相交于点G,∵AB∥CD,∴∠BAG=∠AGD,∵∠BAG=∠B′AG,∴∠AGD=∠B′AG,∴GB′=AB′=AB=5,∵PB′(PF)⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ACB′中,AB′=AB=5,AC=3,∴B′C==4,∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,∴△ACG与△PB′G的相似比为9:5,∴AC:PB′=9:5,∵AC=3,∴PB′=.故答案为:.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=2,综上所述:AD的长为:2或2﹣2.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为2πcm.【解答】解:∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,设⊙I的半径为x,∵⊙I是Rt△ABC的内切圆,∴AE=3﹣x,BF=4﹣x,故3﹣x+4﹣x=5,解得:x=1,故⊙I的周长为2πcm.故答案为:2π.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为或﹣1.【解答】解:∵等腰Rt△ABC中,AB=AC=2,∴BC=2,分两种情况:①当AF=CF时,∠FAC=∠C=45°,∴∠AFC=90°,∴AF⊥BC,∴BF=CF=BC=,∵直线l垂直平分BF,∴BD=BF=;②当CF=CA=2时,BF=BC﹣CF=2﹣2,∵直线l垂直平分BF,∴BD=BF=﹣1;故答案为:或﹣121.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是6﹣π.【解答】解:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=100°,∴S 扇形AEF ==π,S △ABC =AD•BC=×2×6=6,∴S 阴影部分=S △ABC ﹣S 扇形AEF =6﹣π.故答案为:6﹣π.22.如图,在矩形ABCD 中,AB=6,BC=4,点E 是边BC 上一动点,把△DCE 沿DE 折叠得△DFE ,射线DF 交直线CB 于点P ,当△AFD 为等腰三角形时,DP 的长为 或 .【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD <DF ,故分两种情况:①如图所示,当FA=FD 时,过F 作GH ⊥AD 与G ,交BC 于H ,则HG ⊥BC ,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为(2,2)或(2,4)或(2,2)或(2,﹣2).【解答】解:连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△ACE中,,∴△ABD≌△ACE,∴BD=EC.∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C垂直x轴的直线上,且EC=DB,①当DB=DA时,点D与O重合,BD=OB=2,此时E(2,2).②当AB=AD时,BD=CE=4,此时E(2,4).③当BD=AB=2时,E(2,2)或(2,﹣2),故答案为(2,2)或(2,4)或(2,2)或(2,﹣2).28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为7或.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴得==,∵DN=AN,∴得==,∵BD:DC=1:4,BC=10,∴DB=2,CD=8,设AN=x,则CN=10﹣x,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得x=7,∴AN=7;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴得==,∵BD:DC=1:4,BC=10,∴DB=,CD=,设AN=x,则CN=x﹣10,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得:x=,∴AN=.故答案为:7或.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为2或1.【解答】解:连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故答案为:2或1.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是2.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4).令y=0,解得:x=﹣2,即A的坐标是(﹣2,0).则OB=4,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣.∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2.即G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故答案为:2.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为或.【解答】解:分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴FN==,∴CN=CF+NF=+=;②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴NF==,∴CN=NF﹣CF=﹣=,综上所述,CN的长为或.故答案为:或.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE 交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为≤CF≤3.【解答】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大=3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG==4,∴DG=AD﹣AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3﹣x)2+12=x2,∴x=,∴≤CF≤3.故答案为≤CF≤3.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.【解答】解:如图1,作CK⊥AB于K,过E点作EP⊥BC于P.∵∠B=60°,∴CK=BC•sin60°=4×=2 ,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2 ,∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA);∴CE=CF,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在Rt△ECP中,由勾股定理得(4﹣m)2+(﹣m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∴CF=EC=,=××2 =,∴S△CEF故答案为.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,。
几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。
决胜2020年中考最难压轴题大挑战模块二填空题篇专题2-7 图形的几何变换点睛导航1.剪纸问题一张纸经过折和剪的过程,会形成一个轴对称图案.解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.2.轴对称-最短路线问题(1)最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.(2)凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.3.翻折变换(折叠问题)翻折变换(折叠问题)实质上就是轴对称变换.在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.4.坐标与图形变化-平移在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)挑战突破1.(2020•双流模拟)如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是18cm.【点睛】根据折叠前后角相等可证△ADC是等边三角形求解.【解析】解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.2.(2020•黄冈模拟)如图,在直角坐标系中,已知点P0的坐标为(1,0),以O旋转中心,将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是(0,﹣64);△P5OP6的面积是512√2.【点睛】解题的关键是抓住旋转的三要素:旋转中心原点,旋转方向逆时针,旋转角度.【解析】解:过P 5作P 5N ⊥轴于N ,P 5M ⊥y 轴于M ,∵线段OP 0按逆时针方向每次旋转45°,∴旋转6次是45°×6=270°,∴P 6在y 轴的负半轴,OP 5=25,OP 6=26,由勾股定理得:ON =P 5N =16√2=P 5M ,∴P 5(﹣16√2,﹣16√2),P 6(0,﹣64),∴△P 5OP 6的面积是12OP 6×P 5M =12×64×16√2=512√2. 3.(2020•仁寿县校级模拟)如图将△ABC 沿x 轴的正方向平移4单位得到△A ′B ′O ′,再绕O ′点按顺时针旋转90°得到△A ″B ″O ″,若A 的坐标为(﹣2,3),B 点坐标为(﹣3,0);①在图中画△A′B′O′和△A″B″O″;②直接写出A′和A″点的坐标;③△ABO的顶点A在变换过程中所经过的路径长为多少?【点睛】①根据网格结构找出平移与旋转变换后的对应点的位置,然后顺次连接即可;②根据平面直角坐标系写出点A′和A″的坐标即可;③根据勾股定理列式求出O′A′的长度,再根据弧长公式求出A′旋转的路径长,然后加上平移的距离即可得解.【解析】解:①△A′B′O′和△A″B″O″如图所示;②A′(2,3)、A″(7,2);③根据勾股定理,O′A′=√22+32=√13,所以,弧A′A″的长度=90⋅π⋅√13180=√132π,又∵△ABC沿x轴的正方向平移4单位得到△A′B′O′,∴点A在变换过程中所经过的路径长=4+√132π.4.(2020•宜宾模拟)(按课改要求命制)如图,设P是等边三角形ABC内的一点,P A=1,PB=2,PC=√5,将△ABP绕点A按逆时针方向旋转,使AB与AC重合,点P旋转到P´外,则sin∠PCP′的值是√55(不取近似值).【点睛】根据题意,旋转角度为60°.易证明△APP′是等边三角形,PP′=1;由CP′=BP=2,PC=√5可证明△PCP′是直角三角形,且∠PP′C=90°.根据三角函数的定义求解.【解析】解:∵△ABC为等边三角形,∴∠BAC=60°.根据旋转的性质,有∠P AP′=60°,AP′=AP=1,CP′=BP=2.∴△APP′是等边三角形,PP′=1.在△PCP′中,PC=√5,PP′=1,CP′=2.∴PC2=P′P2+P′C2.∴△PCP′是直角三角形,且∠PP′C=90°.∴sin∠PCP′=5=√55.5.(2020•海淀区模拟)如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是192cm2.【点睛】由题意知,△AEH,△DHG,△CGF,△EFB是全等三角形,所以EH=HG=FG=EF,即四边形EFGH 为菱形,四边形EFGH的周长是40cm,可知边长为10,根据勾股定理可求得AH和AE,即AD和AB的值就可求出,从而求矩形面积.【解析】解:在△AHE和△DHG中,∵AH=DH=12AD,∠A=∠D=90°,AE=DG=12AB,∴△AHE≌△DHG,∴EH=GH,同理EH=GH=GF=EF,即四边形EFGH为菱形.又∵四边形EFGH的周长是40cm,∴EH=10.∵AH:AE=4:3,设AH=4x,则AE=3x.由勾股定理得,EH2=AE2+AH2,∴x=2,AH=8,AE=6,∴矩形ABCD的面积=16×12=192(cm2).勾股定理,有一定难度.6.某人在照镜子时,从镜中看到后面墙上有一个五位数88018,请问原来墙上真正的数应为81088.【点睛】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解析】解:根据镜面对称性质得出:实际五位数为81088,故答案为81088.7.(2020•碑林区模拟)如图,在四边形ABCD中,∠B=∠D=90°,AB=BC,∠DAC=30°,AC=2,设Q,R 分别是AB、AD上的动点,则△CQR的周长最小值是√2+√6.【点睛】根据轴对称性分别作点C关于AD和AB的对称点E、F,连接EF交AB和AD于点Q和R,进而求得△CQR的最小周长.【解析】解:如图所示:分别作点C关于AB、AD的对称点E、F,连接EF与AB、AD交于点Q、R,此时△CQR的周长最小.根据对称性得:CR=ER,CQ=FQ,∴CR+CQ+QR=ER+FQ+QR=EF,∴△CQR的周长即为EF的长.在Rt△ADC中,∵∠DAC=30°,AC=2,∴CD=1,∵∠ABC=90°,AB=BC∴∠BAC=∠BCA=45°,∴BC=AC•sin45°=√2∵∠ADC=∠ABC=90°,∴A、B、C、D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,在△CBD中,作CH⊥DB于H,BD=DH+BH=1×cos45°+√2cos30°=√22+√62=√2+√62.∵CD=DE,CB=BF,∴EF=2BD=√2+√6.故答案为√2+√6.8.(2020•崇川区校级模拟)如图,在平面直角坐标系内,点A 、点B 的坐标分别为A (﹣7,0),B (5,0),现将线段AB 向上平移9个单位,得到对应线段DC ,连接AD 、BC 、AC ,若AC =15,动点E 从C 点出发,以每秒3个单位的速度沿C →D →C 作匀速移动,点F 从点B 出发,以每秒4个单位的速度沿B →A →B 作匀速运动,点G 从点A 出发沿AC 向点C 匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t 秒.在移动过程中,若△CEG 与△AFG 全等,则此时的移动时间t 的值为 127或277或367.【点睛】根据三角形的全等、平移,分情况讨论进行计算即可求解.【解析】解:设G 点移动距离为y ,当△CEG 与△AFG 全等时有:∠F AG =∠ECGCE =AF ,CG =AG ,或CE =AG ,CG =AF当F 由B 到A ,即0<t ≤3时,则有{3t =12−4t y =15−y 解得{t =127y =152或{3t =y12−4t =15−y 解得{t =−3y =−9(舍去)当F 由A 到B 时,即3<t ≤4(E 由C 到D )时,有{3t =4t −12y =15−y 解得{t =12y =152(舍去)或{3t =y 4t −12=15−y 解得{t =277y =817当4<t ≤6(E 由D 到C )时,12﹣(3t ﹣12)=4t ﹣12,解得t =367.所以移动时间t 的值为127或277或367.故答案为127或277或367.9.(2020•新都区模拟)如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为 2√5−√2 .【点睛】连接AF ,CF ,AC ,根据长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,可得AC =2√5,AF =√2,再根据CF ≥AC ﹣AF ,可得当点A ,F ,C 在同一直线上时,CF 的长最小.【解析】解:如图,连接AF ,CF ,AC ,∵长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,∴AC =2√5,AF =√2,∵AF +CF ≥AC ,∴CF ≥AC ﹣AF ,∴当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为2√5−√2,故答案为:2√5−√2.10.(2020•北碚区校级模拟)正方形ABCD 中,点E 是边AD 的中点.连接BE ,在BE 上找一点F ,连接AF ,将AF 绕点A 顺时针旋转90°到AG ,点F 与点G 对应.AG 、BD 延长线交于点H .若AB =4,当F 、E 、G 三点共线时,求S △BFH = 125 .【点睛】连接DG ,过H 作HP ⊥BG ,交BG 的延长线于P ,判定△ABF ≌△ADG ,得出BF =DG ,∠AFB =∠AGD ,根据12×BE ×DG =12×DE ×AB ,即可得到DG =45√5,BG =√BD 2−DG 2=125√5,再设PH =x ,则PG =x ,根据DG ∥PH ,可得△BDG ∽△BHP ,根据BG BP =DG PH ,可得方程,即可得到PH =65√5,最后根据S △BFH =12BF ×PH 进行计算即可.【解析】解:如图所示,连接DG ,过H 作HP ⊥BG ,交BG 的延长线于P ,AF 绕点A 顺时针旋转90°到AG ,则AF =AG ,∠F AG =90°,即△AFG 是等腰直角三角形,又∵AB =AD ,∠BAD =90°,∴∠BAF =∠DAG ,∴△ABF ≌△ADG ,∴BF =DG ,∠AFB =∠AGD ,∵Rt △ABE 中,AB =4,AE =2,∴BE =2√5,∵∠AFG =∠AGF =45°,∴∠AFB =135°=∠AGD ,∴∠DGE =135°﹣45°=90°,即DG ⊥BE ,∵12×BE ×DG =12×DE ×AB ,∴DG =AB×DE BE=45√5, ∴Rt △BDG 中,BG =√BD 2−DG 2=125√5, ∵∠HGP =∠AGF =45°,∠P =90°,∴△GPH 为等腰直角三角形,设PH =x ,则PG =x ,∵DG ∥PH ,∴△BDG ∽△BHP ,∴BG BP =DG PH ,即125√5125√5+x =45√5x ,解得x =65√5,∴PH =65√5,又∵BF =DG =45√5, ∴S △BFH =12BF ×PH =12×45√5×65√5=125.故答案为:125.11.(2020•南岗区校级模拟)如图,Rt △ABC ,∠C =90°,tan ∠A =12,D 是AC 中点,∠ABD =∠FBD ,BC =6,CF∥AB,则DF=2√2.【点睛】根据已知条件证明∠EBC=∠A,再根据锐角三角函数和勾股定理即可求解.【解析】解:如图:过点F作FG⊥AC于点G,∵∠ACB=90°,∴BC⊥AC,∴GF∥BC.∵tan∠A=BCAC=12,D是AC中点,∴BC=CD=AD,∴∠CBD=∠CDB=45°,∴∠ABD+∠A=45°,∠FBD+∠FBC=45°,∵∠ABD=∠FBD,∴∠FBC=∠A,∴tan∠EBC=tan∠A=1 2,即在Rt△CBE中,tan∠EBC=CEBC=12,∴CE6=12,∴CE=3.根据勾股定理,得BE=√CB2+CE2=√62+32=3√5.∵CF∥AB,∴EFBE=CEAE,即3√5=39,∴EF=√5.∵GF∥BC.∴FGBC=EFBE=GEEC=13,∴FG6=13=GE3,∴FG=2,EG=1.∴DG=DE﹣EG=3﹣1=2.∴Rt△FGE中,根据勾股定理,得DF=√DG2+FG2=√22+22=2√2.故答案为2√2.12.(2020•香坊区校级模拟)如图,在等腰△ABC中,AB=AC,AD平分∠BAC,点E在BA的延长线上,ED=EC,DE交AC于点K,若EC=10,tan∠AED=12,则AK=√5.【点睛】过点K作KM⊥EC,过点D作DH⊥AC,设KM=m,∠BAE=∠α,由边角关系推导出tCM=2m,KC=√5m;再证明DH是△ABC的中位线,得到AB=AC=4√53m,在Rt△AEC中,利用勾股定理求得m=3,进而得到AK=4√53m﹣KC=4√53m−√5m=√5;【解析】解:过点K作KM⊥EC,过D作DN∥AC,设KM=m,∠BED=∠α∵ED=EC,∴∠ECD=∠EDC=∠B+∠α,∵AB=AC,∴∠ACB=∠B,∴∠ECA=∠AED,∵tanα=1 2,∴CM=2m,KC=√5m,∵DN∥AC,D是BC的中点,∴ND=12AC,∠EAC=∠END,EC=ED,∴△EAC≌△DNE(AAS),∴AE=ND,∵AD⊥BC,AB=AC,∴ND=12AB=AN=BN,∴4AK=AC,∴AK=√53m,∴K是ED的中点,∴EK=5,在Rt△EKM中,EM=10﹣2m,KM=m,∴52=m2+(10﹣2m)2,∴m=3或m=5(舍)∴AK=√5;故答案为√5;13.(2020•新泰市模拟)如图,是由几个小立方体所搭成的几何体从上方看到的图形,小正方形中的数字表示在该位置小立方块的个数,已知小立方体边长为1,求这个几何体的表面积.(列式子表示计算过程)【点睛】由已知条件画出主视图和左视图,表面积根据三视图分类计算,进而求出表面积即可.【解析】解:主视图和左视图如图所示:上下表面:5×2=10,左右表面:5×2=10,前后表面:7×2=14,整个几何体的表面积是10+10+14+2=36.故这个几何体的表面积是36.14.(2020•合肥校级模拟)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有5个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).【点睛】根据轴对称图形的性质,可先确定对称轴,不同的对称轴有不同的对称图形,找出这样的5个.【解析】解:与△ABC成轴对称且以格点为顶点的三角形如图:共5个.15.(2020•内江模拟)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是10.【点睛】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO 交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【解析】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=﹣x+7,∴直线CC″的解析式为y=x﹣1,由{y=−x+7y=x−1解得{x=4y=3,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,∴可得C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=√82+62=10.故答案为10.16.(2020•青羊区模拟)如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,连接CD ,直线CD 与直线y =x 交于点Q ,当△OPC ≌△ADP 时,则C 点的坐标是 (0,4+2√2) ,Q 点的坐标是 (2√2+2,2√2+2) .【点睛】过P 点作x 轴的平行线交y 轴于M ,交AB 于N ,如图,设C (0,t ),OP =2√2,OM =BN =PM =2,CM =t ﹣2,利用旋转性质得PC =PD ,∠CPD =90°,再证明△PCM ≌△DPN 得到PN =CM =t ﹣2,DN =PM =2,于是得到D (t ,4),接着利用△OPC ≌△ADP 得到AD =OP =2√2,则A (t ,4+2√2),于是利用y =x 图象上点的坐标特征得到t =4+2√2,所以C (0,4+2√2),D (4+2√2,4),接下来利用待定系数求出直线CD的解析式为y =(1−√2)x +4+2√2,则通过解方程组{y =x y =(1−√2)x +4+2√2可得Q 点坐标. 【解析】解:过P 点作x 轴的平行线交y 轴于M ,交AB 于N ,如图,设C (0,t ),∴P (2,2),∴OP =2√2,OM =BN =PM =2,CM =t ﹣2,∵线段PC 绕点P 顺时针旋转90°至线段PD ,∴PC =PD ,∠CPD =90°,∴∠CPM +∠DPN =90°,而∠CPM +∠PCM =90°,∴∠PCM =∠DPN ,在△PCM 和△DPN 中{∠PMC =∠DNP ∠PCM =∠DPN PC =DP,∴△PCM ≌△DPN ,∴PN =CM =t ﹣2,DN =PM =2,∴MN =t ﹣2+2=t ,DB =2+2=4,∴D (t ,4),∵△OPC ≌△ADP ,∴AD =OP =2√2,∴A (t ,4+2√2),把A (t ,4+2√2)代入y =x 得t =4+2√2,∴C (0,4+2√2),D (4+2√2,4),设直线CD 的解析式为y =kx +b ,把C (0,4+2√2),D (4+2√2,4)代入得{b =4+2√2(4+2√2)k +b =4,解得{k =1−√2b =4+2√2,∴直线CD 的解析式为y =(1−√2)x +4+2√2,解方程组{y =xy =(1−√2)x +4+2√2得{x =2√2+2y =2√2+2,∴Q (2√2+2,2√2+2).故答案为(0,4+2√2),(2√2+2,2√2+2).17.已知一个几何体的三视图如图所示,则该几何体的体积为 120 cm 3.【点睛】根据题意,该几何体是由两个大小不同的长方体所组成.根据所给出的数据可求出体积.【解析】解:根据图中三视图可得出其体积=上下两个长方体的体积和=4×1×5+4×5×5=120cm3.21。
专题4:图形的变换江苏泰州锦元数学工作室编辑一、选择题1. (2020年江苏常州2分)如图所示圆柱的左视图是【】2. (2020年江苏常州2分)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为【】A.a+b B.2a+b C.3a+b D.a+2b3. (2020年江苏连云港3分)将一包卷卫生纸按如图所示的方式摆在水平桌面上,则它的俯视图是【】4. (2020年江苏南京2分)如图,圆O1、圆O2的圆心O1、O2在直线l上,圆O1的半径为2 cm,圆O2的半径为3 cm,O1O2=8 cm。
圆O1以1 cm/s的速度沿直线l向右运动,7s后停止运动,在此过程中,圆O1与圆O2没有出现的位置关系是【】(A) 外切 (B) 相交 (C) 内切 (D) 内含5. (2020年江苏南京2分)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是【】6. (2020年江苏南通3分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为【】A.3cm B.5cm C.6cm D.8cm7. (2020年江苏宿迁3分)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是【】A.3 B.4 C.5 D.6故选C。
8. (2020年江苏泰州3分)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是【】9. 2020年江苏无锡3分)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是【】A.30cm2 B.30πcm2 C.15cm2 D.15πcm210. (2020年江苏盐城3分)下面的几何体中,主视图不是..矩形的是【】11. (2020年江苏扬州3分)某几何体的三视图如图所示,则这个几何体是【】A.三棱柱 B.圆柱 C.正方体 D.三棱锥二、填空题1. (2020年江苏连云港3分)点O在直线AB上,点A1,A2,A3,……在射线OA上,点B1,B2,B3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为▲ 秒.2. (2020年江苏南京2分)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α (0︒<α<90︒)。
2020年江苏中考数学试题汇编——图形的变换一.选择题(共7小题)1.(2020•无锡)下列图形中,是轴对称图形但不是中心对称图形的是()A.圆B.等腰三角形C.平行四边形D.菱形【解答】A、圆既是中心对称图形,也是轴对称图形,故此选项不合题意;B、等腰三角形是轴对称图形但不是中心对称图形,故本选项符合题意;C、平行四边形是中心对称图形但不是轴对称图形,故此选项不合题意;D、菱形是中心对称图形但不是轴对称图形,故此选项不合题意.故选:B.2.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°【解答】∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.3.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A.B.C.D.【解答】A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.4.(2020•连云港)如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°【解答】∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=12(90°﹣∠DBC)=12(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°;故选:C.5.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、既是中心对称图形,也是轴对称图形,故此选项符合题意;D、不是中心对称图形,不是轴对称图形,故此选项不合题意;故选:C.6.(2020•盐城)下列图形中,属于中心对称图形的是()A.B.C.D.【解答】A.此图形不是中心对称图形,不符合题意;B.此图形是中心对称图形,符合题意;C.此图形不是中心对称图形,不符合题意;D.此图形不是中心对称图形,不符合题意;故选:B.7.(2020•镇江)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B 的值等于()A .25B .12C .35D .710【解答】∵AM ∥BN ,PQ ∥AB , ∴四边形ABQP 是平行四边形, ∴AP =BQ =x ,由图②可得当x =9时,y =2, 此时点Q 在点D 下方,且BQ =x =9时,y =2,如图①所示, ∴BD =BQ ﹣QD =x ﹣y =7,∵将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上, ∴BC =CD =12BD =72,AC ⊥BD ,∴cos B =BC AB =725=710,故选:D .二.填空题(共2小题)8.(2020•盐城)如图,已知点A (5,2)、B (5,4)、C (8,1).直线l ⊥x 轴,垂足为点M (m ,0).其中m <52,若△A ′B ′C ′与△ABC 关于直线l 对称,且△A ′B ′C ′有两个顶点在函数y =k x (k ≠0)的图象上,则k 的值为 ﹣6或﹣4 .【解答】∵点A (5,2)、B (5,4)、C (8,1),直线l ⊥x 轴,垂足为点M (m ,0).其中m <52,△A ′B ′C ′与△ABC 关于直线l 对称, ∴A ′(2m ﹣5,2),B ′(2m ﹣5,4),C ′(2m ﹣8,1), ∵A ′、B ′的横坐标相同,∴在函数y =kx(k ≠0)的图象上的两点为,A ′、C ′或B ′、C ′,当A ′、C ′在函数y =kx (k ≠0)的图象上时,则k =2(2m ﹣5)=2m ﹣8,解得m =1, ∴k =﹣6;当B ′、C ′在函数y =k x (k ≠0)的图象上时,则k =4(2m ﹣5)=2m ﹣8,解得m =2, ∴k =﹣4,综上,k 的值为﹣6或﹣4, 故答案为﹣6或﹣4.9.(2020•镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于72.【解答】取AC 的中点M ,A 1B 1的中点N ,连接PM ,MQ ,NQ ,PN , ∵将△ABC 平移5个单位长度得到△A 1B 1C 1, ∴B 1C 1=BC =3,PN =5,∵点P 、Q 分别是AB 、A 1C 1的中点, ∴NQ =12B 1C 1=32, ∴5−32≤PQ ≤5+32, 即72≤PQ ≤132, ∴PQ 的最小值等于72, 故答案为:72.三.解答题(共6小题)10.(2020•南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C 出建燃气站,铺设管道的最短路线是ACDB ,(其中点D 是正方形的顶点); 如图④,在点C 出建燃气站,铺设管道的最短路线是ACD +DE ̂+EB ,(其中CD ,BE 都与圆相切) 11.(2020•徐州)如图,AC ⊥BC ,DC ⊥EC ,AC =BC ,DC =EC ,AE 与BD 交于点F . (1)求证:AE =BD ; (2)求∠AFD 的度数.【解答】(1)∵AC ⊥BC ,DC ⊥EC , ∴∠ACB =∠DCE =90°, ∴∠ACE =∠BCD , 在△ACE 和△BCD 中, {AC =BC∠ACE =∠BCD CE =CD, ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)设BC 与AE 交于点N , ∵∠ACB =90°, ∴∠A +∠ANC =90°, ∵△ACE ≌△BCD , ∴∠A =∠B , ∵∠ANC =∠BNF ,∴∠B +∠BNF =∠A +∠ANC =90°, ∴∠AFD =∠B +∠BNF =90°.12.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC AB=AB AC,那么称点B 为线段AC 的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 (10√5−10) cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.【解答】(1)∵点B 为线段AC 的黄金分割点,AC =20cm , ∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10). (2)延长EA ,CG 交于点M , ∵四边形ABCD 为正方形, ∴DM ∥BC , ∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG , ∴∠EMC =∠ECM , ∴EM =EC , ∵DE =10,DC =20,∴EC =√DE 2+DC 2=√102+202=10√5, ∴EM =10√5, ∴DM =10√5+10,∴tan ∠DMC =DC DH =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12,即BG BC=√5−12, ∵AB =BC ,∴BGAB =√5−12, ∴G 是AB 的黄金分割点; (3)当BP =BC 时,满足题意. 理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°, ∵BE ⊥CF ,∴∠ABE +∠CBF =90°, 又∵∠BCF +∠BFC =90°, ∴∠BCF =∠ABE , ∴△ABE ≌△BCF (ASA ), ∴BF =AE , ∵AD ∥CP , ∴△AEF ∽△BPF , ∴AE BP=AF BF,当E 、F 恰好分别是AD 、AB 的黄金分割点时, ∵AE >DE , ∴AF BF=BF AB,∵BF =AE ,AB =BC , ∴AF BF =BF AB =AE BC,∴AE BP=AE BC,∴BP =BC .13.(2020•常州)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是1;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为π12;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【解答】(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠ACF=30°,∴FC平分∠ACE又FD⊥AC,FE⊥CE,∴FD=FE=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=30⋅π⋅22360−30⋅π⋅(√3)2360=π12.故答案为π12.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=√3EF=√3,EH=√32,CH=√3EH=32,在Rt△BOC中,OC=√OB2+BC2=√1+x2,∴OH=CH﹣OC=32−√1+x2,在Rt△EOH中,则有x2=(√32)2+(32−√1+x2)2,解得x=√73或−√73(不合题意舍弃),∴OC=√1+(√73)2=43,∵CF=2EF=2,∴OF=CF﹣OC=2−43=23.14.(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.【解答】(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN ,∴MN 垂直平分线段BC ,∴CN =BN ,∵∠MNB =∠ACB =90°,∴MN ∥AC ,∵CN =BN ,∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6,∴∠A =∠B ,由题意MN 垂直平分线段BC ,∴BM =CM ,∴∠B =∠MCB ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC , ∴BC BA =BM BC , ∴610=BM6, ∴BM =185,∴AM =AB ﹣BM =10−185=325,∴AMBM =325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM ,∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC , ∴BC AB =BM BC =CM AC ∴69=BM 6,∴BM =4,∴AM =CM =5,∴69=5AC ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′,∴△PF A ′∽△MFC ,∴PFFM =PA′CM ,∵CM =5,∴PFFM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32,∴32≤P A ′≤154, ∴310≤PFFM ≤34. 15.(2020•南通)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求APDE 的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【解答】(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴POPM =CDPD=812=23,∴APDE =2PO2PM=23.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴EG PH =PG DH =EP PD =412=13, ∴PH =3EG =3x ,DH =AG =4+x , 在Rt △PHD 中,∵PH 2+DH 2=PD 2, ∴(3x )2+(4+x )2=122, 解得x =165(负值已经舍弃), ∴BG =4−165=45, 在Rt △EGP 中,GP =√EP 2−EG 2=125,∵GH ∥BC ,∴△EGP ∽△EBF ,∴EG EB =GP BF , ∴1654=125BF, ∴BF =3.。
2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。
专题08 几何变换问题例1.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为______________.(结果保留根号)同类题型1.1 把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值同类题型1.2 已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定例2.如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A是()A. 2 :1 B.2:1 C. 5 :2 D. 3 :1同类题型2.1 如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个 B.2个 C.3个 D.4个同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5同类题型2.3 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为__________.同类题型2.4 如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα﹒tanβ=___________.同类题型2.5 如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM ,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.同类题型2.6 如图1,一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC =EF =12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③B .①②④C .①③④D .①②③④同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.专题08 几何变换问题例1.如图,斜边长12cm ,∠A =30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为______________.(结果保留根号)解:如图:连接B ′B ″,∵在Rt △ABC 中,AB =12,∠A =30°,∴BC =12AB =6,AC =6 3 , ∴B ′C =6,∴AB ′=AC -B ′C =6 3 -6,∵B ′C ∥B ″C ″,B ′C =B ″C ″,∴四边形B ″C ″CB ′是矩形,∴B ″B ′∥BC ,B ″B ′=C ″C ,∴△AB ″B ′∽△ABC ,∴AB ′AC =B ″B ′BC, 即:63-663=B ″B ′6 , 解得:B ″B ′=6-2 3 .∴C ″C =B ″B ′=6-2 3 .同类题型1.1 把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值解:(1)当两斜边重合的时候可组成一个矩形,此时x =2,y =3,x +y =5;(2)当两直角边重合时有两种情况,①短边重合,此时x =2,y =3,x +y =5;②长边重合,此时x =2,y =5,x +y =7.综上可得:x +y =5或7.选B .同类题型1.2 已知:如图△ABC 的顶点坐标分别为A (-4,-3),B (0,-3),C (-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1 点,若设△ABC 的面积为S 1 ,△AB 1 C 的面积为S 2 ,则S 1 ,S 2 的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定解:△ABC 的面积为S 1=12×4×4=8, 将B 点平移后得到B 1 点的坐标是(2,1),所以△AB 1 C 的面积为S 2=12×4×4=8, 所以S 1=S 2 .选B .同类题型1.3同类题型1.4例2. 如图,P 是等边△ABC 外一点,把BP 绕点B 顺时针旋转60°到BP ′,已知∠AP ′B =150°,P ′A :P ′C =2:3,则PB :P ′A 是( )A . 2 :1B .2:1C . 5 :2D . 3 :1解:如图,连接AP ,∵BP 绕点B 顺时针旋转60°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=60°,又∵△ABC 是等边三角形,∴AB =BC ,∠CBP ′+∠ABP ′=60°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵⎩⎪⎨⎪⎧BP =BP ′∠ABP =∠CBP ′AB =BC , ∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =2:3,∴AP =32P ′A , 连接PP ′,则△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB ,∵∠AP ′B =150°,∴∠AP ′P =150°-60°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =32x , 根据勾股定理,PP ′=AP 2-P ′A 2=94x 2-x 2=52 x , 则PB =52x , ∴PB :P ′A =52 x :x = 5 :2. 选C .同类题型2.1 如图,△ABC 为等边三角形,以AB 为边向形外作△ABD ,使∠ADB =120°,再以点C 为旋转中心把△CBD 旋转到△CAE ,则下列结论:①D 、A 、E 三点共线;②DC 平分∠BDA ;③∠E =∠BAC ;④DC =DB +DA ,其中正确的有( )A .1个B .2个C .3个D .4个解:①设∠1=x 度,则∠2=(60-x )度,∠DBC =(x +60)度,故∠4=(x +60)度,∴∠2+∠3+∠4=60-x +60+x +60=180度,∴D 、A 、E 三点共线;②∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,∴CD=CE,∠DCE=60°,∴△CDE为等边三角形,∴∠E=60°,∴∠BDC=∠E=60°,∴∠CDA=120°-60°=60°,∴DC平分∠BDA;③∵∠BAC=60°,∠E=60°,∴∠E=∠BA C.④由旋转可知AE=BD,又∵∠DAE=180°,∴DE=AE+A D.∵△CDE为等边三角形,∴DC=DB+B A.同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN =∠CDM ,又∵∠CBN =∠DCM =90°,∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM =BN ,又∵∠OCM =∠OBN =45°,OC =OB ,∴△OCM ≌△OBN (SAS ),∴OM =ON ,∠COM =∠BON ,∴∠DOC +∠COM =∠COB +∠BPN ,即∠DOM =∠CON ,又∵DO =CO ,∴△CON ≌△DOM (SAS ),故②正确;∵∠BON +∠BOM =∠COM +∠BOM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△AOD 是等腰直角三角形,∴△OMN ∽△OAD ,故③正确;∵AB =BC ,CM =BN ,∴BM =AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2 ,∴AN 2+CM 2=MN 2 ,故④正确;∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设BN =x =CM ,则BM =2-x ,∴△MNB 的面积=12x (2-x )=-12x 2 +x , ∴当x =1时,△MNB 的面积有最大值12, 此时S △OMN 的最小值是1-12=12,故⑤正确; 综上所述,正确结论的个数是5个,选D .同类题型2.3 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,使点B 在直线CD 上,连接OD 交AB 于点M ,直线CD 的解析式为__________.解:∵△BOA 绕点A 按顺时针方向旋转得△CDA ,∴△BOA ≌△CDA ,∴AB =AC ,OA =AD ,∵B 、D 、C 共线,AD ⊥BC ,∴BD =CD =OB ,∵OA =AD ,BO =CD =BD ,∴OD ⊥AB ,设直线AB 解析式为y =kx +b ,把A 与B 坐标代入得:⎩⎨⎧3k +b =0b =4 ,解得:⎩⎪⎨⎪⎧k =-43b =4, ∴直线AB 解析式为y =-43 x +4,∴直线OD 解析式为y =34 x ,联立得:⎩⎨⎧y =-43x +4y =34x,解得:⎩⎨⎧x =4825y =3625,即M (4825 ,3625 ),∵M 为线段OD 的中点,∴D (9625 ,7225), 设直线CD 解析式为y =mx +n ,把B 与D 坐标代入得:⎩⎪⎨⎪⎧9625m +n =7225n =4, 解得:m =-724,n =4, 则直线CD 解析式为y =-724x +4. 同类题型2.4 如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若∠CEF =α,∠CFE =β,则tan α﹒tan β=___________.解:过C 点作MN ⊥BF ,交BG 于M ,交EF 于N ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE =3,由勾股定理得,CG =BG 2+DG 2 =4, ∴DG =DC -CG =1,则AG =AD 2+DG 2=10 , ∵BA BC =BG BE,∠ABG =∠CBE , ∴△ABG ∽△CBE ,∴CE AG =BC AB =35, 解得,CE =3105, ∵∠MBC =∠CBG ,∠BMC =∠BCG =90°,∴△BCM ∽△BGC ,∴CM CG =BC BG ,即CM 4=35, ∴CM =125, ∴MN =BE =3,∴CN =3-125=35, ∴EN =CE 2-CN 2=95, ∴FN =EF -EN =5-95=165, ∴tan α﹒tan β=CN EN ﹒CN FN =3595×35165=116. 同类题型2.5 如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM ,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.解:如图连接P C .在Rt △ABC 中,∵∠A =30°,BC =2,∴AB =4,根据旋转不变性可知,A ′B ′=AB =4,∴A ′P =PB ′,∴PC =12A ′B ′=2, ∵CM =BM =1,又∵PM ≤PC +CM ,即PM ≤3,∴PM 的最大值为3(此时P 、C 、M 共线).同类题型2.6 如图1,一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC =EF =12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.解:如图1中,作HM ⊥BC 于M ,设HM =a ,则CM =HM =a .在Rt △ABC 中,∠ABC =30°,BC =12,在Rt △BHM 中,BH =2HM =2a ,BM = 3 a ,∵BM +FM =BC , ∴ 3 a +a =12,∴a =6 3 -6,∴BH =2a =12 3 -12.如图2中,当DG ⊥AB 时,易证GH 1 ⊥DF ,此时BH 1 的值最小,易知BH 1=BK +KH 1=3 3 +3,∴HH 1=BH -BH 1=9 3 -15,当旋转角为60°时,F 与H 2 重合,此时BH 的值最大,易知最大值BH 2=6 3 ,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=18 3-30+[6 3-(12 3-12)]=12 3 -18.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12解:如图所示,延长AB ,D 1A 1 交于点G ,∵A 1 E ⊥AB ,∠EA 1 C =∠A =120°,∴∠G =120°-90°=30°,又∵∠ABC =60°,∴∠BCG =60°-30°=30°,∴∠G =∠BCG =30°,∴BC =BG =BA ,设BE =1,AE =x =A 1 E ,则AB =1+x =BC =BG ,A 1 G =2x ,∴GE =1+x +1=x +2,∵Rt △A 1 GE 中,A 1E 2+GE 2=A 1G 2 ,∴x 2+(x +2)2=(2x )2 ,解得x =1+ 3 ,(负值已舍去)∴AE =1+ 3 ,∴BE AE =11+3=3-12, 选D .同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.解:解法一:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC 是等腰直角三角形,∴PE =PC ,设PC =x ,则PE =x ,PD =4-x ,EQ =4-x ,∴PD =EQ ,∵∠DPE =∠EQF =90°,∠PED =∠EFQ ,∴△DPE ≌△EQF ,∴DE =EF ,∵DE ⊥EF ,∴△DEF 是等腰直角三角形,易证明△DEC ≌△BEC ,∴DE =BE ,∴EF =BE ,∵EQ ⊥FB ,∴FQ =BQ =12 BF ,∵AB =4,F 是AB 的中点,∴BF =2,∴FQ =BQ =PE =1,∴CE = 2 ,PD =4-1=3,Rt △DAF 中,DF =42+22=2 5 ,DE =EF =10 ,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴CG AG =DC AF =DG FG =42 =2,∴CG =2AG ,DG =2FG ,∴FG =13×25=253 ,∵AC =42+42=4 2 ,∴CG =23×42=823 ,∴EG =823-2=523, 连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103 , ∴EH =EF -FH =10-103=2103, 由折叠得:GM ⊥EF ,MH =GH =103 , ∴∠EHM =∠DEF =90°,∴DE ∥HM ,∴△DEN ∽△MNH ,∴DE MH =EN NH , ∴10103=EN NH =3,∴EN =3NH ,∵EN +NH ═EH =2103 , ∴EN =102, ∴NH =EH -EN =2103-102=106 , Rt △GNH 中,GN =GH 2+NH 2=(103)2+(106)2=526, 由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法二:如图3,过G 作GK ⊥AD 于K ,作GR ⊥AB 于R ,∵AC 平分∠DAB ,∴GK =GR ,∴S △ADG S △AGF =12AD ﹒KG 12AF ﹒GR =AD AF =42 =2, ∵S △ADG S △AGF =12DG ﹒h12GF ﹒h =2, ∴DG GF=2, 同理,S △DNF S △MNF =DF FM =DN MN =3, 其它解法同解法一,可得:∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法三:如图4,过E 作EP ⊥AP ,EQ ⊥AD ,∵AC 是对角线,∴EP =EQ ,易证△DQE 和△FPE 全等,∴DE =EF ,DQ =FP ,且AP =EP ,设EP =x ,则DQ =4-x =FP =x -2,解得x =3,所以PF =1,∴AE =32+32=3 2 ,∵DC ∥AB ,∴△DGC ∽△FGA ,∴同解法一得:CG =23×42=823, ∴EG =823-2=523, AG =13AC =423, 过G 作GH ⊥AB ,过M 作MK ⊥AB ,过M 作ML ⊥AD ,则易证△GHF ≌△FKM 全等,∴GH =FK =43 ,HF =MK =23, ∵ML =AK =AF +FK =2+43=103 ,DL =AD -MK =4-23=103, 即DL =LM ,∴∠LDM =45°∴DM 在正方形对角线DB 上,过N 作NI ⊥AB ,则NI =IB ,设NI =y ,∵NI ∥EP∴NI EP =FI FP∴y 3=2-y 1, 解得y =1.5,所以FI =2-y =0.5,∴I 为FP 的中点,∴N 是EF 的中点,∴EN =0.5EF =102, ∵△BIN 是等腰直角三角形,且BI =NI =1.5,∴BN =32 2 ,BK =AB -AK =4-103=23 ,BM =23 2 ,MN =BN -BM =322-232=562 , ∴△EMN 的周长=EN +MN +EM =102+526+523=52+102.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°解:如图所示:分别作点P 关于OM 、ON 的对称点P ′、P ″,连接OP ′、OP ″、P ′P ″,P ′P ″交OM 、ON 于点A 、B , 连接PA 、PB ,此时△PAB 周长的最小值等于P ′P ″.如图所示:由轴对称性质可得,OP ′=OP ″=OP ,∠P ′OA =∠POA ,∠P ″OB =∠POB ,所以∠P ′OP ″=2∠MON =2×40°=80°,所以∠OP ′P ″=∠OP ″P ′=(180°-80°)÷2=50°,又因为∠BPO =∠OP ″B =50°,∠APO =∠AP ′O =50°,所以∠APB =∠APO +∠BPO =100°.选C .同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④解:∵矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,∴GF ⊥AD ,由折叠可得,AH =AD =2AG ,∠AHE =∠D =90°,∴∠AHG =30°,∠EHM =90°-30°=60°,∴∠HAG =60°=∠AED =∠MEH ,∴△EHM 中,∠EMH =60°=∠EHM =∠MEH ,∴△MEH 为等边三角形,故①正确;∵∠EHM =60°,HE =HF ,∴∠HEF =30°,∴∠FEM =60°+30°=90°,即AE ⊥EF ,故②正确;∵∠PEH =∠MHE =60°=∠HEA ,∠EPH =∠EHA =90°,∴△PHE ∽△HAE ,故③正确;设AD =2=AH ,则AG =1,∴Rt △AGH 中,GH=3AG= 3 ,Rt △AEH 中,EH=AH 3=233 =HF , ∴GF=533 =AB , ∴AD AB =2533=235 ,故④正确, 综上所述,正确的结论是①②③④,选D .同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52 ,∵12﹒BC ﹒AH =12 ﹒AB ﹒AC ,∴AH =125 ,∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12﹒AD ﹒BO =12 ﹒BD ﹒AH ,∴OB =125 ,∴BE =2OB =245 ,在Rt △BCE 中,EC =BC 2-BE 2=75 .。
专题: 函数的动点问题例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B.C.D.同类题型1.2如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.同类题型1.3 如图,菱形ABCD的边长为2,∠A=60°,一个以点B为顶点的60°角绕点B旋转,这个角的两边分别与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,则能大致反映y与x的函数关系的图象是()A .B .C .D .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是 ( )A .B .C .D . 同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形 同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y =S △PBQ ,则y 与t 的函数图象大致是 ( )A .B .C .D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A.B.C.D.例3.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B.C. D.同类题型3.1 如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l 从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A .B .C .D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为 ( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2,运动时间xs .能反映y cm 2与xs 之间函数关系的大致图象是 ( )A .B .C .D .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是 ( )A. B.C.D.同类题型4.2 如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.同类题型4.3 如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.参考答案例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.解:由图②可知点P从A点运动到B点的时间为10s,又因为P点运动的速度为1cm/s,所以AB=10×1=10(cm),由AD=9可知点P在边BC上的运动时间为9s,所以a=10+9=19;分别过B点、C两点作BE⊥AD于E,CF⊥AD于F.由图②知S△ABD=36,则12×9×BE=36,解得BE=8,在直角△ABE中,由勾股定理,得AE=AB 2-BE2=6.易证△BAE≌△CDF,则BE=CF=8,AE=DF=6,AF=AD+DF=9+6=15.在直角△ACF中,由勾股定理,得CA=AF 2+CF2=17,则点P在CA边上从C点运动到A点的时间为17s,所以b=19+17=36,a+b=19+36=55.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A .B .C .D .解:∵AE ⊥EF ,∴∠AEB +∠FCE =90°∵四边形ABCD 是正方形,∴∠B =∠C =90° AB =BC =4, ∴∠BAE +∠AEB =90°,∴∠BAE =∠FCE , ∴△ABE ∽△ECF ,∴AB EC =BEFC, ∵BE =x ,FC =y ,∴EC =4-x ,则有44-x =xy,整理后得y =-14x 2 +x 配方后得到y =-14(x -2)2+1从而得到图象为抛物线,开口朝下,顶点坐标为(2,1). 选C .同类题型1.2如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A →D →C →E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .解:∵在矩形ABCD 中,AB =2,AD =3, ∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2,①点P 在AD 上时,△APE 的面积y =12x ﹒2=x (0≤x ≤3),②点P 在CD 上时,S △APE =S _(梯形AECD )-S _(△ADP )-S _(△CEP ), =12(2+3)×2-12×3×(x -3)-12 ×2×(3+2-x ), =5-32x +92 -5+x ,=-12x +92,∴y =-12x +92(3<x ≤5),③点P 在CE 上时,S △APE =12×(3+2+2-x )×2=-x +7,∴y =-x +7(5<x ≤7), 选A .同类题型1.3 如图,菱形ABCD 的边长为2,∠A =60°,一个以点B 为顶点的60°角绕点B 旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P 、Q ,设DP =x ,DQ =y ,则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .解:∵四边形ABCD 是菱形,∠A =60°,∴∠ABD =∠CBD =∠ADB =∠BDC =60°, ∴∠BDQ =∠BDP =120°, ∵∠QBP =60°, ∴∠QBD =∠PBC , ∵AP ∥BC , ∴∠P =∠PBC , ∴∠QBD =∠P , ∴△BDQ ∽△PDB , ∴DQ BD =BD PD ,即y 2=2x , ∴xy =4,∴y 与x 的函数关系的图象是双曲线, 选A .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由题得,点Q 移动的路程为2x ,点P 移动的路程为x , ∠A =∠C =60°,AB =BC =2,①如图,当点Q 在AB 上运动时,过点Q 作QD ⊥AC 于D ,则 AQ =2x ,DQ = 3 x ,AP =x ,∴△APQ 的面积y =12×x ×3x =32x 2(0<x ≤1),即当0<x ≤1时,函数图象为开口向上的抛物线的一部分,故A 、B 排除;②如图,当点Q 在BC 上运动时,过点Q 作QE ⊥AC 于E ,则CQ =4-2x ,EQ =23- 3 x ,AP =x ,∴△APQ 的面积y =12×x ×(23-3x )=-32x 2+ 3 x (1<x ≤2),即当1<x ≤2时,函数图象为开口向下的抛物线的一部分,故C 排除,而D 正确; 选D .同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形解:A 、分析函数图象可知,当点Q 到达点C 时,点P 到达点E 处, ∴BC =BE =2×8=16cm ,ED =2×2=4cm ,∴AE =AD -ED =BC -ED =16-4=12cm ,故A 正确; B 、作EF ⊥BC 于点F ,如图,由函数图象可知,BC =BE =16cm ,BF =AE =12cm , 由勾股定理得,EF =47 cm ,∴sin ∠EBC =EF BE =4716=74,故B 正确;C 、作PM ⊥BQ 于点M ,如图,∵BQ =BP =2t ,∴y =S △BPQ =12BQ ﹒PM =12BQ ﹒BP ﹒sin ∠EBC =12×2t ﹒2t ﹒74=72t 2.故C 正确;D 、当t =9s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图所示,连接NB ,N C . 此时AN =14,ND =2,由勾股定理求得:NB =211 ,NC =229 , ∵BC =16,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故D 错误; 选D .同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y=S △PBQ ,则y 与t 的函数图象大致是( )A .B .C .D . 解:①当0<t ≤3时,△PBQ 是Rt △,y =12×t ×2t =t 2;②当3<t ≤7时,y =12 ×t ×6=3t ;③当7<t ≤8时,y =12t (20-2t )=-t 2+10t ;④当8<t ≤10时,y =12×8(20-2t )=80-8t ;观察各选项可知,y 与t 的函数图象大致是选项D . 选D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12 AB =4,到CD 的距离=12AD =6, ∵点M 是BC 的中点,∴CM =12BC =6, ∴点Q 到达点C 的时间为6÷1=6秒,点P 到达点C 的时间为12÷1=12秒,点Q 到达点D 的时间为(6+8)÷1=14秒,①0≤t ≤6时,点P 、Q 都在BC 上,PQ =6,△OPQ 的面积=12×6×4=12; ②6<t ≤12时,点P 在BC 上,点Q 在CD 上,C P =12-t ,CQ =t -6,S △OPQ =S △COP +S △COQ -S △PCQ ,=12×(12-t )×4+12×(t -6)×6-12×(12-t )×(t -6), =12t 2 -8t +42, =12(t -8)2 +10, ③12<t ≤14时,PQ =6,△OPQ 的面积=12×6×6=18; 纵观各选项,只有B 选项图形符合.选B .例3.如图,正六边形ABCDEF 的边长为6cm ,P 是对角线BE 上一动点,过点P 作直线l 与BE 垂直,动点P 从B 点出发且以1cm/s 的速度匀速平移至E 点.设直线l 扫过正六边形ABCD EF 区域的面积为S (cm 2 ),点P 的运动时间为t (s ),下列能反映S 与t 之间函数关系的大致图象是( )A .B .C .D .解:由题意得:BP =t ,如图1,连接AC ,交BE 于G ,Rt △ABG 中,AB =6,∠ABG =60°,∴∠BAG =30°,∴BG =12 AB =3,由勾股定理得:AG =62-32=3 3 ,∴AC =2AG =6 3 ,当0≤t ≤3时,PM = 3 t ,∴MN =2 3 t ,S =S △BMN =12MN ﹒PB =12﹒3t 2=32t 2,所以选项A 和B 不正确;如图2,当9≤t ≤12时,PE =12-t ,∵∠MEP =60°,∴tan ∠MEP =PM PE , ∴PM = 3 (12-t ),∴MN =2PM =2 3 (12-t ),∴S =S _(正六边形)-S _(△EMN ),=2×12(AF +BE )×AG -12MN ﹒PE , =(6+12)×33-12×2 3 (12-t )(12-t ), =543-3(144-24t +t 2 ),=-3t 2+243t -90 3 ,此二次函数的开口向下,所以选项C 正确,选项D 不正确;选C .同类题型3.1 如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( )A .B .C .D .解:①当0≤t ≤4时,S =12×t ×t =12t 2 ,即S =12t 2 .该函数图象是开口向上的抛物线的一部分.故B 、C 错误;②当4<t ≤8时,S =16-12×(8-t )×(8-t )=-12t 2 +8t -16. 该函数图象是开口向下的抛物线的一部分.故A 错误.选D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14解:当点Q 在AC 上时,∵∠A =30°,AP =x ,∴PQ =x tan30°=33x , ∴S =12×AP ×PQ =12×x ×33=36x 2=14 3 解得:x =221 或x =-221 (舍去),当点Q 在BC 上时,如下图所示:∵AP =x ,AB =16,∠A =30°,∴BP =16-x ,∠B =60°,∴PQ =BP ﹒tan60°= 3 (16-x ).∴S =12AP ×PQ =32x 2+83x =14 3 , 解得:x =2(舍去)或x =14.选B .同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.解:①当AB >4时如图1,由图可知:OE =4,OF =8,DG =3 2 ,∴EF =AG =OF -OE =4∵直线解析式为:y =-x∴∠AGD =∠EFD =45°∴△AGD 是等腰直角三角形∴DH =GH =22DG =22×3 2 =3, ∴AH =AG -GH =4-3=1,∴AD =DH 2+AH 2=32+12=10 ;②当AB =4时,如图2,由图可知:OI =4,OJ =8,KB =3 2 ,OM =9,∴IJ =AB =4,IM =AN =5,∵直线解析式为:y =-x , ∴△KLB 是等腰直角三角形, ∴KL =BL =22KB =3, ∵AB =4,∴AL =AB -BL =1,T 同①得,DM =MN ,∴过K 作KM ∥IM ,∴tan ∠DAN =KL AL =3,∴AM =DM tan ∠DAN =DM 3, ∴AN =AM +MN =43DM =5, ∴DM =MN =154, ∴AM =AN -MN =5-154=54, ∴AD =AM 2+DM 2=5104,故答案为10 或5104.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2 ,运动时间xs .能反映y cm 2 与xs 之间函数关系的大致图象是( )A .B .C. D .解:已知∠C =90°,BC =2cm ,∠A =30°,∴AB =4,由勾股定理得:AC =2 3 ,∵四边形DEFG 为矩形,∠C =90,∴DE =GF =2 3 ,∠C =∠DEF =90°,∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC ,∴EHAC =BEBC ,即EH 23=x ﹒12 ,解得:EH = 3 x ,所以y =12﹒3x ﹒x =32x 2,∵x y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32 >0,开口向上;(2)当2≤x ≤6时,如图,此时y =12×2×23=2 3 , (3)当6<x ≤8时,如图,设△ABC 的面积是s 1 ,△FNB 的面积是s 2 ,BF =x -6,与(1)类同,同法可求FN =3X -6 3 ,∴y =s 1-s 2 ,=12×2×23-12×(x -6)×(3X -6 3 ), =-32x 2+63x -16 3 , ∵-32<0, ∴开口向下,所以答案A 正确,答案B 错误,选A .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由菱形ABCD 、EFGH 边长为1,2可得:AC =2AB ×sin30°= 3 ,EG =2 3(1)当菱形ABCD 移动到点A 与点E 重合的过程,即0≤x ≤ 3 时,重合部分的菱形的两条对角线长度分别为:x ,2×x 2×tan30°=3x 3∴y =12﹒x ﹒3x 3=36x 2(2)当菱形ABCD 移动到点C 与点G 重合的过程,重合部分的菱形面积不变,即3<x ≤2 3 时,y =S 菱形ABCD =12×1×3=32; (3)当菱形ABCD 移动到点A 与点G 重合的过程,即23<x ≤33时,重合部分的菱形的两条对角线长度分别为: 3 -x ,2×3-x 2×tan30°=3(3-x )3y =12×(3-x )×3(3-x )3=36(3-x )2 . 由(1)(2)(3)可以看出图象应该是y =36x 2 图上像0≤x ≤ 3 时的部分,y =32 图象上3<x ≤2 3 时的部分,y =36(3-x )2 图象上23<x ≤33时的部分组成. 选D .同类题型4.2 如图,等边△ABC 的边AB 与正方形DEFG 的边长均为2,且AB 与DE 在同一条直线上,开始时点B 与点D 重合,让△ABC 沿这条直线向右平移,直到点B 与点E 重合为止,设BD 的长为x ,△ABC 与正方形DEFG 重叠部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )A .B .C .D .解:设BD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,当B 从D 点运动到DE 的中点时,即0≤x ≤1时,y =12×x ×3x =32x 2 . 当B 从DE 中点运动到E 点时,即1<x ≤2时,y =3-12(2-x )×3(2-x )=-32x 2+23x - 3 由函数关系式可看出D 中的函数图象与所求的分段函数对应.选D .同类题型4.3 如图,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F ⇒H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:DF =x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y y =12DF 2=12x 2(0≤x < 2 );②y =1(2≤x <2 2 );③∵BH =3 2 -x∴y =12BH 2=12x 2-32x +9(22≤x <3 2 ).综上可知,图象是选B .。
专题: 几何变换问题例1.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为______________.(结果保留根号)同类题型1.1 把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值同类题型1.2 已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定例2.如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A是()A. 2 :1 B.2:1 C. 5 :2 D. 3 :1同类题型2.1 如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个 B.2个 C.3个 D.4个同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5同类题型2.3 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为__________.同类题型2.4 如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα﹒tanβ=___________.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.同类题型2.6 如图1,一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC =EF =12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE 的值等于( )A .36B .3-16C .3+18D .3-12同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.专题08 几何变换问题例1.如图,斜边长12cm ,∠A =30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为______________.(结果保留根号)解:如图:连接B ′B ″,∵在Rt △ABC 中,AB =12,∠A =30°,∴BC =12 AB =6,AC =6 3 , ∴B ′C =6,∴AB ′=AC -B ′C =6 3 -6,∵B ′C ∥B ″C ″,B ′C =B ″C ″,∴四边形B ″C ″CB ′是矩形,∴B ″B ′∥BC ,B ″B ′=C ″C ,∴△AB ″B ′∽△ABC ,∴AB ′AC =B ″B ′BC, 即:63-663=B ″B ′6 , 解得:B ″B ′=6-2 3 .∴C ″C =B ″B ′=6-2 3 .同类题型1.1 把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值解:(1)当两斜边重合的时候可组成一个矩形,此时x =2,y =3,x +y =5;(2)当两直角边重合时有两种情况,①短边重合,此时x =2,y =3,x +y =5;②长边重合,此时x =2,y =5,x +y =7.综上可得:x +y =5或7.选B .同类题型1.2 已知:如图△ABC 的顶点坐标分别为A (-4,-3),B (0,-3),C (-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1 点,若设△ABC 的面积为S 1 ,△AB 1 C 的面积为S 2 ,则S 1 ,S 2 的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定解:△ABC 的面积为S 1=12 ×4×4=8, 将B 点平移后得到B 1 点的坐标是(2,1),所以△AB 1 C 的面积为S 2=12×4×4=8, 所以S 1=S 2 .选B .同类题型1.3同类题型1.4例2. 如图,P 是等边△ABC 外一点,把BP 绕点B 顺时针旋转60°到BP ′,已知∠AP ′B =150°,P ′A :P ′C =2:3,则PB :P ′A 是( )A . 2 :1B .2:1C . 5 :2D . 3 :1解:如图,连接AP ,∵BP 绕点B 顺时针旋转60°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=60°,又∵△ABC 是等边三角形,∴AB =BC ,∠CBP ′+∠ABP ′=60°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵⎩⎪⎨⎪⎧BP =BP ′∠ABP =∠CBP ′AB =BC, ∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =2:3,∴AP =32 P ′A ,连接PP ′,则△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB ,∵∠AP ′B =150°,∴∠AP ′P =150°-60°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =32 x , 根据勾股定理,PP ′=AP 2-P ′A 2=94x 2-x 2=52 x , 则PB =52x , ∴PB :P ′A =52 x :x = 5 :2. 选C .同类题型2.1 如图,△ABC 为等边三角形,以AB 为边向形外作△ABD ,使∠ADB =120°,再以点C 为旋转中心把△CBD 旋转到△CAE ,则下列结论:①D 、A 、E 三点共线;②DC 平分∠BDA ;③∠E =∠BAC ;④DC =DB +DA ,其中正确的有( )A .1个B .2个C .3个D .4个解:①设∠1=x 度,则∠2=(60-x )度,∠DBC =(x +60)度,故∠4=(x +60)度,∴∠2+∠3+∠4=60-x +60+x +60=180度,∴D 、A 、E 三点共线;②∵△BCD 绕着点C 按顺时针方向旋转60°得到△ACE ,∴CD =CE ,∠DCE =60°,∴△CDE 为等边三角形,∴∠E =60°,∴∠BDC =∠E =60°,∴∠CDA =120°-60°=60°,∴DC 平分∠BDA ;③∵∠BAC =60°,∠E =60°,∴∠E =∠BA C .④由旋转可知AE =BD ,又∵∠DAE =180°,∴DE =AE +A D .∵△CDE 为等边三角形,∴DC =DB +B A .同类题型2.2 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2 ;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( ) A .2 B .3 C .4 D .5解:∵正方形ABCD 中,CD =BC ,∠BCD =90°,∴∠BCN +∠DCN =90°,又∵CN ⊥DM ,∴∠CDM +∠DCN =90°,∴∠BCN =∠CDM ,又∵∠CBN =∠DCM =90°,∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM =BN ,又∵∠OCM =∠OBN =45°,OC =OB ,∴△OCM ≌△OBN (SAS ),∴OM =ON ,∠COM =∠BON ,∴∠DOC +∠COM =∠COB +∠BPN ,即∠DOM =∠CON ,又∵DO =CO ,∴△CON ≌△DOM (SAS ),故②正确;∵∠BON +∠BOM =∠COM +∠BOM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△AOD 是等腰直角三角形,∴△OMN ∽△OAD ,故③正确;∵AB =BC ,CM =BN ,∴BM =AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2 ,∴AN 2+CM 2=MN 2 ,故④正确;∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设BN =x =CM ,则BM =2-x ,∴△MNB 的面积=12x (2-x )=-12x 2 +x , ∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1-12=12 ,故⑤正确; 综上所述,正确结论的个数是5个,选D .同类题型2.3 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,使点B 在直线CD 上,连接OD 交AB 于点M ,直线CD 的解析式为__________.解:∵△BOA 绕点A 按顺时针方向旋转得△CDA ,∴△BOA ≌△CDA ,∴AB =AC ,OA =AD ,∵B 、D 、C 共线,AD ⊥BC ,∴BD =CD =OB ,∵OA =AD ,BO =CD =BD ,∴OD ⊥AB ,设直线AB 解析式为y =kx +b ,把A 与B 坐标代入得:⎩⎨⎧3k +b =0b =4, 解得:⎩⎪⎨⎪⎧k =-43b =4 , ∴直线AB 解析式为y =-43x +4, ∴直线OD 解析式为y =34x , 联立得:⎩⎨⎧y =-43x +4y =34x , 解得:⎩⎨⎧x =4825y =3625,即M (4825 ,3625 ), ∵M 为线段OD 的中点,∴D (9625 ,7225), 设直线CD 解析式为y =mx +n ,把B 与D 坐标代入得:⎩⎪⎨⎪⎧9625m +n =7225n =4, 解得:m =-724,n =4, 则直线CD 解析式为y =-724x +4. 同类题型2.4 如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若∠CEF =α,∠CFE =β,则tan α﹒tan β=___________.解:过C 点作MN ⊥BF ,交BG 于M ,交EF 于N ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE =3,由勾股定理得,CG =BG 2+DG 2 =4,∴DG =DC -CG =1,则AG =AD 2+DG 2=10 ,∵BA BC =BG BE,∠ABG =∠CBE , ∴△ABG ∽△CBE ,∴CE AG =BC AB =35 , 解得,CE =3105, ∵∠MBC =∠CBG ,∠BMC =∠BCG =90°,∴△BCM ∽△BGC ,∴CM CG =BC BG ,即CM 4=35, ∴CM =125, ∴MN =BE =3,∴CN =3-125=35,∴EN=CE2-CN2=95,∴FN=EF-EN=5-95=165,∴tanα﹒tanβ=CNEN﹒CNFN=3595×35165=116.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.解:如图连接P C.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).同类题型2.6 如图1,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF =12,点G为边EF的中点,边FD与AB相交于点H,如图2,将三角板DEF绕点G按顺时针方向旋转到60°的过程中,BH的最大值是_________,点H运动的路径长是_________.解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt △ABC 中,∠ABC =30°,BC =12, 在Rt △BHM 中,BH =2HM =2a ,BM = 3 a ,∵BM +FM =BC ,∴ 3 a +a =12,∴a =6 3 -6,∴BH =2a =12 3 -12.如图2中,当DG ⊥AB 时,易证GH 1 ⊥DF ,此时BH 1 的值最小,易知BH 1=BK +KH 1=3 3 +3,∴HH 1=BH -BH 1=9 3 -15,当旋转角为60°时,F 与H 2 重合,此时BH 的值最大,易知最大值BH 2=6 3 ,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=18 3-30+[6 3-(12 3-12)]=12 3 -18.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12解:如图所示,延长AB ,D 1A 1 交于点G ,∵A 1 E ⊥AB ,∠EA 1 C =∠A =120°,∴∠G =120°-90°=30°,又∵∠ABC =60°,∴∠BCG =60°-30°=30°,∴∠G =∠BCG =30°,∴BC =BG =BA ,设BE =1,AE =x =A 1 E ,则AB =1+x =BC =BG ,A 1 G =2x ,∴GE =1+x +1=x +2,∵Rt △A 1 GE 中,A 1E 2+GE 2=A 1G 2 ,∴x 2+(x +2)2=(2x )2 ,解得x =1+ 3 ,(负值已舍去)∴AE =1+ 3 ,∴BE AE =11+3=3-12, 选D .同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.解:解法一:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC 是等腰直角三角形,∴PE =PC ,设PC =x ,则PE =x ,PD =4-x ,EQ =4-x ,∴PD =EQ ,∵∠DPE =∠EQF =90°,∠PED =∠EFQ ,∴△DPE ≌△EQF ,∴DE =EF ,∵DE ⊥EF ,∴△DEF 是等腰直角三角形,易证明△DEC ≌△BEC ,∴DE =BE ,∴EF =BE ,∵EQ ⊥FB ,∴FQ =BQ =12BF , ∵AB =4,F 是AB 的中点,∴BF =2, ∴FQ =BQ =PE =1,∴CE = 2 ,PD =4-1=3,Rt △DAF 中,DF =42+22=2 5 ,DE =EF =10 ,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴CG AG =DC AF =DG FG =42 =2, ∴CG =2AG ,DG =2FG ,∴FG =13×25=253, ∵AC =42+42=4 2 ,∴CG =23×42=823, ∴EG =823-2=523, 连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103 , ∴EH =EF -FH =10-103=2103 ,由折叠得:GM ⊥EF ,MH =GH =103 , ∴∠EHM =∠DEF =90°, ∴DE∥HM ,∴△DEN ∽△MNH , ∴DE MH =EN NH, ∴10103=EN NH =3, ∴EN =3NH ,∵EN +NH ═EH =2103 , ∴EN =102, ∴NH =EH -EN =2103-102=106, Rt △GNH 中,GN =GH 2+NH 2=(103)2+(106)2=526, 由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法二:如图3,过G 作GK ⊥AD 于K ,作GR ⊥AB 于R ,∵AC 平分∠DAB ,∴GK =GR ,∴S △ADG S △AGF =12AD ﹒KG 12AF ﹒GR =AD AF =42 =2, ∵S △ADG S △AGF =12DG ﹒h12GF ﹒h =2, ∴DG GF=2, 同理,S △DNF S △MNF =DF FM =DN MN =3, 其它解法同解法一,可得:∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法三:如图4,过E 作EP ⊥AP ,EQ ⊥AD ,∵AC 是对角线,∴EP =EQ ,易证△DQE 和△FPE 全等,∴DE =EF ,DQ =FP ,且AP =EP ,设EP =x ,则DQ =4-x =FP =x -2,解得x =3,所以PF =1,∴AE =32+32=3 2 ,∵DC ∥AB ,∴△DGC ∽△FGA ,∴同解法一得:CG =23×42=823, ∴EG =823-2=523, AG =13AC =423, 过G 作GH ⊥AB ,过M 作MK ⊥AB ,过M 作ML ⊥AD ,则易证△GHF ≌△FKM 全等,∴GH =FK =43 ,HF =MK =23, ∵ML =AK =AF +FK =2+43=103 ,DL =AD -MK =4-23=103, 即DL =LM ,∴∠LDM =45°∴DM 在正方形对角线DB 上,过N 作NI ⊥AB ,则NI =IB ,设NI =y ,∵NI ∥EP ∴NI EP =FI FP ∴y 3=2-y1, 解得y =1.5,所以FI =2-y =0.5,∴I 为FP 的中点,∴N 是EF 的中点,∴EN =0.5EF =102, ∵△BIN 是等腰直角三角形,且BI =NI =1.5,∴BN =32 2 ,BK =AB -AK =4-103=23 ,BM =23 2 ,MN =BN -BM =322-232=56 2 ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°解:如图所示:分别作点P 关于OM 、ON 的对称点P ′、P ″,连接OP ′、OP ″、P ′P ″,P ′P ″交OM 、ON 于点A 、B , 连接PA 、PB ,此时△PAB 周长的最小值等于P ′P ″.如图所示:由轴对称性质可得,OP ′=OP ″=OP ,∠P ′OA =∠POA ,∠P ″OB =∠POB ,所以∠P ′OP ″=2∠MON =2×40°=80°,所以∠OP ′P ″=∠OP ″P ′=(180°-80°)÷2=50°,又因为∠BPO =∠OP ″B =50°,∠APO =∠AP ′O =50°,所以∠APB =∠APO +∠BPO =100°.选C .同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④解:∵矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,∴GF ⊥AD ,由折叠可得,AH =AD =2AG ,∠AHE =∠D =90°,∴∠AHG =30°,∠EHM =90°-30°=60°,∴∠HAG =60°=∠AED =∠MEH ,∴△EHM 中,∠EMH =60°=∠EHM =∠MEH ,∴△MEH 为等边三角形,故①正确;∵∠EHM =60°,HE =HF ,∴∠HEF =30°,∴∠FEM =60°+30°=90°,即AE ⊥EF ,故②正确;∵∠PEH =∠MHE =60°=∠HEA ,∠EPH =∠EHA =90°,∴△PHE ∽△HAE ,故③正确;设AD =2=AH ,则AG =1, ∴Rt △AGH 中,GH=3AG= 3 ,Rt △AEH 中,EH=AH 3=233 =HF , ∴GF=533 =AB , ∴AD AB =2533=235 ,故④正确, 综上所述,正确的结论是①②③④,选D .同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52, ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125, ∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=75 .。
专题14 几何变换问题【考点1】平移变换问题【例1】(2019·山东中考真题)在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)【答案】A【解析】试题分析:已知将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A ′的坐标为(﹣1,1).故选A .考点:坐标与图形变化-平移.【变式1-1】(2019·甘肃中考真题)如图,在平面直角坐标系xOy 中,将四边形ABCD 向下平移,再向右平移得到四边形1111A B C D ,已知1(3,5),(4,3),(3,3)A B A --,则点1B 坐标为( )A .(1,2)B .(2,1)C .(1,4)D .(4,1)【答案】B【解析】【分析】 根据A 和A 1的坐标得出四边形ABCD 先向下平移2个单位,再向右平移6个单位得到四边形1111A B C D ,则B 的平移方法与A 点相同,即可得到答案.【详解】图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化. A (-3,5)到A 1(3,3)得向右平移3-(-3)=6个单位,向下平移5-3=2个单位.所以B (-4,3)平移后B 1(2,1).故选B.【点睛】此题考查图形的平移.,掌握平移的性质是解题关键【变式1-2】(2019·广西中考真题)如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是2,1,1,()()2,3,3()A B C ---(1)将ABC ∆向上平移4个单位长度得到111A B C ∆,请画出111A B C ∆;(2)请画出与ABC ∆关于y 轴对称的222A B C ∆;(3)请写出12A A 、的坐标.【答案】(1)如图所示:111A B C ∆,即为所求;见解析;(2)如图所示:222A B C ∆,即为所求;见解析;(3)122,3,),1(()2A A --.【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【详解】(1)如图所示:111A B C ∆,即为所求;(2)如图所示:222A B C ∆,即为所求;(3)122,3,),1(()2A A --.【点睛】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.【考点2】轴对称变换问题(含折叠变换)【例2】(2019·四川中考真题)如图,在菱形ABCD 中,4sin 5B =,点,E F 分别在边,AD BC 上,将四边形AEFB 沿EF 翻折,使AB 的对应线段MN 经过顶点C ,当MN BC ⊥时,AE AD 的值是_____.【答案】29. 【解析】【分析】延长CM 交AD 于点G ,进而利用翻折变换的性质得出AE ME =,A EMC ∠=∠,BF FN =,B N ∠=∠,AB MN =,再利用菱形的性质得出AB BC CD AD ===,B D ∠=∠,180A B ︒∠+∠=,设4CF x =,5FN x =,利用勾股定理得出9BC x AB CD AD ====,再根据三角函数进行计算即可解答【详解】延长CM 交AD 于点G ,∵将四边形AEFB 沿EF 翻折,∴AE ME =,A EMC ∠=∠,BF FN =,B N ∠=∠,AB MN =∵四边形ABCD 是菱形∴AB BC CD AD ===,B D ∠=∠,180A B ︒∠+∠=∵4sin sin 5CF B N FN===, ∴设4CF x =,5FN x =,∴223CN FN CF x =-=, ∴9BC x AB CD AD ====,∵4sin sin 5GC B D CD=== ∴365x GC = ∴()36x 6655GM GC MN CN x x =--=-= ∵180A B ︒∠+∠=,180EMC EMG ︒∠+∠=∴B EMG ∠=∠∴4sin sin 5EG B EMG EM=∠== ∴3cos 5GM EMG EM ∠== ∴=2EM x ,∴2AE x =,∴2299AE x AD x == 故答案为:29. 【点睛】此题考查翻折变换,菱形的性质,三角函数,解题关键在于利用折叠的性质进行解答【变式2-1】(2019·江苏中考真题)如图,将平行四边形纸片ABCD 沿一条直线折叠,使点A 与点C 重合,点D 落在点G 处,折痕为EF .求证:(1)ECB FCG ∠=∠;(2)EBC FGC ∆≅∆.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)依据平行四边形的性质,即可得到A BCD ∠=∠,由折叠可得,A ECG ∠=∠,即可得到ECB FCG ∠=∠;(2)依据平行四边形的性质,即可得出D B ∠=∠,AD BC =,由折叠可得,D G ∠=∠,AD CG =,即可得到B G ∠=∠,BC CG =,进而得出EBC FGC ∆≅∆.【详解】(1)Q 四边形ABCD 是平行四边形,A BCD ∴=∠,由折叠可得, A ECG ∠=∠,BCD ECG ∴∠=∠,BCD ECF ECG ECF ∴∠-∠=∠-∠,ECB FCG ∴∠=∠;(2)Q 四边形ABCD 是平行四边形,D B ∴∠=∠,AD BC =,由折叠可得,D G ∠=∠,AD CG =,B G ∴∠=∠,BC CG =,又ECB FCG ∠=∠Q ,()EBC FGC ASA ∴∆≅∆.【点睛】本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.【变式2-2】(2019·江苏中考真题)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’. (1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)53;(3)面积不变,S△ACB’=163;(4)24+43【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题. 【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=PA=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°=53,∴BB′=53,故答案为53;(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843=∴S△ABC=1184322AC BE=⨯⨯g3,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,PA=2,∠PAE=60°,∴PE=PA·sin60°3,∴3∴S△ACB最大值=12×3)×3【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.【考点3】旋转变换问题【例3】(2019·山东中考真题)(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由. (3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE ,AD ⊥BE .(2) AD=BE ,AD ⊥BE .(3) 5-32≤PC≤5+32.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.【变式3-1】(2019·辽宁中考真题)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).(1)画出与△ABC关于y轴对称的△A1B1C1.(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)【答案】(1)作图见解析;(2)作图见解析;(3)9 2π.【解析】【分析】(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可;(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.【详解】解:(1)如图,△A l B1C1为所作.(2)如图,△A2BC2为所作;(3)AB=2233+=32,所以线段AB在旋转过程中扫过的图形面积=290π(32)360⋅⋅=92π.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.【变式3-2】(2019·江苏中考真题)如图①,在ABC∆中,3AB AC==,100BAC︒∠=,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80︒,点B的对应点是点E,连接BE,得到BPE∆.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E 在直线AD 上时,如图②所示.①BEP ∠= ;②连接CE ,直线CE 与直线AB 的位置关系是 .(2)请在图③中画出BPE ∆,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【答案】(1)①50︒;②EC AB ∥;(2)AB EC ∥;(3)AE 的最小值3.【解析】【分析】(1)①利用等腰三角形的性质即可解决问题.②证明40ABC ︒∠=,40ECB ︒∠=,推出ABC ECB ∠=∠即可.(2)如图③中,以P 为圆心,PB 为半径作⊙P .利用圆周角定理证明1402BCE BPE ︒∠=∠=即可解决问题.(3)因为点E 在射线CE 上运动,点P 在线段AD 上运动,所以当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值3AB ==.【详解】(1)①如图②中,∵80BPE ︒∠=,PB PE =,∴50PEB PBE ︒∠=∠=,②结论:AB EC ∥.理由:∵AB AC =,BD DC =,∴AD BC ⊥,∴90BDE ︒∠=,∴905040EBD ︒︒︒∠=-=,∵AE 垂直平分线段BC ,∴EB EC =,∴40ECB EBC ︒∠=∠=,∵AB AC =,100BAC ︒∠=,∴40ABC ACB ︒∠=∠=,∴ABC ECB ∠=∠,∴AB EC ∥.故答案为50,AB EC ∥.(2)如图③中,以P 为圆心,PB 为半径作⊙P .∵AD 垂直平分线段BC ,∴PB PC =, ∴1402BCE BPE ︒∠=∠=, ∵40ABC ︒∠=,∴ AB EC ∥.(3)如图④中,作AH CE ⊥于H ,∵点E 在射线CE 上运动,点P 在线段AD 上运动,∴当点P 运动到与点A 重合时,AE 的值最小,此时AE 的最小值3AB ==.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.【考点4】位似变换问题【例4】(2019·广西中考真题)如图,ABC ∆与'''A B C ∆是以坐标原点O 为位似中心的位似图形,若点()()2,2,3,4A B ,()6,1C ,()'6,8B 则'''A B C ∆的面积为__.【答案】18.【解析】【分析】根据()3,4B ,()'6,8B 的坐标得到位似比,继而得到A 、C 对应点的坐标,再用'''A B C ∆所在的矩形的面积减去顶点处的三角形面积即可求得答案.【详解】∵ABC ∆与'''A B C ∆是以坐标原点O 为位似中心的位似图形,若点()3,4B ,()'6,8B ,∴位似比为:31=62, ∵()2,2A ,()6,1C ,∴()()'4,4,'12,2A C ,∴'''A B C ∆的面积为:1116824662818222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:18.【点睛】本题考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键. 【变式4-1】(2019·山东中考真题)在平面直角坐标系中,ABO V 三个顶点的坐标分别为()()()2,4,4,0,0,0A B O --.以原点O 为位似中心,把这个三角形缩小为原来的12,得到CDO V ,则点A 的对应点C 的坐标是__________.【答案】()1,2-或()1,2-【解析】【分析】根据位似图形的中心和位似比例即可得到点A 的对应点C.【详解】解:以原点O 为位似中心,把这个三角形缩小为原来的12,点A 的坐标为()2,4-, ∴点C 的坐标为112,22(4)-⨯⨯或112,22(4)⨯-⨯,即()1,2-或()1,2-,故答案为:()1,2-或()1,2-.【点睛】本题主要考查位似图形的对应点,关键在于原点的位似图形,要注意方向. 【变式4-2】(2018·四川中考真题)如图,ABC ∆在方格纸中.(1)请在方格纸上建立平面直角坐标系,使(2,3)A ,(6,2)C ,并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将ABC ∆放大,画出放大后的图形'''A B C ∆; (3)计算'''A B C ∆的面积S .【答案】(1)作图见解析;(2,1)B .(2)作图见解析;(3)16.【解析】分析:(1)直接利用A ,C 点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出△A'B'C';(3)直接利用(2)中图形求出三角形面积即可.详解:(1)如图所示,即为所求的直角坐标系;B (2,1);(2)如图:△A'B'C'即为所求;(3)S △A'B'C '=12×4×8=16. 点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.一、单选题1.(2019·浙江中考真题)在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则( ) A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n = 【答案】B【解析】【分析】根据点关于y 轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.2.(2019·辽宁中考真题)如图,点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A ′B ′C ′,点P 在A ′C ′上的对应点P ′的的坐标为( )A .(4,3)B .(3,4)C .(5,3)D .(4,4)【答案】A【解析】【分析】 直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k ,进而结合已知得出答案.【详解】∵点P (8,6)在△ABC 的边AC 上,以原点O 为位似中心,在第一象限内将△ABC 缩小到原来的12,得到△A′B′C′,∴点P 在A′C′上的对应点P′的的坐标为:(4,3).故选:A .【点睛】此题主要考查了位似变换,正确得出位似比是解题关键.3.(2019·湖南中考真题)如图,将OAB ∆绕点O 逆时针旋转70°到OCD ∆的位置,若40AOB ∠=o ,则AOD ∠=( )A .45°B .40°C .35°D .30°【答案】D【解析】【分析】 首先根据旋转角定义可以知道70BOD ∠=o ,而40AOB ∠=o ,然后根据图形即可求出AOD ∠.【详解】解:∵OAB ∆绕点O 逆时针旋转70°到OCD ∆的位置,∴70BOD ︒∠=,而40AOB ︒∠=,∴704030AOD ∠=-=o o o故选:D .【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识. 4.(2019·广东中考真题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( ) A . B . C . D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5.(2019·浙江中考真题)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)【答案】A【解析】【分析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.【详解】如图,()''21C -,.故选A.【点睛】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.6.(2019·四川中考真题)在平面直角坐标系中,将点()2,3-向右平移4个单位长度后得到的点的坐标为( )A .()2,3B .()6,3-C .()2,7-D .()2,1--【答案】A【解析】【分析】根据直角坐标系的坐标平移即可求解.【详解】一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A【点睛】此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.7.(2019·湖南中考真题)点(1,2)-关于原点的对称点坐标是( )A .(1,2)--B .(1,2)-C .(1,2)D .(2,1)- 【答案】B【解析】【分析】坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --,即关于原点的对称点,横纵坐标都变成相反数.【详解】根据中心对称的性质,得点()1,2-关于原点的对称点的坐标为()1,2-.故选B .【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.8.(2019·湖南中考真题)如图,以点O 为位似中心,把ABC V 放大为原图形的2倍得到A'B'C'V ,以下说法中错误的是( )A .ABC A'B'C'V V ∽B .点C 、点O 、点C′三点在同一直线上 C .AO:AA'1:2=D .AB A'B'P【答案】C【解析】【分析】 直接利用位似图形的性质进而分别分析得出答案.【详解】∵以点O 为位似中心,把ABC V 放大为原图形的2倍得到A'B'C'V ,∴ABC A'B'C'V V ∽,点C 、点O 、点C′三点在同一直线上,AB A'B'P ,AO:AA'1:3=,∴C 选项错误,符合题意.故选C .【点睛】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.9.(2018·湖南中考真题)如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .25【答案】A【解析】 【分析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD , ∴C (1,2),则CD 的长度是2,故选A .【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.10.(2019·山东中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .18【答案】C【解析】【分析】 作'A H y ⊥轴于.H 证明AOB V ≌()'BHA AAS V ,推出OA BH =,'OB A H =,求出点'A 坐标,再利用中点坐标公式求出点D 坐标即可解决问题.【详解】解:作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS 'V V ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数k y x=的图象经过点D , ∴15k =.故选:C .【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化-旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.(2019·浙江中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A .22B .5C .35D .10【答案】D【解析】【分析】 根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN ,利用勾股定理即可求得.【详解】如图,EF 为剪痕,过点F 作FG EM ⊥于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中, 22223110FG EG EF +=+=故选:D.【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键. 12.(2019·湖北中考真题)如图,矩形ABCD 中,AC 与BD 相交于点E ,:3AD AB =,将ABD △沿BD 折叠,点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得BH EH +的值最小,此时BH CF=( )A 3B .233C .62D .32【答案】B【解析】【分析】设BD 与AF 交于点M .设AB=a ,3a ,根据矩形的性质可得△ABE 、△CDE 都是等边三角形,利用折叠的性质得到BM 垂直平分AF ,BF=AB=a ,3a .解直角△BGM ,求出BM ,再表示DM ,由△ADM ∽△GBM ,求出33B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小.建立平面直角坐标系,得出B (3,3,B′(3,3,E (03,利用待定系数法求出直线B′E 的解析式,得到H (1,0),然后利用两点间的距离公式求出BH=4,进而求出23BH CF =23. 【详解】 如图,设BD 与AF 交于点M .设AB=a ,3a ,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD=31 ADAB=,∴22AB AD+,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a,∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,3a,在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=12BG=1,33∴3∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴AD DMBG BM=,即3323a=,∴3,∴3AD=BC=6,3,易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC 垂直平分DF ,∴CF=CD=23,作B 点关于AD 的对称点B′,连接B′E ,设B′E 与AD 交于点H ,则此时BH+EH=B′E ,值最小. 如图,建立平面直角坐标系,则A (3,0),B (3,3,B′(3,3,E (03,易求直线B′E 的解析式为33∴H (1,0),∴22(31)(230)-+-,∴23BH CF ==233. 故选:B .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH 、CF 的长是解题的关键.13.(2019·湖南中考真题)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .22⎝⎭B .(1,0)C .22⎛ ⎝⎭D .(0,1)- 【答案】A【解析】【分析】 根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】Q 四边形OABC 是正方形,且OA 1=,()A 0,1∴,Q 将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴点A 1的横坐标为12sin 452⨯︒=,点A 1的纵坐标为12cos 452⨯︒=, 122A ∴⎝⎭,继续旋转则()2A 1,0,322A 22⎛⎫- ⎪ ⎪⎝⎭,A 4(0,-1),A 52222⎛⎫-- ⎪ ⎪⎝⎭,A 6(-1,0),A 722,22⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 922⎝⎭,……,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛- ⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.14.(2019·江苏中考真题)如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,''B C 与BC ,AC 分别交于点D ,E.设CD DE x +=,AEC ∆'的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .【答案】B【解析】【分析】连接B′C ,作AH ⊥B′C′,垂足为H ,由已知以及旋转的性质可得AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,继而可求出AH 长,B′C′的长,由等腰三角形的性质可得∠AB′C=∠ACB′,再根据∠AB′D=∠ACD=30°,可得∠DB′C=∠DCB′,从而可得B′D=CD ,进而可得 B′E=x ,由此可得3,再根据三角形面积公式即可求得y 与x 的关系式,由此即可得到答案.【详解】连接B′C ,作AH ⊥B′C′,垂足为H ,∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵△ABC绕点A逆时针旋转α(0<α<120°)得到AB C''∆,∴AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,∴AH=12AC′=1,∴C′H=223AC AH'-=,∴B′C′=2C′H=23,∵AB′=AC,∴∠AB′C=∠ACB′,∵∠A B′D=∠ACD=30°,∴∠AB′C-∠AB′D=∠ACB′-∠ACD,即∠DB′C=∠DCB′,∴B′D=CD,∵CD+DE=x,∴B′D+DE=x,即B′E=x,∴C′E=B′C′-B′E=23-x,∴y=12C E AH'g=12×(23-x)×1=132x-+,观察只有B选项的图象符合题意,故选B.【点睛】本题考查的是几何综合题,涉及了旋转的性质,等腰三角形的判定与性质,勾股定理,一次函数的应用等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15.(2019·辽宁中考真题)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为( )A.121200,5⎛⎫⎪⎝⎭B.()600,0C.12600,5⎛⎫⎪⎝⎭D.()1200,0【答案】B【解析】【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上,由点A,B的坐标利用勾股定理可求出AB的长,进而可得出点C2的横坐标,同理可得出点C4,C6的横坐标,根据点的横坐标的变化可找出变化规律“点C2n的横坐标为2n×6(n为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,...在第一象限,点C2,C4,C6, (x)上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴22OA OB+,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.【点睛】本题考查了规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.二、填空题16.(2019·湖南中考真题)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O 按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是____________..【答案】90°【解析】【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数即可.【详解】根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为:90°.【点睛】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.17.(2019·山东中考真题)如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.【答案】90【解析】【分析】先连接1CC ,1AA ,作1CC ,1AA 的垂直平分线交于点E ,连接AE ,1A E ,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接1CC ,1AA ,作1CC ,1AA 的垂直平分线交于点E ,连接AE ,1A E ,∵1CC ,1AA 的垂直平分线交于点E ,∴点E 是旋转中心,∵190AEA ∠=︒,∴旋转角90α=︒.故答案为:90.【点睛】本题考查旋转,解题的关键是掌握旋转的性质.18.(2019·海南中考真题)如图,将Rt ABC ∆的斜边AB 绕点A 顺时针旋转()090αα︒︒<<得到AE ,直角边AC 绕点A 逆时针旋转()090ββ︒︒<<得到AF ,连结EF .若=3AB ,=2AC ,且B αβ+=∠,则=EF _____.13【解析】【分析】由旋转的性质可得3AE AB ==,2AC AF ==,由勾股定理可求EF 的长.【详解】解:由旋转的性质可得3AE AB ==,2AC AF ==,90B BAC ︒∠+∠=Q ,且B αβ+=∠,90BAC αβ︒∴∠++=90EAF ︒∴∠=2213EF AE AF ∴=+=故答案为:13【点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.19.(2019·山东中考真题)在平面直角坐标系中,点()4,2P 关于直线1x =的对称点的坐标是_____.【答案】()2,2-【解析】【分析】先求出点P 到直线1x =的距离,再根据对称性求出对称点P'到直线1x =的距离,从而得到点P'的横坐标,即可得解.【详解】∵点()4,2P ,∴点P 到直线1x =的距离为413-=,∴点P 关于直线1x =的对称点P'到直线1x =的距离为3, ∴点P'的横坐标为132-=-,∴对称点P'的坐标为()2,2-.故答案为:()2,2-.【点睛】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线1x =的距离,从而得到横坐标是解题的关键,作出图形更形象直观.20.(2019·山东中考真题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,ABO V 与A B O '''V 是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为_____。
中考数学压轴题分类试题(2020江苏版)专题07 几何动点综合性问题【真题再现】1.(2019年南通中考第27题)如图,矩形ABCD 中,AB =2,AD =4.E ,F 分别在AD ,BC 上,点A 与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DPCP 的值;(3)连接BP 交EF 于点M ,当∠EMP =45°时,求CP 的长.2.(2019年苏州中考第27题)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =2√5cm .如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为 cm /s ,BC 的长度为 cm ;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.3.(2019年扬州中考第27题)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.4.(2019年无锡中考第28题)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2√3.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.5.(2019年淮安中考第27题)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=°;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.6.(2018年苏州中考第28题)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【专项突破】【题组一】1.(2019•东台市模拟)如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE =DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD 的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)2.(2019•六合区二模)【初步认识】(1)如图①,将△ABO绕点O顺时针旋转90°得到△MNO,连接AM、BM,求证△AOM∽△BON.【知识应用】(2)如图②,在△ABC中,∠BAC=90°,AB=√2,AC=3√2,将△ABC绕着点A旋转得到△ADE,连接DB、EC,直线DB、EC相交于点F,线段AF的最大值为.【拓展延伸】(3)如图③,在等边△ABC中,点E在△ABC内部,且满足AE2=BE2+CE2,用直尺和圆规作出所有的点E(保留作图的痕迹,不写作法).3.(2019•建邺区校级二模)如图1,在四边形ABCD中,∠BAD=∠BDC=90°,AB=AD,∠DCB=60°,CD=8.(1)若P是BD上一点,且P A=CD,求∠P AB的度数.(2)①将图1中的△ABD绕点B顺时针旋转30°,点D落在边BC上的E处,AE交BD于点O,连接DE.如图2,求证:DE2=DO•DB;②将图1中△ABD绕点B旋转α得到△A'BD′(A与A',D与D′时对应点),若DD′=CD,则cosα的值为.4.(2020•常熟市校级模拟)如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:.当CP=4时,并求CE•EQ的值.【题组二】5.(2019秋•沙坪坝区校级月考)如图①,在矩形ABCD中,AB=12cm,BC=6m,点P从A点出发,沿A →B→C→D路线运动,到D点停止:点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm),如图②是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系:图③是△AQD的面积S2(cm2)与Q点出发时间x(秒)之间的关系,根据图象回答下列问题:(1)则a=;b=;c=.(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的关系式,并求出点P与Q相遇时x的值.6.(2019•常熟市二模)如图(1),在平面直角坐标系中,点A、C分别在y轴和x轴上,AB∥x轴,cos B=3 5.点P从B点出发,以1cm/s的速度沿边BA匀速运动,点Q从点A出发,沿线段AO﹣OC﹣CB匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△BPQ 的面积为S(cm2),已知S与t之间的函数关系如图(2)中的曲线段OE、线段EF与曲线段FG.(1)点Q的运动速度为cm/s,点B的坐标为;(2)求曲线FG段的函数解析式;(3)当t为何值时,△BPQ的面积是四边形OABC的面积的110?7.(2017秋•苏州期末)如图①,在四边形ABCD中,AB∥CD,∠B=90°,AB=2CD.动点P从点A出发,在四边形ABCD的边上沿A→B→C的方向以1cm/s的速度匀速移动,到达点C时停移动.已知△APD 的面积S(cm2)与点P运动的时间t(s)之间的函数图象如图②所示,根据题意解答下列问题(1)在图①中,AB=cm,BC=cm(2)如图③,设动点P用了t1(s)到达点P1处,用了t2(s)到达点P2处,分别过P1、P2作AD的垂线,垂足为H1、H2.当P1H1=P2H2=4时,求t2﹣t1的值8.(2019秋•海州区校级期末)如图甲,在△ABC中,∠ACB=90°,AC=8cm,BC=6cm,PH⊥AC,垂足为H.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<8),解答下列问题:(1)①AP=,PH=.(用含t的代数式表示)②设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)当t为何值时,△APQ是直角三角形?(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值.【题组三】9.(2020春•泰兴市校级月考)如图①,在四边形ABCD中,AB∥CD,∠B=90°,AB=2CD.动点P从点A出发,在四边形ABCD的边上沿A→B→C的方向以1cm/s的速度匀速移动,到达点C时停止移动.已知△APD的面积S(cm2)与点P运动的时间t(s)之间的函数图象如图②所示,根据题意解答下列问题.(1)在图①中,AB=cm,BC=cm.(2)求图2中线段MN的函数关系式(并写出t的取值范围).(3)如图③,设动点P用了t1(s)到达点P1处,用了t2(s)到达点P2处,分别过P1、P2作AD的垂线,垂足为H1、H2.当P1H1=P2H2=4时,连P1P2,求△BP1P2的面积.10.(2019•宜兴市一模)如图1,B、D分别是x轴和y轴的正半轴上的点,AD∥x轴,AB∥y轴(AD>AB),点P从C点出发,以3cm/s的速度沿C﹣D﹣A﹣B匀速运动,运动到B点时终止;点Q从B点出发,以2cm/s的速度,沿B﹣C﹣D匀速运动,运动到D点时终止.P、Q两点同时出发,设运动的时间为t(s),△PCQ的面积为S(cm2),S与t之间的函数关系由图2中的曲线段OE,线段EF、FG表示.(1)求A、D点的坐标;(2)求图2中线段FG的函数关系式;(3)是否存在这样的时间t,使得△PCQ为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.11.(2019•太仓市模拟)如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)当t=2.5时,PQ=;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时t的值;若不存在,请说明理由.12.(2019•徐州二模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB 以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长:;(2)当t=时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【题组四】13.(2019•玄武区二模)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AB边上的动点,过点D作DE⊥AB交边AC于点E,过点E作EF⊥DE交BC于点F,连接DF.(1)当AD=4时,求EF的长度;(2)求△DEF的面积的最大值;(3)设O为DF的中点,随着点D的运动,则点O的运动路径的长度为.14.(2020春•玄武区校级期中)在矩形ABCD中,AB=3,BC=4,E、F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤5.(1)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形(E、F相遇时除外).(2)在(1)条件下,若四边形EGFH为矩形,求t的值.(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,若四边形EGFH 为菱形,求t的值.15.(2020•张家港市模拟)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.16.(2020•海门市一模)如图,边长为1的正方形ABCD中,点E、F分别在边CD、AD上,连接BE、BF、EF,且有AF+CE=EF.(1)求(AF+1)(CE+1)的值;(2)探究∠EBF的度数是否为定值,并说明理由;(3)将△EDF沿EF翻折,若点D的对应点恰好落在BF上,求EF的长.【题组五】17.(2020•稷山县校级一模)如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.18.(2019秋•张家港市期末)如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?19.(2019秋•江都区期末)如图,在矩形纸片ABCD中,已知AB=√2,BC=√6,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC=,∠DAC=°;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.20.(2019秋•滨海县期末)已知:矩形ABCD,AB=2,BC=5,动点P从点B开始向点C运动,动点P 速度为每秒1个单位,以AP为对称轴,把△ABP折叠,所得△AB'P与矩形ABCD重叠部分面积为y,运动时间为t 秒.(1)当运动到第几秒时点B '恰好落在AD 上; (2)求y 关于t 的关系式,以及t 的取值范围; (3)在第几秒时重叠部分面积是矩形ABCD 面积的14;(4)连接PD ,以PD 为对称轴,将△PCD 作轴对称变换,得到△PC 'D ,当t 为何值时,点P 、B '、C '在同一直线上?【题组六】21.(2019秋•金湖县期末)如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A →B →C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B →C →D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒. (1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?22.(2019秋•清江浦区期末)已知:如图,长方形ABCD 中,∠A =∠B =∠B =∠D =90°,AB =CD =4米,AD =BC =8米,点M 是BC 边的中点,点P 从点A 出发,以1米/秒的速度沿AB 方向运动再过点B 沿BM 方向运动,到点M 停止运动,点O 以同样的速度同时从点D 出发沿着DA 方向运动,到点A 停止运动,设点P 运动的时间为x 秒.(1)当x =2秒时,线段AQ 的长是 米;(2)当点P 在线段AB 上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=13DQ?若存在,求出点P的运动时间x的值;若不存在,请说明理由.23.(2019秋•淮阴区期末)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D 运动,设点P运动的时间为t秒(0<t<13).(1)点D的坐标是;(2)当点P在AB上运动时,点P的坐标是(用t表示);(3)求△POD的面积S与t之间的函数表达式,并写出对应自变量t的取值范围.24.(2019•徐州一模)将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F =45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4√3cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.。
专题08 几何变换问题例1.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为______________.(结果保留根号)同类题型1.1 把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值同类题型1.2 已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定例2.如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A是()A. 2 :1 B.2:1 C. 5 :2 D. 3 :1同类题型2.1 如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个 B.2个 C.3个 D.4个同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5同类题型2.3 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为__________.同类题型2.4 如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα﹒tanβ=___________.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.同类题型2.6 如图1,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( ) A .36B .3-16C .3+18D .3-12同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( ) A .20° B .40° C .100° D .140°同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.专题08 几何变换问题例1.如图,斜边长12cm ,∠A =30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为______________.(结果保留根号)解:如图:连接B ′B ″,∵在Rt △ABC 中,AB =12,∠A =30°,∴BC =12AB =6,AC =6 3 ,∴B ′C =6,∴AB ′=AC -B ′C =6 3 -6, ∵B ′C ∥B ″C ″,B ′C =B ″C ″, ∴四边形B ″C ″CB ′是矩形, ∴B ″B ′∥BC ,B ″B ′=C ″C , ∴△AB ″B ′∽△ABC , ∴AB ′AC =B ″B ′BC,即:63-663=B ″B ′6 ,解得:B ″B ′=6-2 3 .∴C ″C =B ″B ′=6-2 3 .同类题型1.1 把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( ) A .是一个确定的值 B .有两个不同的值 C .有三个不同的值 D .有三个以上不同的值解:(1)当两斜边重合的时候可组成一个矩形,此时x =2,y =3, x +y =5;(2)当两直角边重合时有两种情况,①短边重合,此时x =2,y =3,x +y =5; ②长边重合,此时x =2,y =5,x +y =7. 综上可得:x +y =5或7.选B .同类题型1.2 已知:如图△ABC 的顶点坐标分别为A (-4,-3),B (0,-3),C (-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1 点,若设△ABC 的面积为S 1 ,△AB 1 C 的面积为S 2 ,则S 1 ,S 2 的大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .不能确定解:△ABC 的面积为S 1=12×4×4=8,将B 点平移后得到B 1 点的坐标是(2,1),所以△AB 1 C 的面积为S 2=12×4×4=8,所以S 1=S 2 . 选B .同类题型1.3 同类题型1.4例2. 如图,P 是等边△ABC 外一点,把BP 绕点B 顺时针旋转60°到BP ′,已知∠AP ′B =150°,P ′A :P ′C =2:3,则PB :P ′A 是( ) A . 2 :1 B .2:1 C . 5 :2 D . 3 :1解:如图,连接AP ,∵BP 绕点B 顺时针旋转60°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=60°, 又∵△ABC 是等边三角形,∴AB =BC ,∠CBP ′+∠ABP ′=60°, ∴∠ABP =∠CBP ′, 在△ABP 和△CBP ′中, ∵⎩⎪⎨⎪⎧BP =BP ′∠ABP =∠CBP ′AB =BC , ∴△ABP ≌△CBP ′(SAS ), ∴AP =P ′C ,∵P ′A :P ′C =2:3,∴AP =32P ′A ,连接PP ′,则△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB , ∵∠AP ′B =150°,∴∠AP ′P =150°-60°=90°, ∴△APP ′是直角三角形,设P ′A =x ,则AP =32 x ,根据勾股定理,PP ′=AP 2-P ′A 2=94x 2-x 2=52x , 则PB =52x , ∴PB :P ′A =52x :x = 5 :2. 选C .同类题型2.1 如图,△ABC 为等边三角形,以AB 为边向形外作△ABD ,使∠ADB =120°,再以点C 为旋转中心把△CBD 旋转到△CAE ,则下列结论:①D 、A 、E 三点共线;②DC 平分∠BDA ;③∠E =∠BAC ;④DC =DB +DA ,其中正确的有( ) A .1个 B .2个 C .3个 D .4个解:①设∠1=x 度,则∠2=(60-x )度,∠DBC =(x +60)度,故∠4=(x +60)度, ∴∠2+∠3+∠4=60-x +60+x +60=180度, ∴D 、A 、E 三点共线;②∵△BCD 绕着点C 按顺时针方向旋转60°得到△ACE , ∴CD =CE ,∠DCE =60°, ∴△CDE 为等边三角形, ∴∠E =60°,∴∠BDC =∠E =60°,∴∠CDA =120°-60°=60°, ∴DC 平分∠BDA ; ③∵∠BAC =60°, ∠E =60°, ∴∠E =∠BA C .④由旋转可知AE =BD , 又∵∠DAE =180°, ∴DE =AE +A D .∵△CDE 为等边三角形, ∴DC =DB +B A .同类题型2.2 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( )A .2B .3C .4D .5解:∵正方形ABCD 中,CD =BC ,∠BCD =90°, ∴∠BCN +∠DCN =90°, 又∵CN ⊥DM ,∴∠CDM +∠DCN =90°, ∴∠BCN =∠CDM ,又∵∠CBN =∠DCM =90°, ∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM =BN , 又∵∠OCM =∠OBN =45°,OC =OB , ∴△OCM ≌△OBN (SAS ), ∴OM =ON ,∠COM =∠BON ,∴∠DOC +∠COM =∠COB +∠BPN ,即∠DOM =∠CON , 又∵DO =CO ,∴△CON ≌△DOM (SAS ),故②正确; ∵∠BON +∠BOM =∠COM +∠BOM =90°,∴∠MON =90°,即△MON 是等腰直角三角形, 又∵△AOD 是等腰直角三角形, ∴△OMN ∽△OAD ,故③正确; ∵AB =BC ,CM =BN , ∴BM =AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2,∴AN 2+CM 2=MN 2,故④正确; ∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1, ∴当△MNB 的面积最大时,△MNO 的面积最小, 设BN =x =CM ,则BM =2-x ,∴△MNB 的面积=12x (2-x )=-12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1-12=12,故⑤正确;综上所述,正确结论的个数是5个, 选D .同类题型2.3 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,使点B 在直线CD 上,连接OD 交AB 于点M ,直线CD 的解析式为__________.解:∵△BOA 绕点A 按顺时针方向旋转得△CDA ,∴△BOA ≌△CDA , ∴AB =AC ,OA =AD ,∵B 、D 、C 共线,AD ⊥BC , ∴BD =CD =OB ,∵OA =AD ,BO =CD =BD , ∴OD ⊥AB ,设直线AB 解析式为y =kx +b ,把A 与B 坐标代入得:⎩⎨⎧3k +b =0b =4,解得:⎩⎪⎨⎪⎧k =-43b =4,∴直线AB 解析式为y =-43 x +4,∴直线OD 解析式为y =34 x ,联立得:⎩⎨⎧y =-43x +4y =34x ,解得:⎩⎨⎧x =4825y =3625,即M (4825 ,3625 ),∵M 为线段OD 的中点,∴D (9625 ,7225),设直线CD 解析式为y =mx +n ,把B 与D 坐标代入得:⎩⎪⎨⎪⎧9625m +n =7225n =4,解得:m =-724,n =4,则直线CD 解析式为y =-724x +4.同类题型2.4 如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若∠CEF =α,∠CFE =β,则tan α﹒tan β=___________.解:过C 点作MN ⊥BF ,交BG 于M ,交EF 于N ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE =3,由勾股定理得,CG =BG 2+DG 2=4, ∴DG =DC -CG =1,则AG =AD 2+DG 2=10 ,∵BA BC =BGBE,∠ABG =∠CBE , ∴△ABG ∽△CBE , ∴CE AG =BC AB =35, 解得,CE =3105,∵∠MBC =∠CBG ,∠BMC =∠BCG =90°, ∴△BCM ∽△BGC , ∴CM CG =BC BG ,即CM 4=35, ∴CM =125,∴MN =BE =3,∴CN =3-125=35 ,∴EN =CE 2-CN 2=95,∴FN=EF-EN=5-95=165,∴tanα﹒tanβ=CNEN﹒CNFN=3595×35165=116.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.解:如图连接P C.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).同类题型2.6 如图1,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF =12,点G为边EF的中点,边FD与AB相交于点H,如图2,将三角板DEF绕点G按顺时针方向旋转到60°的过程中,BH的最大值是_________,点H运动的路径长是_________.解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt △ABC 中,∠ABC =30°,BC =12, 在Rt △BHM 中,BH =2HM =2a ,BM = 3 a ,∵BM +FM =BC ,∴ 3 a +a =12,∴a =6 3 -6,∴BH =2a =12 3 -12.如图2中,当DG ⊥AB 时,易证GH 1 ⊥DF ,此时BH 1 的值最小,易知BH 1=BK +KH 1=3 3 +3,∴HH 1=BH -BH 1=9 3 -15,当旋转角为60°时,F 与H 2 重合,此时BH 的值最大,易知最大值BH 2=6 3 ,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=18 3-30+[6 3-(12 3-12)]=12 3 -18.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12解:如图所示,延长AB ,D 1A 1 交于点G ,∵A 1 E ⊥AB ,∠EA 1 C =∠A =120°,∴∠G =120°-90°=30°,又∵∠ABC =60°,∴∠BCG =60°-30°=30°,∴∠G =∠BCG =30°,∴BC =BG =BA ,设BE =1,AE =x =A 1 E ,则AB =1+x =BC =BG ,A 1 G =2x ,∴GE =1+x +1=x +2,∵Rt △A 1 GE 中,A 1E 2+GE 2=A 1G 2 ,∴x 2+(x +2)2=(2x )2 ,解得x =1+ 3 ,(负值已舍去)∴AE =1+ 3 ,∴BE AE =11+3=3-12, 选D .同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.解:解法一:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4-x,EQ=4-x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,∵DE⊥EF,∴△DEF是等腰直角三角形,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=12BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE= 2 ,PD=4-1=3,Rt△DAF中,DF=42+22=2 5 ,DE=EF=10 ,如图2,∵DC∥AB,∴△DGC∽△FGA,∴CGAG=DCAF=DGFG=42=2,∴CG=2AG,DG=2FG,∴FG=13×25=253,∵AC=42+42=4 2 ,∴CG=23×42=823,∴EG=823-2=523,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH=2532=103,∴EH=EF-FH=10-103=2103,由折叠得:GM⊥EF,MH=GH=103,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴DEMH=ENNH,∴10103=ENNH=3,∴EN=3NH,∵EN+NH═EH=2103,∴EN=102,∴NH=EH-EN=2103-102=106,Rt△GNH中,GN=GH2+NH2=(103)2+(106)2=526,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=102+526+523=52+102;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴S△ADGS△AGF=12AD﹒KG12AF﹒GR=ADAF=42=2,∵S△ADGS△AGF=12DG﹒h12GF﹒h=2,∴DGGF=2,同理,S△DNFS△MNF=DFFM=DNMN=3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=102+526+523=52+102;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC 是对角线,∴EP =EQ ,易证△DQE 和△FPE 全等,∴DE =EF ,DQ =FP ,且AP =EP ,设EP =x ,则DQ =4-x =FP =x -2,解得x =3,所以PF =1,∴AE =32+32=3 2 ,∵DC ∥AB ,∴△DGC ∽△FGA ,∴同解法一得:CG =23×42=823, ∴EG =823-2=523, AG =13AC =423, 过G 作GH ⊥AB ,过M 作MK ⊥AB ,过M 作ML ⊥AD ,则易证△GHF ≌△FKM 全等,∴GH =FK =43 ,HF =MK =23, ∵ML =AK =AF +FK =2+43=103 ,DL =AD -MK =4-23=103, 即DL =LM ,∴∠LDM =45°∴DM 在正方形对角线DB 上,过N 作NI ⊥AB ,则NI =IB ,设NI =y ,∵NI ∥EP ∴NI EP =FI FP ∴y 3=2-y1, 解得y =1.5,所以FI =2-y =0.5,∴I 为FP 的中点,∴N 是EF 的中点,∴EN =0.5EF =102, ∵△BIN 是等腰直角三角形,且BI =NI =1.5,∴BN =32 2 ,BK =AB -AK =4-103=23 ,BM =23 2 ,MN =BN -BM =322-232=56 2 ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°解:如图所示:分别作点P 关于OM 、ON 的对称点P ′、P ″,连接OP ′、OP ″、P ′P ″,P ′P ″交OM 、ON 于点A 、B , 连接PA 、PB ,此时△PAB 周长的最小值等于P ′P ″.如图所示:由轴对称性质可得,OP ′=OP ″=OP ,∠P ′OA =∠POA ,∠P ″OB =∠POB ,所以∠P ′OP ″=2∠MON =2×40°=80°,所以∠OP ′P ″=∠OP ″P ′=(180°-80°)÷2=50°,又因为∠BPO =∠OP ″B =50°,∠APO =∠AP ′O =50°,所以∠APB =∠APO +∠BPO =100°.选C .同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④解:∵矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,∴GF ⊥AD ,由折叠可得,AH =AD =2AG ,∠AHE =∠D =90°,∴∠AHG =30°,∠EHM =90°-30°=60°, ∴∠HAG =60°=∠AED =∠MEH ,∴△EHM 中,∠EMH =60°=∠EHM =∠MEH ,∴△MEH 为等边三角形,故①正确;∵∠EHM =60°,HE =HF ,∴∠HEF =30°,∴∠FEM =60°+30°=90°,即AE ⊥EF ,故②正确;∵∠PEH =∠MHE =60°=∠HEA ,∠EPH =∠EHA =90°,∴△PHE ∽△HAE ,故③正确;设AD =2=AH ,则AG =1,∴Rt △AGH 中,GH=3AG= 3 ,Rt △AEH 中,EH=AH 3=233 =HF , ∴GF=533 =AB , ∴AD AB =2533=235 ,故④正确, 综上所述,正确的结论是①②③④,选D .同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52, ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125, ∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=75 .。
2020年江苏省中考数学试题分类(8)——图形的变化一.翻折变换(折叠问题)(共3小题) 1.(2020•无锡)如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°,AB =3,BC =√3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =√32,则线段DE 的长度( )A .√63B .√73C .√32D .2√752.(2020•南通)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求AA AA的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.3.(2020•无锡)如图,在矩形ABCD 中,AB =2,AD =1,点E 为边CD 上的一点(与C 、D 不重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,记四边形P ADE 的面积为S . (1)若DE =√33,求S 的值;(2)设DE =x ,求S 关于x 的函数表达式.二.平移的性质(共1小题) 4.(2020•镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于 .三.旋转的性质(共1小题)5.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°四.旋转对称图形(共1小题)6.(2020•镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.五.中心对称图形(共1小题)7.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.六.关于原点对称的点的坐标(共1小题)8.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)七.坐标与图形变化-旋转(共1小题)9.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限八.作图-旋转变换(共1小题) 10.(2020•常州)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1.(1)点F 到直线CA 的距离是 ;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE =OB 时,求OF 的长.九.几何变换综合题(共1小题) 11.(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ; [思考说理](2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AA AA的值;[拓展延伸](3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM . ①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求AA AA的取值范围.一十.平行线分线段成比例(共1小题) 12.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .一十一.相似三角形的判定(共1小题)13.(2020•南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AA AA=A′A′A′A′.(1)当AAA′A′=AA A′A′=AAA′A′时,求证△ABC ∽△A 'B 'C '.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当AAA′A′=AA A′A′=AAA′A′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.一十二.相似三角形的判定与性质(共6小题)14.(2020•无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =12,有下列结论: ①CP 与QD 可能相等;②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31√316;④四边形PCDQ 周长的最小值为3+√372. 其中,正确结论的序号为( )A .①④B .②④C .①③D .②③ 15.(2020•南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则A 1A 2的值等于 .16.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AAAA的值为.17.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.18.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.19.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D =30°,DC=√3.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.一十三.相似形综合题(共2小题)20.(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AA AA=AA AA.【探究】如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且AA AA=AA AA,连接BG 交CD 于点H .求证:BH =GH .【拓展】如图③,点E 在四边形ABCD 内,∠AEB 十∠DEC =180°,且AA AA=AA AA,过E 作EF 交AD于点F ,若∠EF A =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .21.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果AA AA=AA AA,那么称点B 为线段AC的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.一十四.解直角三角形的应用(共3小题) 22.(2020•南通)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得∠CAB =30°,∠ABC =45°,AC =8千米,求A 、B 两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).24.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点? (2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上. (参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.(2020•苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作: (1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α; (2)量得测角仪的高度CD =a ;(3)量得测角仪到旗杆的水平距离DB =b .利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .a +b tan αB .a +b sin αC .a +A AAAAD .a +AAAAA26.(2020•镇江)如图,点E 与树AB 的根部点A 、建筑物CD 的底部点C 在一条直线上,AC =10m .小明站在点E 处观测树顶B 的仰角为30°,他从点E 出发沿EC 方向前进6m 到点G 时,观测树顶B 的仰角为45°,此时恰好看不到建筑物CD 的顶部D (H 、B 、D 三点在一条直线上).已知小明的眼睛离地面1.6m ,求建筑物CD 的高度(结果精确到0.1m ).(参考数据:√2≈1.41,√3≈1.73.)27.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)一十六.解直角三角形的应用-方向角问题(共3小题)28.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.29.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)30.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)一十七.简单几何体的三视图(共1小题)31.(2020•淮安)下列几何体中,主视图为圆的是()A.B.C.D.一十八.简单组合体的三视图(共3小题)32.(2020•镇江)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.33.(2020•盐城)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.34.(2020•苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.一十九.由三视图判断几何体(共1小题)35.(2020•常州)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥2020年江苏省中考数学试题分类(8)——图形的变化参考答案与试题解析一.翻折变换(折叠问题)(共3小题) 1.【解答】解:方法一:如图,延长ED 交AC 于点M ,过点M 作MN ⊥AE 于点N ,设MN =√3x , ∵tan ∠AED =√32, ∴AA AA=√32, ∴NE =2x ,∵∠ABC =90°,AB =3,BC =√3, ∴∠CAB =30°, ∴AC =2√3, 由翻折可知: ∠EAC =30°,∴AM =2MN =2√3x , ∴AN =√3MN =3x , ∵AE =AB =3, ∴5x =3, ∴x =35,∴AN =95,MN =3√35,AM =6√35, ∵AC =2√3,∴CM =AC ﹣AM =4√35, ∵MN =3√35,NE =2x =65, ∴EM =√AA 2+AA 2=3√75,∵∠ABC =∠BCD =90°, ∴CD ∥AB ,∴∠DCA =30°,由翻折可知:∠ECA =∠BCA =60°, ∴∠ECD =30°,∴CD 是∠ECM 的角平分线, ∴A △AAA A △AAA =AAAA=AA AA,∴√34√35=3√75−AA ,解得,ED =√73. 方法二:如图,过点D 作DM ⊥CE ,由折叠可知:∠AEC =∠B =90°, ∴AE ∥DM ,∴∠AED =∠EDM , ∴tan ∠AED =tan ∠EDM =√32,∵∠ACB =60°,∠ECD =30°,设EM =√3m ,由折叠性质可知,EC =CB =√3, ∴CM =√3−√3m ,∴tan ∠ECD =AA AA =√33, ∴DM =(√3−√3m )×√33=1﹣m ,∴tan ∠EDM =AA AA =√32,即√3A 1−A=√32解得,m =13,∴DM =23,EM =√33,在直角三角形EDM 中,DE 2=DM 2+EM 2,解得,DE =√73.故选:B . 2.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .∵四边形ABCD 是矩形, ∴∠BAD =∠C =90°,由翻折可知,AO =OP ,AP ⊥DE ,∠2=∠3,∠DAE =∠DPE =90°, 在Rt △EPD 中,∵EM =MD , ∴PM =EM =DM , ∴∠3=∠MPD ,∴∠1=∠3+∠MPD =2∠3, ∵∠ADP =2∠3, ∴∠1=∠ADP , ∵AD ∥BC ,∴∠ADP =∠DPC , ∴∠1=∠DPC ,∵∠MOP =∠C =90°, ∴△POM ∽△DCP , ∴AA AA =AAAA =812=23,∴AA AA=2AA 2AA=23.解法二:证明△ABP 和△DAE 相似,AA AA=AA AA=23.(2)如图②中,过点P 作GH ∥BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG =x ,则BG =4﹣x∵∠A =∠EPD =90°,∠EGP =∠DHP =90°, ∴∠EPG +∠DPH =90°,∠DPH +∠PDH =90°, ∴∠EPG =∠PDH , ∴△EGP ∽△PHD , ∴AA AA=AA AA=AA AA=412=13,∴PH =3EG =3x ,DH =AG =4+x , 在Rt △PHD 中,∵PH 2+DH 2=PD 2, ∴(3x )2+(4+x )2=122,解得x =165(负值已经舍弃), ∴BG =4−165=45,在Rt △EGP 中,GP =√AA 2−AA 2=125, ∵GH ∥BC ,∴△EGP ∽△EBF , ∴AA AA=AA AA,∴1654=125AA,∴BF =3.3.【解答】解:(1)∵在矩形ABCD 中,∠D =90°,AD =1,DE =√33,∴AE =√AA 2+AA 2=2√33,∴tan ∠AED =AAAA =√3,∴∠AED =60°, ∵AB ∥CD ,∴∠BAE =60°,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴∠AEC =∠AEM , ∵∠PEC =∠DEM ,∴∠AEP =∠AED =60°, ∴△APE 为等边三角形, ∴S =12×(2√33+√33)×1=√32; (2)过E 作EF ⊥AB 于F ,由(1)可知,∠AEP =∠AED =∠P AE , ∴AP =PE ,设AP =PE =a ,AF =ED =x , 则PF =a ﹣x ,EF =AD =1,在Rt △PEF 中,(a ﹣x )2+1=a 2,解得:a =A 2+12A ,∴S =12⋅A ×1+12×A 2+12A ×1=12A +A 2+14A =3A 2+14A .二.平移的性质(共1小题) 4.【解答】解:取AC 的中点M ,A 1B 1的中点N ,连接PM ,MQ ,NQ ,PN , ∵将△ABC 平移5个单位长度得到△A 1B 1C 1, ∴B 1C 1=BC =3,PN =5,∵点P 、Q 分别是AB 、A 1C 1的中点, ∴NQ =12B 1C 1=32, ∴5−32≤PQ ≤5+32, 即72≤PQ ≤132, ∴PQ 的最小值等于72, 故答案为:72.三.旋转的性质(共1小题) 5.【解答】解:∵AB '=CB ', ∴∠C =∠CAB ',∴∠AB 'B =∠C +∠CAB '=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB 'C ', ∴∠C =∠C ',AB =AB ', ∴∠B =∠AB 'B =2∠C ,∵∠B +∠C +∠CAB =180°, ∴3∠C =180°﹣108°, ∴∠C =24°,∴∠C '=∠C =24°, 故选:C .四.旋转对称图形(共1小题) 6.【解答】解:连接OA ,OE ,则这个图形至少旋转∠AOE 才能与原图象重合, ∠AOE =360°5=72°.故答案为:72.五.中心对称图形(共1小题) 7.【解答】解:A 、不是中心对称图形,不是轴对称图形,故此选项不合题意; B 、不是中心对称图形,是轴对称图形,故此选项不合题意; C 、既是中心对称图形,也是轴对称图形,故此选项符合题意; D 、不是中心对称图形,不是轴对称图形,故此选项不合题意; 故选:C .六.关于原点对称的点的坐标(共1小题) 8.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2). 故选:C .七.坐标与图形变化-旋转(共1小题) 9.【解答】解:如图,∵点P (4,5)按逆时针方向旋转90°,得点Q 所在的象限为第二象限. 故选:B .八.作图-旋转变换(共1小题) 10.【解答】解:(1)如图1中,作FD ⊥AC 于D ,∵Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1. ∴∠ACB =60°,∠FCE =∠BAC =30°,AC =CF , ∴∠ACF =30°, ∴∠BAC =∠FCD , 在△ABC 和△CDF 中,{∠AAA =∠AAAAAAA =AAAA AA =AA, ∴△ABC ≌△CDF (AAS ), ∴FD =BC =1,法二:∵∠ECF =∠FCD =30°,FD ⊥CD ,FE ⊥CE , ∴DF =EF , ∵EF =BC =1,∴DF =1. 故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.S 阴=S △EFC +S 扇形ACF ﹣S 扇形CEH ﹣S △AHC =S 扇形ACF ﹣S 扇形ECH =30⋅A ⋅22360−30⋅A ⋅(√3)2360=A12. 故答案为A12.(3)如图2中,过点E 作EH ⊥CF 于H .设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF , ∴EC =√3EF =√3,EH =√32,CH =√3EH =32,在Rt △BOC 中,OC =√AA 2+AA 2=√1+A 2, ∴OH =CH ﹣OC =32−√1+A 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+A 2)2,解得x =√73或−√73(不合题意舍弃),∴OC =1+(√73)2=43,∵CF =2EF =2,∴OF =CF ﹣OC =2−43=23. 九.几何变换综合题(共1小题)11.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC , ∴CN =BN ,∵∠MNB =∠ACB =90°, ∴MN ∥AC , ∵CN =BN , ∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6, ∴∠A =∠B ,由题意MN 垂直平分线段BC , ∴BM =CM , ∴∠B =∠MCB , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA ,∴610=AA6,∴BM =185, ∴AM =AB ﹣BM =10−185=325, ∴AA AA=325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA =AA AA∴69=AA 6,∴BM =4,∴AM =CM =5, ∴69=5AA ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′, ∴△PF A ′∽△MFC , ∴AA AA =AA′AA,∵CM =5, ∴AA AA =AA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32, ∴32≤P A ′≤154, ∴310≤AA AA≤34.一十.平行线分线段成比例(共1小题) 12.【解答】解:如图,过点D 作DF ∥AE ,则AA AA =AA AA =23,∵AA AA=13,∴DF =2EC , ∴DO =2OC , ∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC , ∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4, 此时△ABO 的面积最大为:23×4=83. 故答案为:83.一十一.相似三角形的判定(共1小题) 13.【解答】(1)证明:∵AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵AA A′A′=AAA′A′, ∴△ABC ∽△A ′B ′C ′. 故答案为:AAA′A′=AA A′A′=AAA′A′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC , ∴AA AA=AA AA=AA AA,同理,A′A′A′A′=A′A′A′A′=A′A′A′A′,∵AA AA =A′A′A′A′, ∴AA AA =A′A′A′A′,∴AAA′A′=AAA′A′,同理,AA AA =A′A′A′A′,∴AA −AA AA =A′A′−A′A′A′A′,即AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△DCE ∽△D ′C ′E ′, ∴∠CED =∠C ′E ′D ′, ∵DE ∥BC ,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°, ∴∠ACB =∠A ′C ′B ′, ∵AA A′A′=AAA′A′,∴△ABC ∽△A ′B ′C ′.一十二.相似三角形的判定与性质(共6小题)14.【解答】解:①利用图象法可知PC >DQ ,或通过计算可知DQ 的最大值为√212,PC 的最小值为3√32,所以PC >DQ ,故①错误.②设AQ =x ,则BP =AB ﹣AQ ﹣PQ =3﹣x −12=52−x , ∵∠A =∠B =60°, ∴当AA AA=AA AA 或AA AA=AA AA时,△ADQ 与△BPC 相似,即1252−A=A3或123=A52−A ,解得x =1或32或514,∴当AQ =1或32或514时,两三角形相似,故②正确③设AQ =x ,则四边形PCDQ 的面积=S △ABC ﹣S △ADQ ﹣S △BCP =√34×32−12×x ×√32×12−12×3×(3﹣x −12)×√32=3√38+5√38x ,∵x 的最大值为3−12=52,∴x =52时,四边形PCDQ 的面积最大,最大值=31√316,故③正确,如图,作点D 关于AB 的对称点D ′,作D ′F ∥PQ ,使得D ′F =PQ ,连接CF 交AB 于点P ′,在射线P ′A 上取P ′Q ′=PQ ,此时四边形P ′CDQ ′的周长最小.过点C 作CH ⊥D ′F 交D ′F 的延长线于H ,交AB 于J .由题意,DD ′=2AD •sin60°=√32,HJ =12DD ′=√34,CJ =3√32,FH =32−12−14=34, ∴CH =CJ +HJ =7√34,∴CF =√AA 2+AA 2=(34)2+(7√34)2=√392, ∴四边形P ′CDQ ′的周长的最小值=3+√392,故④错误, 故选:D .15.【解答】解:∵AA AA =√22=√2, AAAA=√22+222=√2, AA AA =√22√22=√2,∴AA AA =AA AA =AA AA =√2, ∴△ABC ∽△DEF ,∴A 1A 2=AA AA=√22, 故答案为:√22. 16.【解答】解:∵BC ∥DE , ∴△ADE ∽△ABC , ∴AA AA =AA AA =AAAA ,即4AA =AA 4=AA AA , ∴AB •DE =16,∵AB +DE =10, ∴AB =2,DE =8,∴AAAA=AA AA =84=2, 故答案为:2. 17.【解答】解:(1)∵PD ∥AB , ∴AAAA=AA AA , ∵AC =3,BC =4,CP =x , ∴A4=AA 3,∴CD =34A , ∴AD =AC ﹣CD =3−34A ,即AD =−34A +3;(2)根据题意得,S =12AA ⋅AA =12A (−34A +3)=−38(A −2)2+32,∴当x ≥2时,S 随x 的增大而减小,∵0<x <4,∴当S 随x 增大而减小时x 的取值范围为2≤x <4.18.【解答】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE =√AA 2+AA 2=√62+22=2√10,∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A ,∴AA AA =AA AA ,∴AA =AA ⋅AA AA =2√10=65√10. 19.【解答】证明:(1)∵DC 是⊙O 的切线,∴∠OCD =90°,∵∠D =30°,∴∠BOC =∠D +∠OCD =30°+90°=120°,∵OB =OC ,∴∠B =∠OCB =30°,∴∠DCB =120°=∠BOC ,又∵∠B =∠B =30°,∴△BOC ∽△BCD ;(2)∵∠D =30°,DC =√3,∠OCD =90°,∴DC =√3OC =√3,DO =2OC ,∴OC =1=OB ,DO =2,∵∠B =∠D =30°, ∴DC =BC =√3,∴△BCD 的周长=CD +BC +DB =√3+√3+2+1=3+2√3.一十三.相似形综合题(共2小题)20.【解答】【感知】证明:∵∠C =∠D =∠AEB =90°,∴∠BEC +∠AED =∠AED +∠EAD =90°,∴∠BEC =∠EAD ,∴Rt △AED ∽Rt △EBC ,∴AA AA =AA AA .【探究】证明:如图1,过点G 作GM ⊥CD 于点M ,由(1)可知AA AA =AA AA ,∵AA AA =AA AA ,AA AA =AA AA , ∴AA AA =AA AA ,∴BC =GM ,又∵∠C =∠GMH =90°,∠CHB =∠MHG ,∴△BCH ≌△GMH (AAS ),∴BH =GH ,【拓展】证明:如图2,在EG 上取点M ,使∠BME =∠AFE ,过点C 作CN ∥BM ,交EG 的延长线于点N ,则∠N =∠BMG ,∵∠EAF +∠AFE +∠AEF =∠AEF +∠AEB +∠BEM =180°,∠EF A =∠AEB ,∴∠EAF =∠BEM ,∴△AEF ∽△EBM ,∴AA AA =AA AA ,∵∠AEB +∠DEC =180°,∠EF A +∠DFE =180°,而∠EF A =∠AEB ,∴∠CED =∠EFD ,∵∠BMG +∠BME =180°,∴∠N =∠EFD ,∵∠EFD +∠EDF +∠FED =∠FED +∠DEC +∠CEN =180°,∴∠EDF =∠CEN ,∴△DEF ∽△ECN ,∴AA AA =AA AA , 又∵AA AA =AA AA , ∴AA AA =AA AA ,∴BM =CN ,又∵∠N =∠BMG ,∠BGM =∠CGN ,∴△BGM ≌△CGN (AAS ),∴BG =CG .21.【解答】解:(1)∵点B 为线段AC 的黄金分割点,AC =20cm ,∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10).(2)延长EA ,CG 交于点M ,∵四边形ABCD 为正方形,∴DM ∥BC ,∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG ,∴∠EMC =∠ECM ,∴EM =EC ,∵DE =10,DC =20,∴EC =√AA 2+AA 2=√102+202=10√5,∴EM =10√5,∴DM =10√5+10,∴tan ∠DMC =AA AA =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12, 即AA AA =√5−12, ∵AB =BC , ∴AAAA =√5−12, ∴G 是AB 的黄金分割点;(3)当BP =BC 时,满足题意.理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°,∵BE ⊥CF ,∴∠ABE +∠CFB =90°,又∵∠BCF +∠BFC =90°,∴∠BCF =∠ABE ,∴△ABE ≌△BCF (ASA ),∴BF =AE ,∵AD ∥CP ,∴△AEF ∽△BPF , ∴AAAA=AA AA , 当E 、F 恰好分别是AD 、AB 的黄金分割点时, ∵AE >DE , ∴AAAA =AA AA ,∵BF =AE ,AB =BC ,∴AA AA =AA AA =AA AA , ∴AA AA =AA AA ,∴BP =BC .一十四.解直角三角形的应用(共3小题)22.【解答】解:如图,过点D 作DE ⊥AB ,垂足为点E ,则DE =BC =5,DC =BE =1.5,在Rt △ADE 中,∵tan ∠ADE =AA AA ,∴AE =tan ∠ADE •DE =tan50°×5≈1.19×5=5.95(米),∴AB =AE +BE =5.95+1.5≈7.5(米),故答案为:7.5.23.【解答】解:过点C 作CD ⊥AB 于点D ,如图所示.在Rt △ACD 中,AC =8(千米),∠CAD =30°,∠CDA =90°,∴CD =AC •sin ∠CAD =4(千米),AD =AC •cos ∠CAD =4√3(千米)≈6.8(千米).在Rt △BCD 中,CD =4(千米),∠BDC =90°,∠CBD =45°,∴∠BCD =45°,∴BD =CD =4(千米),∴AB =AD +BD =6.8+4≈11(千米).答:A 、B 两点间的距离约为11千米.24.【解答】解:(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°,在Rt △ACO 中,cos ∠AOC =AA AA =2.23=1115. ∴∠AOC =43°,∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°,过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ),2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m .(3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN ,在Rt △OPM 中,cos ∠POM =AA AA =38,∴∠POM =68°,在Rt △COM 中,cos ∠COM =AA AA =2.28=1140,∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°,∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.【解答】解:过C 作CF ⊥AB 于F ,则四边形BFCD 是矩形,∴BF =CD =a ,CF =BD =b ,∵∠ACF =α,∴tan α=AA AA =AA A , ∴AF =b •tan α,∴AB =AF +BF =a +b tan α,故选:A .26.【解答】解:如图,延长FH,交CD于点M,交AB于点N,∵∠BHN=45°,BA⊥MH,则BN=NH,设BN=NH=x,∵HF=6,∠BFN=30°,∴tan∠BFN=AAAA=AAAA+AA,即tan30°=AA+6,解得x=8.19,根据题意可知:DM=MH=MN+NH,∵MN=AC=10,则DM=10+8.19=18.19,∴CD=DM+MC=DM+EF=18.19+1.6≈19.8(m).答:建筑物CD的高度约为19.8m.27.【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°=AAAA=15AA≈0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°=AAAA=21AA≈1.19,解得:DE≈17.6,∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.一十六.解直角三角形的应用-方向角问题(共3小题)28.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=√2x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=AA AA,∴A2−A=√3,解得x=3−√3.经检验,x=3−√3是原方程的根.∴AC=√2x=√2(3−√3)=(3√2−√6)km.答:船C离观测站A的距离为(3√2−√6)km.29.【解答】解:过点P作PN⊥BC于N,如图,则四边形ABNP是矩形,∴PN=AB,∵四边形ABCD是矩形,∴∠A=90°,∵∠APM=45°,∴△APM是等腰直角三角形,∴AM=√22PM=√22×30=15√2(m),∵M是AB的中点,∴PN=AB=2AM=30√2m,在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,∴NQ=√33PN=10√6m,PQ=2NQ=20√6≈49(m);答:小红与爸爸的距离PQ约为49m.30.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=AA AAA37°,在Rt△DBH中,∠DBH=45°,∴BH=AA AAA45°,∵BC=CH﹣BH,∴AAAAA37°−AAAAA45°=6,解得DH≈18km,在Rt△DAH中,∠ADH=26°,∴AD=AAAAA26°≈20km.答:轮船航行的距离AD约为20km.一十七.简单几何体的三视图(共1小题)31.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.一十八.简单组合体的三视图(共3小题)32.【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.33.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.34.【解答】解:从上面看,是一行三个小正方形.故选:C.一十九.由三视图判断几何体(共1小题)35.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.。
2020年中考数学热点专练八动态几何问题(江苏版)(解析版)专题导读动态几何问题,是近年来的热点问题.它几乎成了每个城市中考试卷中的亮点,拿到一套试卷,总是习惯先看看有没有关于动态几何的问题.动态几何问题也就是关于图形运动的一类问题,它主要是牵扯到图形的三种变换:平移、旋转、轴对称及动点问题.当然考查图形的运动问题有小题,也有大题,小题主要分布在选择和填空的最后一两个题,也就是小压轴题,解答题中也会有关于图形的运动问题,主要有两类,一类是关于平移、旋转、轴对称的作图,这个比较简单,我们这里就不说了;另一类就是我们介绍的重点一一研究图形在运动过程中产生的一些图形性质上的变化和不变的情况.这几乎成了压轴题基本上共同的特点.中考要求中考要求课程标准和中考说明都要求学生要具备一定的用运动观点分析问题的能力.学会在运动变化中寻求不变的图形性质.学会运用函数的观点研究关于图形运动中性质的变化情况.专题集训考向1图形的运动与最值1.(2019江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作。
与直线相切,点P是QC±一个动点,连接AP交于点T,则业的最大值是AT2.(2019江苏省无锡市)如图,在AABC中,AB=AC=5,BC=4逐,D为边AB上一动点(3点除外),以CD为一边作正方形CDEF,连接8E,则ABDE面积的最大值为.3.(2019江苏省宿迁市)如图,ZMAN^60°,若△ABC的顶点3在射线AM上,且A3=2,点。
在射线AN上运动,当AABC是锐角三角形时,BC的取值范围是.4.(2019江苏省宿迁市)如图,正方形ABCQ的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.5.(2019江苏省扬州市)如图,己知等边△ABC的边长为8,点F是边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B'.(1)如图1,当PB=4时,若点可恰好在AC边上,则菌,的长度为;(2)如图2,当PB=5时,若直线1〃AC,则33,的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,AACB'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求可面积的最大值.6.(2019江苏省苏州市)已知矩形ABCD AB=5cm,点F为对角线AC上的一点,且AP =26cm.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为I(s),A4PM的面积为S(enF),S与f的函数关系如图②所示:(1)直接写出动点M的运动速度为cm/s,BC的长度为cm-,(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点£>出发,在矩形边上沿着D t C t B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M、N经过时间x(s)在线段BC上相遇(不包含点C),动点N相遇后立即停止运动,记此时AARW与AZJRV的面积为5](<?麻),$2(伽2).①求动点N运动速度v(cm/s)的取值范围;②试探究S] .S?是否存在最大值.若存在,求出S|・S2的最大值并确定运动速度时间x的值;若不存在,请说明理由.(B®)7.(2019江苏省扬州市)如图,四边形A3CD是矩形,A3=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,ZG=90°.点M在线段AB上,且AM=a,点P沿折线AQ-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AQ.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点F在线段AD上时,若四边形AMQF的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段ZJG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.考向2动点与函数的结合问题1.(2019江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L:y^x+bx+c过点C(0,-3),与抛物线£2:-lx2-旦t+2的一个交点为A,且点A的横坐标为2,点22P、Q分别是抛物线3、3上的动点.(1)求抛物线3对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点F的坐标;(3)设点R为抛物线3上另一个动点,且CA平分ZPCR.若OQ//PR,求出点。
专题08 几何变换问题例1.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为______________.(结果保留根号)同类题型1.1 把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值同类题型1.2 已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定例2.如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A是()A. 2 :1 B.2:1 C. 5 :2 D. 3 :1同类题型2.1 如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个 B.2个 C.3个 D.4个同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5同类题型2.3 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为__________.同类题型2.4 如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα﹒tanβ=___________.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.同类题型2.6 如图1,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( ) A .36B .3-16C .3+18D .3-12同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( ) A .20° B .40° C .100° D .140°同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.专题08 几何变换问题例1.如图,斜边长12cm ,∠A =30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为______________.(结果保留根号)解:如图:连接B ′B ″,∵在Rt △ABC 中,AB =12,∠A =30°,∴BC =12AB =6,AC =6 3 ,∴B ′C =6,∴AB ′=AC -B ′C =6 3 -6, ∵B ′C ∥B ″C ″,B ′C =B ″C ″, ∴四边形B ″C ″CB ′是矩形, ∴B ″B ′∥BC ,B ″B ′=C ″C , ∴△AB ″B ′∽△ABC , ∴AB ′AC =B ″B ′BC,即:63-663=B ″B ′6 ,解得:B ″B ′=6-2 3 .∴C ″C =B ″B ′=6-2 3 .同类题型1.1 把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( ) A .是一个确定的值 B .有两个不同的值 C .有三个不同的值 D .有三个以上不同的值解:(1)当两斜边重合的时候可组成一个矩形,此时x =2,y =3, x +y =5;(2)当两直角边重合时有两种情况,①短边重合,此时x =2,y =3,x +y =5; ②长边重合,此时x =2,y =5,x +y =7. 综上可得:x +y =5或7.选B .同类题型1.2 已知:如图△ABC 的顶点坐标分别为A (-4,-3),B (0,-3),C (-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1 点,若设△ABC 的面积为S 1 ,△AB 1 C 的面积为S 2 ,则S 1 ,S 2 的大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .不能确定解:△ABC 的面积为S 1=12×4×4=8,将B 点平移后得到B 1 点的坐标是(2,1),所以△AB 1 C 的面积为S 2=12×4×4=8,所以S 1=S 2 . 选B .同类题型1.3 同类题型1.4例2. 如图,P 是等边△ABC 外一点,把BP 绕点B 顺时针旋转60°到BP ′,已知∠AP ′B =150°,P ′A :P ′C =2:3,则PB :P ′A 是( ) A . 2 :1 B .2:1 C . 5 :2 D . 3 :1解:如图,连接AP ,∵BP 绕点B 顺时针旋转60°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=60°, 又∵△ABC 是等边三角形,∴AB =BC ,∠CBP ′+∠ABP ′=60°, ∴∠ABP =∠CBP ′, 在△ABP 和△CBP ′中, ∵⎩⎪⎨⎪⎧BP =BP ′∠ABP =∠CBP ′AB =BC , ∴△ABP ≌△CBP ′(SAS ), ∴AP =P ′C ,∵P ′A :P ′C =2:3,∴AP =32P ′A ,连接PP ′,则△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB , ∵∠AP ′B =150°,∴∠AP ′P =150°-60°=90°, ∴△APP ′是直角三角形,设P ′A =x ,则AP =32 x ,根据勾股定理,PP ′=AP 2-P ′A 2=94x 2-x 2=52x , 则PB =52x , ∴PB :P ′A =52x :x = 5 :2. 选C .同类题型2.1 如图,△ABC 为等边三角形,以AB 为边向形外作△ABD ,使∠ADB =120°,再以点C 为旋转中心把△CBD 旋转到△CAE ,则下列结论:①D 、A 、E 三点共线;②DC 平分∠BDA ;③∠E =∠BAC ;④DC =DB +DA ,其中正确的有( ) A .1个 B .2个 C .3个 D .4个解:①设∠1=x 度,则∠2=(60-x )度,∠DBC =(x +60)度,故∠4=(x +60)度, ∴∠2+∠3+∠4=60-x +60+x +60=180度, ∴D 、A 、E 三点共线;②∵△BCD 绕着点C 按顺时针方向旋转60°得到△ACE , ∴CD =CE ,∠DCE =60°, ∴△CDE 为等边三角形, ∴∠E =60°,∴∠BDC =∠E =60°,∴∠CDA =120°-60°=60°, ∴DC 平分∠BDA ; ③∵∠BAC =60°, ∠E =60°, ∴∠E =∠BA C .④由旋转可知AE =BD , 又∵∠DAE =180°, ∴DE =AE +A D .∵△CDE 为等边三角形, ∴DC =DB +B A .同类题型2.2 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( )A .2B .3C .4D .5解:∵正方形ABCD 中,CD =BC ,∠BCD =90°, ∴∠BCN +∠DCN =90°, 又∵CN ⊥DM ,∴∠CDM +∠DCN =90°, ∴∠BCN =∠CDM ,又∵∠CBN =∠DCM =90°, ∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM =BN , 又∵∠OCM =∠OBN =45°,OC =OB , ∴△OCM ≌△OBN (SAS ), ∴OM =ON ,∠COM =∠BON ,∴∠DOC +∠COM =∠COB +∠BPN ,即∠DOM =∠CON , 又∵DO =CO ,∴△CON ≌△DOM (SAS ),故②正确; ∵∠BON +∠BOM =∠COM +∠BOM =90°,∴∠MON =90°,即△MON 是等腰直角三角形, 又∵△AOD 是等腰直角三角形, ∴△OMN ∽△OAD ,故③正确; ∵AB =BC ,CM =BN , ∴BM =AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2,∴AN 2+CM 2=MN 2,故④正确; ∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1, ∴当△MNB 的面积最大时,△MNO 的面积最小, 设BN =x =CM ,则BM =2-x ,∴△MNB 的面积=12x (2-x )=-12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1-12=12,故⑤正确;综上所述,正确结论的个数是5个, 选D .同类题型2.3 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,使点B 在直线CD 上,连接OD 交AB 于点M ,直线CD 的解析式为__________.解:∵△BOA 绕点A 按顺时针方向旋转得△CDA ,∴△BOA ≌△CDA , ∴AB =AC ,OA =AD ,∵B 、D 、C 共线,AD ⊥BC , ∴BD =CD =OB ,∵OA =AD ,BO =CD =BD , ∴OD ⊥AB ,设直线AB 解析式为y =kx +b ,把A 与B 坐标代入得:⎩⎨⎧3k +b =0b =4,解得:⎩⎪⎨⎪⎧k =-43b =4,∴直线AB 解析式为y =-43 x +4,∴直线OD 解析式为y =34 x ,联立得:⎩⎨⎧y =-43x +4y =34x ,解得:⎩⎨⎧x =4825y =3625,即M (4825 ,3625 ),∵M 为线段OD 的中点,∴D (9625 ,7225),设直线CD 解析式为y =mx +n ,把B 与D 坐标代入得:⎩⎪⎨⎪⎧9625m +n =7225n =4,解得:m =-724,n =4,则直线CD 解析式为y =-724x +4.同类题型2.4 如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若∠CEF =α,∠CFE =β,则tan α﹒tan β=___________.解:过C 点作MN ⊥BF ,交BG 于M ,交EF 于N ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE =3,由勾股定理得,CG =BG 2+DG 2=4, ∴DG =DC -CG =1,则AG =AD 2+DG 2=10 ,∵BA BC =BGBE,∠ABG =∠CBE , ∴△ABG ∽△CBE , ∴CE AG =BC AB =35, 解得,CE =3105,∵∠MBC =∠CBG ,∠BMC =∠BCG =90°, ∴△BCM ∽△BGC , ∴CM CG =BC BG ,即CM 4=35, ∴CM =125,∴MN =BE =3,∴CN =3-125=35 ,∴EN =CE 2-CN 2=95,∴FN =EF -EN =5-95=165,∴tan α﹒tan β=CN EN ﹒CN FN =3595×35165=116.同类题型2.5 如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM ,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.解:如图连接P C .在Rt △ABC 中,∵∠A =30°,BC =2, ∴AB =4,根据旋转不变性可知,A ′B ′=AB =4, ∴A ′P =PB ′,∴PC =12A ′B ′=2,∵CM =BM =1,又∵PM ≤PC +CM ,即PM ≤3,∴PM 的最大值为3(此时P 、C 、M 共线).同类题型2.6 如图1,一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC =EF =12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.解:如图1中,作HM ⊥BC 于M ,设HM =a ,则CM =HM =a .在Rt △ABC 中,∠ABC =30°,BC =12,在Rt △BHM 中,BH =2HM =2a ,BM = 3 a ,∵BM +FM =BC , ∴ 3 a +a =12,∴a =6 3 -6,∴BH =2a =12 3 -12.如图2中,当DG ⊥AB 时,易证GH 1 ⊥DF ,此时BH 1 的值最小,易知BH 1=BK +KH 1=3 3 +3,∴HH 1=BH -BH 1=9 3 -15,当旋转角为60°时,F 与H 2 重合,此时BH 的值最大,易知最大值BH 2=6 3 ,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=18 3-30+[6 3-(12 3-12)]=12 3 -18.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12解:如图所示,延长AB ,D 1A 1 交于点G ,∵A 1 E ⊥AB ,∠EA 1 C =∠A =120°,∴∠G =120°-90°=30°,又∵∠ABC =60°,∴∠BCG =60°-30°=30°,∴∠G =∠BCG =30°,∴BC =BG =BA ,设BE =1,AE =x =A 1 E ,则AB =1+x =BC =BG ,A 1 G =2x ,∴GE =1+x +1=x +2,∵Rt △A 1 GE 中,A 1E 2+GE 2=A 1G 2 ,∴x 2+(x +2)2=(2x )2 ,解得x =1+ 3 ,(负值已舍去)∴AE =1+ 3 , ∴BE AE =11+3=3-12, 选D .同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.解:解法一:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC 是等腰直角三角形,∴PE =PC ,设PC =x ,则PE =x ,PD =4-x ,EQ =4-x ,∴PD =EQ ,∵∠DPE =∠EQF =90°,∠PED =∠EFQ ,∴△DPE ≌△EQF ,∴DE =EF ,∵DE ⊥EF ,∴△DEF 是等腰直角三角形,易证明△DEC ≌△BEC ,∴DE =BE ,∴EF =BE ,∵EQ ⊥FB ,∴FQ =BQ =12BF , ∵AB =4,F 是AB 的中点,∴BF =2,∴FQ =BQ =PE =1,∴CE = 2 ,PD =4-1=3,Rt △DAF 中,DF =42+22=2 5 ,DE =EF =10 ,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴CG AG =DC AF =DG FG =42=2, ∴CG =2AG ,DG =2FG ,∴FG =13×25=253, ∵AC =42+42=4 2 ,∴CG =23×42=823, ∴EG =823-2=523, 连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103 , ∴EH =EF -FH =10-103=2103 ,由折叠得:GM⊥EF,MH=GH=103,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴DEMH=ENNH,∴10103=ENNH=3,∴EN=3NH,∵EN+NH═EH=2103,∴EN=102,∴NH=EH-EN=2103-102=106,Rt△GNH中,GN=GH2+NH2=(103)2+(106)2=526,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=102+526+523=52+102;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴S△ADGS△AGF=12AD﹒KG12AF﹒GR=ADAF=42=2,∵S△ADGS△AGF=12DG﹒h12GF﹒h=2,∴DGGF=2,同理,S△DNFS△MNF=DFFM=DNMN=3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=102+526+523=52+102;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC 是对角线,∴EP =EQ ,易证△DQE 和△FPE 全等,∴DE =EF ,DQ =FP ,且AP =EP ,设EP =x ,则DQ =4-x =FP =x -2,解得x =3,所以PF =1,∴AE =32+32=3 2 ,∵DC ∥AB ,∴△DGC ∽△FGA ,∴同解法一得:CG =23×42=823, ∴EG =823-2=523, AG =13AC =423, 过G 作GH ⊥AB ,过M 作MK ⊥AB ,过M 作ML ⊥AD ,则易证△GHF ≌△FKM 全等,∴GH =FK =43 ,HF =MK =23, ∵ML =AK =AF +FK =2+43=103 ,DL =AD -MK =4-23=103, 即DL =LM ,∴∠LDM =45°∴DM 在正方形对角线DB 上,过N 作NI ⊥AB ,则NI =IB ,设NI =y ,∵NI ∥EP ∴NI EP =FI FP ∴y 3=2-y1, 解得y =1.5,所以FI =2-y =0.5,∴I 为FP 的中点,∴N 是EF 的中点,∴EN =0.5EF =102, ∵△BIN 是等腰直角三角形,且BI =NI =1.5,∴BN =32 2 ,BK =AB -AK =4-103=23 ,BM =23 2 ,MN =BN -BM =322-232=56 2 ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°解:如图所示:分别作点P 关于OM 、ON 的对称点P ′、P ″,连接OP ′、OP ″、P ′P ″,P ′P ″交OM 、ON 于点A 、B , 连接PA 、PB ,此时△PAB 周长的最小值等于P ′P ″.如图所示:由轴对称性质可得,OP ′=OP ″=OP ,∠P ′OA =∠POA ,∠P ″OB =∠POB ,所以∠P ′OP ″=2∠MON =2×40°=80°,所以∠OP ′P ″=∠OP ″P ′=(180°-80°)÷2=50°,又因为∠BPO =∠OP ″B =50°,∠APO =∠AP ′O =50°,所以∠APB =∠APO +∠BPO =100°.选C .同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④解:∵矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,∴GF ⊥AD ,由折叠可得,AH =AD =2AG ,∠AHE =∠D =90°,∴∠AHG =30°,∠EHM =90°-30°=60°,∴∠HAG =60°=∠AED =∠MEH ,∴△EHM 中,∠EMH =60°=∠EHM =∠MEH ,∴△MEH 为等边三角形,故①正确;∵∠EHM =60°,HE =HF ,∴∠HEF =30°,∴∠FEM =60°+30°=90°,即AE ⊥EF ,故②正确;∵∠PEH =∠MHE =60°=∠HEA ,∠EPH =∠EHA =90°,∴△PHE ∽△HAE ,故③正确;设AD =2=AH ,则AG =1,∴Rt △AGH 中,GH=3AG= 3 ,Rt △AEH 中,EH=AH 3=233 =HF , ∴GF=533 =AB , ∴AD AB =2533=235 ,故④正确, 综上所述,正确的结论是①②③④,选D .同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52 , ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125, ∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=75 .。
专题: 函数的动点问题例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B.C.D.同类题型1.2如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.同类题型1.3 如图,菱形ABCD的边长为2,∠A=60°,一个以点B为顶点的60°角绕点B旋转,这个角的两边分别与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,则能大致反映y与x的函数关系的图象是()A .B .C .D .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是 ( )A .B .C .D . 同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形 同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y =S △PBQ ,则y 与t 的函数图象大致是 ( )A .B .C .D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A.B.C.D.例3.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A. B.C. D.同类题型3.1 如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l 从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A .B .C .D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为 ( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2,运动时间xs .能反映y cm 2与xs 之间函数关系的大致图象是 ( )A .B .C .D .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是 ( )A. B.C.D.同类题型4.2 如图,等边△ABC的边AB与正方形DEFG的边长均为2,且AB与DE在同一条直线上,开始时点B与点D重合,让△ABC沿这条直线向右平移,直到点B与点E重合为止,设BD的长为x,△ABC与正方形DEFG重叠部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.同类题型4.3 如图,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F⇒H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()A.B.C.D.参考答案例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.解:由图②可知点P从A点运动到B点的时间为10s,又因为P点运动的速度为1cm/s,所以AB=10×1=10(cm),由AD=9可知点P在边BC上的运动时间为9s,所以a=10+9=19;分别过B点、C两点作BE⊥AD于E,CF⊥AD于F.由图②知S△ABD=36,则12×9×BE=36,解得BE=8,在直角△ABE中,由勾股定理,得AE=AB 2-BE2=6.易证△BAE≌△CDF,则BE=CF=8,AE=DF=6,AF=AD+DF=9+6=15.在直角△ACF中,由勾股定理,得CA=AF 2+CF2=17,则点P在CA边上从C点运动到A点的时间为17s,所以b=19+17=36,a+b=19+36=55.同类题型1.1 如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A .B .C .D .解:∵AE ⊥EF ,∴∠AEB +∠FCE =90°∵四边形ABCD 是正方形,∴∠B =∠C =90° AB =BC =4, ∴∠BAE +∠AEB =90°,∴∠BAE =∠FCE , ∴△ABE ∽△ECF ,∴AB EC =BEFC, ∵BE =x ,FC =y ,∴EC =4-x ,则有44-x =xy,整理后得y =-14x 2 +x 配方后得到y =-14(x -2)2+1从而得到图象为抛物线,开口朝下,顶点坐标为(2,1). 选C .同类题型1.2如图,在矩形ABCD 中,AB =2,AD =3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A →D →C →E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .解:∵在矩形ABCD 中,AB =2,AD =3, ∴CD =AB =2,BC =AD =3,∵点E 是BC 边上靠近点B 的三等分点,∴CE =23×3=2,①点P 在AD 上时,△APE 的面积y =12x ﹒2=x (0≤x ≤3),②点P 在CD 上时,S △APE =S _(梯形AECD )-S _(△ADP )-S _(△CEP ), =12(2+3)×2-12×3×(x -3)-12 ×2×(3+2-x ), =5-32x +92 -5+x ,=-12x +92,∴y =-12x +92(3<x ≤5),③点P 在CE 上时,S △APE =12×(3+2+2-x )×2=-x +7,∴y =-x +7(5<x ≤7), 选A .同类题型1.3 如图,菱形ABCD 的边长为2,∠A =60°,一个以点B 为顶点的60°角绕点B 旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P 、Q ,设DP =x ,DQ =y ,则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .解:∵四边形ABCD 是菱形,∠A =60°,∴∠ABD =∠CBD =∠ADB =∠BDC =60°, ∴∠BDQ =∠BDP =120°, ∵∠QBP =60°, ∴∠QBD =∠PBC , ∵AP ∥BC , ∴∠P =∠PBC , ∴∠QBD =∠P , ∴△BDQ ∽△PDB , ∴DQ BD =BD PD ,即y 2=2x , ∴xy =4,∴y 与x 的函数关系的图象是双曲线, 选A .例2.如图,等边△ABC 的边长为2cm ,点P 从点A 出发,以1cm/s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm/s 的速度沿AB -BC 向点C 运动,到达点C 停止,设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由题得,点Q 移动的路程为2x ,点P 移动的路程为x , ∠A =∠C =60°,AB =BC =2,①如图,当点Q 在AB 上运动时,过点Q 作QD ⊥AC 于D ,则 AQ =2x ,DQ = 3 x ,AP =x ,∴△APQ 的面积y =12×x ×3x =32x 2(0<x ≤1),即当0<x ≤1时,函数图象为开口向上的抛物线的一部分,故A 、B 排除;②如图,当点Q 在BC 上运动时,过点Q 作QE ⊥AC 于E ,则CQ =4-2x ,EQ =23- 3 x ,AP =x ,∴△APQ 的面积y =12×x ×(23-3x )=-32x 2+ 3 x (1<x ≤2),即当1<x ≤2时,函数图象为开口向下的抛物线的一部分,故C 排除,而D 正确; 选D .同类题型2.1 如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE -ED -DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC =74C .当0<t ≤8时,y =72t 2 D .当t =9s 时,△PBQ 是等腰三角形解:A 、分析函数图象可知,当点Q 到达点C 时,点P 到达点E 处, ∴BC =BE =2×8=16cm ,ED =2×2=4cm ,∴AE =AD -ED =BC -ED =16-4=12cm ,故A 正确; B 、作EF ⊥BC 于点F ,如图,由函数图象可知,BC =BE =16cm ,BF =AE =12cm , 由勾股定理得,EF =47 cm ,∴sin ∠EBC =EF BE =4716=74,故B 正确;C 、作PM ⊥BQ 于点M ,如图,∵BQ =BP =2t ,∴y =S △BPQ =12BQ ﹒PM =12BQ ﹒BP ﹒sin ∠EBC =12×2t ﹒2t ﹒74=72t 2.故C 正确;D 、当t =9s 时,点Q 与点C 重合,点P 运动到ED 的中点,设为N ,如图所示,连接NB ,N C . 此时AN =14,ND =2,由勾股定理求得:NB =211 ,NC =229 , ∵BC =16,∴△BCN 不是等腰三角形,即此时△PBQ 不是等腰三角形.故D 错误; 选D .同类题型2.2 矩形ABCD 中,AB =6,BC =8,动点P 从点B 出发以每秒2个单位长的速度沿BA -AD -DCD 的方向运动到C 点停止,动点Q 以每秒1个单位的速度沿BC 方向运动到C 点停止,假设P 、两点同时出发,运动时间是t 秒,y=S △PBQ ,则y 与t 的函数图象大致是( )A .B .C .D . 解:①当0<t ≤3时,△PBQ 是Rt △,y =12×t ×2t =t 2;②当3<t ≤7时,y =12 ×t ×6=3t ;③当7<t ≤8时,y =12t (20-2t )=-t 2+10t ;④当8<t ≤10时,y =12×8(20-2t )=80-8t ;观察各选项可知,y 与t 的函数图象大致是选项D . 选D .同类题型2.3 如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B →C →D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12 AB =4,到CD 的距离=12AD =6, ∵点M 是BC 的中点,∴CM =12BC =6, ∴点Q 到达点C 的时间为6÷1=6秒,点P 到达点C 的时间为12÷1=12秒,点Q 到达点D 的时间为(6+8)÷1=14秒,①0≤t ≤6时,点P 、Q 都在BC 上,PQ =6,△OPQ 的面积=12×6×4=12; ②6<t ≤12时,点P 在BC 上,点Q 在CD 上,C P =12-t ,CQ =t -6,S △OPQ =S △COP +S △COQ -S △PCQ ,=12×(12-t )×4+12×(t -6)×6-12×(12-t )×(t -6), =12t 2 -8t +42, =12(t -8)2 +10, ③12<t ≤14时,PQ =6,△OPQ 的面积=12×6×6=18; 纵观各选项,只有B 选项图形符合.选B .例3.如图,正六边形ABCDEF 的边长为6cm ,P 是对角线BE 上一动点,过点P 作直线l 与BE 垂直,动点P 从B 点出发且以1cm/s 的速度匀速平移至E 点.设直线l 扫过正六边形ABCD EF 区域的面积为S (cm 2 ),点P 的运动时间为t (s ),下列能反映S 与t 之间函数关系的大致图象是( )A .B .C .D .解:由题意得:BP =t ,如图1,连接AC ,交BE 于G ,Rt △ABG 中,AB =6,∠ABG =60°,∴∠BAG =30°,∴BG =12 AB =3,由勾股定理得:AG =62-32=3 3 ,∴AC =2AG =6 3 ,当0≤t ≤3时,PM = 3 t ,∴MN =2 3 t ,S =S △BMN =12MN ﹒PB =12﹒3t 2=32t 2,所以选项A 和B 不正确;如图2,当9≤t ≤12时,PE =12-t ,∵∠MEP =60°,∴tan ∠MEP =PM PE , ∴PM = 3 (12-t ),∴MN =2PM =2 3 (12-t ),∴S =S _(正六边形)-S _(△EMN ),=2×12(AF +BE )×AG -12MN ﹒PE , =(6+12)×33-12×2 3 (12-t )(12-t ), =543-3(144-24t +t 2 ),=-3t 2+243t -90 3 ,此二次函数的开口向下,所以选项C 正确,选项D 不正确;选C .同类题型3.1 如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( )A .B .C .D .解:①当0≤t ≤4时,S =12×t ×t =12t 2 ,即S =12t 2 .该函数图象是开口向上的抛物线的一部分.故B 、C 错误;②当4<t ≤8时,S =16-12×(8-t )×(8-t )=-12t 2 +8t -16. 该函数图象是开口向下的抛物线的一部分.故A 错误.选D .同类题型3.2(2015秋﹒荆州校级月考)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q .设AP =x ,当△APQ 的面积为14 3 时,则x 的值为( )A .2 21B .2 21 或14C .2或2 21 或14D .2或14解:当点Q 在AC 上时,∵∠A =30°,AP =x ,∴PQ =x tan30°=33x , ∴S =12×AP ×PQ =12×x ×33=36x 2=14 3 解得:x =221 或x =-221 (舍去),当点Q 在BC 上时,如下图所示:∵AP =x ,AB =16,∠A =30°,∴BP =16-x ,∠B =60°,∴PQ =BP ﹒tan60°= 3 (16-x ).∴S =12AP ×PQ =32x 2+83x =14 3 , 解得:x =2(舍去)或x =14.选B .同类题型3.3 如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为____________.解:①当AB >4时如图1,由图可知:OE =4,OF =8,DG =3 2 ,∴EF =AG =OF -OE =4∵直线解析式为:y =-x∴∠AGD =∠EFD =45°∴△AGD 是等腰直角三角形∴DH =GH =22DG =22×3 2 =3, ∴AH =AG -GH =4-3=1,∴AD =DH 2+AH 2=32+12=10 ;②当AB =4时,如图2,由图可知:OI =4,OJ =8,KB =3 2 ,OM =9,∴IJ =AB =4,IM =AN =5,∵直线解析式为:y =-x , ∴△KLB 是等腰直角三角形, ∴KL =BL =22KB =3, ∵AB =4,∴AL =AB -BL =1,T 同①得,DM =MN ,∴过K 作KM ∥IM ,∴tan ∠DAN =KL AL =3,∴AM =DM tan ∠DAN =DM 3, ∴AN =AM +MN =43DM =5, ∴DM =MN =154, ∴AM =AN -MN =5-154=54, ∴AD =AM 2+DM 2=5104,故答案为10 或5104.例4.如图,△ABC 为直角三角形,∠C =90°,BC =2cm ,∠A =30°,四边形DEFG 为矩形,DE =2 3 cm ,EF =6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt △ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt △ABC 与矩形DEFG 的重叠部分的面积为y cm 2 ,运动时间xs .能反映y cm 2 与xs 之间函数关系的大致图象是( )A .B .C. D .解:已知∠C =90°,BC =2cm ,∠A =30°,∴AB =4,由勾股定理得:AC =2 3 ,∵四边形DEFG 为矩形,∠C =90,∴DE =GF =2 3 ,∠C =∠DEF =90°,∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC ,∴EHAC =BEBC ,即EH 23=x ﹒12 ,解得:EH = 3 x ,所以y =12﹒3x ﹒x =32x 2,∵x y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32 >0,开口向上;(2)当2≤x ≤6时,如图,此时y =12×2×23=2 3 , (3)当6<x ≤8时,如图,设△ABC 的面积是s 1 ,△FNB 的面积是s 2 ,BF =x -6,与(1)类同,同法可求FN =3X -6 3 ,∴y =s 1-s 2 ,=12×2×23-12×(x -6)×(3X -6 3 ), =-32x 2+63x -16 3 , ∵-32<0, ∴开口向下,所以答案A 正确,答案B 错误,选A .同类题型4.1 如图,菱形ABCD 的边长为1,菱形EFGH 的边长为2,∠BAD =∠FEH =60°点C 与点E 重合,点A ,C (E ),G 在同一条直线上,将菱形ABCD 沿C ⇒G 方向平移至点A 与点G 重合时停止,设点C 、E 之间的距离为x ,菱形ABCD 与菱形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:由菱形ABCD 、EFGH 边长为1,2可得:AC =2AB ×sin30°= 3 ,EG =2 3(1)当菱形ABCD 移动到点A 与点E 重合的过程,即0≤x ≤ 3 时,重合部分的菱形的两条对角线长度分别为:x ,2×x 2×tan30°=3x 3∴y =12﹒x ﹒3x 3=36x 2(2)当菱形ABCD 移动到点C 与点G 重合的过程,重合部分的菱形面积不变,即3<x ≤2 3 时,y =S 菱形ABCD =12×1×3=32; (3)当菱形ABCD 移动到点A 与点G 重合的过程,即23<x ≤33时,重合部分的菱形的两条对角线长度分别为: 3 -x ,2×3-x 2×tan30°=3(3-x )3y =12×(3-x )×3(3-x )3=36(3-x )2 . 由(1)(2)(3)可以看出图象应该是y =36x 2 图上像0≤x ≤ 3 时的部分,y =32 图象上3<x ≤2 3 时的部分,y =36(3-x )2 图象上23<x ≤33时的部分组成. 选D .同类题型4.2 如图,等边△ABC 的边AB 与正方形DEFG 的边长均为2,且AB 与DE 在同一条直线上,开始时点B 与点D 重合,让△ABC 沿这条直线向右平移,直到点B 与点E 重合为止,设BD 的长为x ,△ABC 与正方形DEFG 重叠部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )A .B .C .D .解:设BD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,当B 从D 点运动到DE 的中点时,即0≤x ≤1时,y =12×x ×3x =32x 2 . 当B 从DE 中点运动到E 点时,即1<x ≤2时,y =3-12(2-x )×3(2-x )=-32x 2+23x - 3 由函数关系式可看出D 中的函数图象与所求的分段函数对应.选D .同类题型4.3 如图,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F ⇒H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .解:DF =x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y y =12DF 2=12x 2(0≤x < 2 );②y =1(2≤x <2 2 );③∵BH =3 2 -x∴y =12BH 2=12x 2-32x +9(22≤x <3 2 ).综上可知,图象是选B .。
专题: 几何变换问题例1.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为______________.(结果保留根号)同类题型1.1 把图中的一个三角形先横向平移x格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么x+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值同类题型1.2 已知:如图△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定例2.如图,P是等边△ABC外一点,把BP绕点B顺时针旋转60°到BP′,已知∠AP′B=150°,P′A:P′C=2:3,则PB:P′A是()A. 2 :1 B.2:1 C. 5 :2 D. 3 :1同类题型2.1 如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个 B.2个 C.3个 D.4个同类题型2.2 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C 重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN 2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.5同类题型2.3 在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为__________.同类题型2.4 如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,∠CFE=β,则tanα﹒tanβ=___________.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.同类题型2.6 如图1,一副含30°和45°角的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,BC =EF =12,点G 为边EF 的中点,边FD 与AB 相交于点H ,如图2,将三角板DEF 绕点G 按顺时针方向旋转到60°的过程中,BH 的最大值是_________,点H 运动的路径长是_________.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE 的值等于( )A .36B .3-16C .3+18D .3-12同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.专题08 几何变换问题例1.如图,斜边长12cm ,∠A =30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A ′B ′C 的位置,再沿CB 向左平移使点B ′落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为______________.(结果保留根号)解:如图:连接B ′B ″,∵在Rt △ABC 中,AB =12,∠A =30°,∴BC =12 AB =6,AC =6 3 , ∴B ′C =6,∴AB ′=AC -B ′C =6 3 -6,∵B ′C ∥B ″C ″,B ′C =B ″C ″,∴四边形B ″C ″CB ′是矩形,∴B ″B ′∥BC ,B ″B ′=C ″C ,∴△AB ″B ′∽△ABC ,∴AB ′AC =B ″B ′BC, 即:63-663=B ″B ′6 , 解得:B ″B ′=6-2 3 .∴C ″C =B ″B ′=6-2 3 .同类题型1.1 把图中的一个三角形先横向平移x 格,再纵向平移y 格,就能与另一个三角形拼合成一个四边形,那么x +y ( )A .是一个确定的值B .有两个不同的值C .有三个不同的值D .有三个以上不同的值解:(1)当两斜边重合的时候可组成一个矩形,此时x =2,y =3,x +y =5;(2)当两直角边重合时有两种情况,①短边重合,此时x =2,y =3,x +y =5;②长边重合,此时x =2,y =5,x +y =7.综上可得:x +y =5或7.选B .同类题型1.2 已知:如图△ABC 的顶点坐标分别为A (-4,-3),B (0,-3),C (-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1 点,若设△ABC 的面积为S 1 ,△AB 1 C 的面积为S 2 ,则S 1 ,S 2 的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定解:△ABC 的面积为S 1=12 ×4×4=8, 将B 点平移后得到B 1 点的坐标是(2,1),所以△AB 1 C 的面积为S 2=12×4×4=8, 所以S 1=S 2 .选B .同类题型1.3同类题型1.4例2. 如图,P 是等边△ABC 外一点,把BP 绕点B 顺时针旋转60°到BP ′,已知∠AP ′B =150°,P ′A :P ′C =2:3,则PB :P ′A 是( )A . 2 :1B .2:1C . 5 :2D . 3 :1解:如图,连接AP ,∵BP 绕点B 顺时针旋转60°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=60°,又∵△ABC 是等边三角形,∴AB =BC ,∠CBP ′+∠ABP ′=60°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵⎩⎪⎨⎪⎧BP =BP ′∠ABP =∠CBP ′AB =BC, ∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =2:3,∴AP =32 P ′A ,连接PP ′,则△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB ,∵∠AP ′B =150°,∴∠AP ′P =150°-60°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =32 x , 根据勾股定理,PP ′=AP 2-P ′A 2=94x 2-x 2=52 x , 则PB =52x , ∴PB :P ′A =52 x :x = 5 :2. 选C .同类题型2.1 如图,△ABC 为等边三角形,以AB 为边向形外作△ABD ,使∠ADB =120°,再以点C 为旋转中心把△CBD 旋转到△CAE ,则下列结论:①D 、A 、E 三点共线;②DC 平分∠BDA ;③∠E =∠BAC ;④DC =DB +DA ,其中正确的有( )A .1个B .2个C .3个D .4个解:①设∠1=x 度,则∠2=(60-x )度,∠DBC =(x +60)度,故∠4=(x +60)度,∴∠2+∠3+∠4=60-x +60+x +60=180度,∴D 、A 、E 三点共线;②∵△BCD 绕着点C 按顺时针方向旋转60°得到△ACE ,∴CD =CE ,∠DCE =60°,∴△CDE 为等边三角形,∴∠E =60°,∴∠BDC =∠E =60°,∴∠CDA =120°-60°=60°,∴DC 平分∠BDA ;③∵∠BAC =60°,∠E =60°,∴∠E =∠BA C .④由旋转可知AE =BD ,又∵∠DAE =180°,∴DE =AE +A D .∵△CDE 为等边三角形,∴DC =DB +B A .同类题型2.2 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2 ;⑤若AB =2,则S △OMN 的最小值是12,其中正确结论的个数是( ) A .2 B .3 C .4 D .5解:∵正方形ABCD 中,CD =BC ,∠BCD =90°,∴∠BCN +∠DCN =90°,又∵CN ⊥DM ,∴∠CDM +∠DCN =90°,∴∠BCN =∠CDM ,又∵∠CBN =∠DCM =90°,∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM =BN ,又∵∠OCM =∠OBN =45°,OC =OB ,∴△OCM ≌△OBN (SAS ),∴OM =ON ,∠COM =∠BON ,∴∠DOC +∠COM =∠COB +∠BPN ,即∠DOM =∠CON ,又∵DO =CO ,∴△CON ≌△DOM (SAS ),故②正确;∵∠BON +∠BOM =∠COM +∠BOM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△AOD 是等腰直角三角形,∴△OMN ∽△OAD ,故③正确;∵AB =BC ,CM =BN ,∴BM =AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2 ,∴AN 2+CM 2=MN 2 ,故④正确;∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设BN =x =CM ,则BM =2-x ,∴△MNB 的面积=12x (2-x )=-12x 2 +x , ∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1-12=12 ,故⑤正确; 综上所述,正确结论的个数是5个,选D .同类题型2.3 在平面直角坐标系中,已知点A (3,0),B (0,4),将△BOA 绕点A 按顺时针方向旋转得△CDA ,使点B 在直线CD 上,连接OD 交AB 于点M ,直线CD 的解析式为__________.解:∵△BOA 绕点A 按顺时针方向旋转得△CDA ,∴△BOA ≌△CDA ,∴AB =AC ,OA =AD ,∵B 、D 、C 共线,AD ⊥BC ,∴BD =CD =OB ,∵OA =AD ,BO =CD =BD ,∴OD ⊥AB ,设直线AB 解析式为y =kx +b ,把A 与B 坐标代入得:⎩⎨⎧3k +b =0b =4, 解得:⎩⎪⎨⎪⎧k =-43b =4 , ∴直线AB 解析式为y =-43x +4, ∴直线OD 解析式为y =34x , 联立得:⎩⎨⎧y =-43x +4y =34x , 解得:⎩⎨⎧x =4825y =3625,即M (4825 ,3625 ), ∵M 为线段OD 的中点,∴D (9625 ,7225), 设直线CD 解析式为y =mx +n ,把B 与D 坐标代入得:⎩⎪⎨⎪⎧9625m +n =7225n =4, 解得:m =-724,n =4, 则直线CD 解析式为y =-724x +4. 同类题型2.4 如图,在矩形ABCD 中,AB =5,BC =3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若∠CEF =α,∠CFE =β,则tan α﹒tan β=___________.解:过C 点作MN ⊥BF ,交BG 于M ,交EF 于N ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE =3,由勾股定理得,CG =BG 2+DG 2 =4,∴DG =DC -CG =1,则AG =AD 2+DG 2=10 ,∵BA BC =BG BE,∠ABG =∠CBE , ∴△ABG ∽△CBE ,∴CE AG =BC AB =35 , 解得,CE =3105, ∵∠MBC =∠CBG ,∠BMC =∠BCG =90°,∴△BCM ∽△BGC ,∴CM CG =BC BG ,即CM 4=35, ∴CM =125, ∴MN =BE =3,∴CN =3-125=35,∴EN=CE2-CN2=95,∴FN=EF-EN=5-95=165,∴tanα﹒tanβ=CNEN﹒CNFN=3595×35165=116.同类题型2.5 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.解:如图连接P C.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).同类题型2.6 如图1,一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF =12,点G为边EF的中点,边FD与AB相交于点H,如图2,将三角板DEF绕点G按顺时针方向旋转到60°的过程中,BH的最大值是_________,点H运动的路径长是_________.解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.在Rt △ABC 中,∠ABC =30°,BC =12, 在Rt △BHM 中,BH =2HM =2a ,BM = 3 a ,∵BM +FM =BC ,∴ 3 a +a =12,∴a =6 3 -6,∴BH =2a =12 3 -12.如图2中,当DG ⊥AB 时,易证GH 1 ⊥DF ,此时BH 1 的值最小,易知BH 1=BK +KH 1=3 3 +3,∴HH 1=BH -BH 1=9 3 -15,当旋转角为60°时,F 与H 2 重合,此时BH 的值最大,易知最大值BH 2=6 3 ,观察图象可知,在∠CGF 从0°到60°的变化过程中,点H 相应移动的路径长=2HH 1+HH 2=18 3-30+[6 3-(12 3-12)]=12 3 -18.例3.如图,折叠菱形纸片ABCD ,使得AD 的对应边A 1D 1 过点C ,EF 为折痕,若∠B =60°,当A 1 E ⊥AB 时,BE AE的值等于( )A .36B .3-16C .3+18D .3-12解:如图所示,延长AB ,D 1A 1 交于点G ,∵A 1 E ⊥AB ,∠EA 1 C =∠A =120°,∴∠G =120°-90°=30°,又∵∠ABC =60°,∴∠BCG =60°-30°=30°,∴∠G =∠BCG =30°,∴BC =BG =BA ,设BE =1,AE =x =A 1 E ,则AB =1+x =BC =BG ,A 1 G =2x ,∴GE =1+x +1=x +2,∵Rt △A 1 GE 中,A 1E 2+GE 2=A 1G 2 ,∴x 2+(x +2)2=(2x )2 ,解得x =1+ 3 ,(负值已舍去)∴AE =1+ 3 ,∴BE AE =11+3=3-12, 选D .同类题型3.1 如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则△EMN 的周长是_____________.解:解法一:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC 是等腰直角三角形,∴PE =PC ,设PC =x ,则PE =x ,PD =4-x ,EQ =4-x ,∴PD =EQ ,∵∠DPE =∠EQF =90°,∠PED =∠EFQ ,∴△DPE ≌△EQF ,∴DE =EF ,∵DE ⊥EF ,∴△DEF 是等腰直角三角形,易证明△DEC ≌△BEC ,∴DE =BE ,∴EF =BE ,∵EQ ⊥FB ,∴FQ =BQ =12BF , ∵AB =4,F 是AB 的中点,∴BF =2, ∴FQ =BQ =PE =1,∴CE = 2 ,PD =4-1=3,Rt △DAF 中,DF =42+22=2 5 ,DE =EF =10 ,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴CG AG =DC AF =DG FG =42 =2, ∴CG =2AG ,DG =2FG ,∴FG =13×25=253, ∵AC =42+42=4 2 ,∴CG =23×42=823, ∴EG =823-2=523, 连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103 , ∴EH =EF -FH =10-103=2103 ,由折叠得:GM ⊥EF ,MH =GH =103 , ∴∠EHM =∠DEF =90°, ∴DE∥HM ,∴△DEN ∽△MNH , ∴DE MH =EN NH, ∴10103=EN NH =3, ∴EN =3NH ,∵EN +NH ═EH =2103 , ∴EN =102, ∴NH =EH -EN =2103-102=106, Rt △GNH 中,GN =GH 2+NH 2=(103)2+(106)2=526, 由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法二:如图3,过G 作GK ⊥AD 于K ,作GR ⊥AB 于R ,∵AC 平分∠DAB ,∴GK =GR ,∴S △ADG S △AGF =12AD ﹒KG 12AF ﹒GR =AD AF =42 =2, ∵S △ADG S △AGF =12DG ﹒h12GF ﹒h =2, ∴DG GF=2, 同理,S △DNF S △MNF =DF FM =DN MN =3, 其它解法同解法一,可得:∴△EMN 的周长=EN +MN +EM =102+526+523=52+102; 解法三:如图4,过E 作EP ⊥AP ,EQ ⊥AD ,∵AC 是对角线,∴EP =EQ ,易证△DQE 和△FPE 全等,∴DE =EF ,DQ =FP ,且AP =EP ,设EP =x ,则DQ =4-x =FP =x -2,解得x =3,所以PF =1,∴AE =32+32=3 2 ,∵DC ∥AB ,∴△DGC ∽△FGA ,∴同解法一得:CG =23×42=823, ∴EG =823-2=523, AG =13AC =423, 过G 作GH ⊥AB ,过M 作MK ⊥AB ,过M 作ML ⊥AD ,则易证△GHF ≌△FKM 全等,∴GH =FK =43 ,HF =MK =23, ∵ML =AK =AF +FK =2+43=103 ,DL =AD -MK =4-23=103, 即DL =LM ,∴∠LDM =45°∴DM 在正方形对角线DB 上,过N 作NI ⊥AB ,则NI =IB ,设NI =y ,∵NI ∥EP ∴NI EP =FI FP ∴y 3=2-y1, 解得y =1.5,所以FI =2-y =0.5,∴I 为FP 的中点,∴N 是EF 的中点,∴EN =0.5EF =102, ∵△BIN 是等腰直角三角形,且BI =NI =1.5,∴BN =32 2 ,BK =AB -AK =4-103=23 ,BM =23 2 ,MN =BN -BM =322-232=56 2 ,∴△EMN 的周长=EN +MN +EM =102+526+523=52+102.同类题型3.2 如图,∠MON =40°,点P 是∠MON 内的定点,点A 、B 分别在OM ,ON 上移动,当△PAB 周长最小时,则∠APB 的度数为( )A .20°B .40°C .100°D .140°解:如图所示:分别作点P 关于OM 、ON 的对称点P ′、P ″,连接OP ′、OP ″、P ′P ″,P ′P ″交OM 、ON 于点A 、B , 连接PA 、PB ,此时△PAB 周长的最小值等于P ′P ″.如图所示:由轴对称性质可得,OP ′=OP ″=OP ,∠P ′OA =∠POA ,∠P ″OB =∠POB ,所以∠P ′OP ″=2∠MON =2×40°=80°,所以∠OP ′P ″=∠OP ″P ′=(180°-80°)÷2=50°,又因为∠BPO =∠OP ″B =50°,∠APO =∠AP ′O =50°,所以∠APB =∠APO +∠BPO =100°.选C .同类题型3.3 如图,矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,将纸片折叠,使D 点落在GF 上,得到△HAE ,再过H 点折叠纸片,使B 点落在直线AB 上,折痕为PQ .连接AF 、EF ,已知HE =HF ,下列结论:①△MEH 为等边三角形;②AE ⊥EF ;③△PHE ∽△HAE ;④AD AB = 2 35,其中正确的结论是( ) A .①②③ B .①②④ C .①③④ D .①②③④解:∵矩形纸片ABCD 中,G 、F 分别为AD 、BC 的中点,∴GF ⊥AD ,由折叠可得,AH =AD =2AG ,∠AHE =∠D =90°,∴∠AHG =30°,∠EHM =90°-30°=60°,∴∠HAG =60°=∠AED =∠MEH ,∴△EHM 中,∠EMH =60°=∠EHM =∠MEH ,∴△MEH 为等边三角形,故①正确;∵∠EHM =60°,HE =HF ,∴∠HEF =30°,∴∠FEM =60°+30°=90°,即AE ⊥EF ,故②正确;∵∠PEH =∠MHE =60°=∠HEA ,∠EPH =∠EHA =90°,∴△PHE ∽△HAE ,故③正确;设AD =2=AH ,则AG =1, ∴Rt △AGH 中,GH=3AG= 3 ,Rt △AEH 中,EH=AH 3=233 =HF , ∴GF=533 =AB , ∴AD AB =2533=235 ,故④正确, 综上所述,正确的结论是①②③④,选D .同类题型3.4 △ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AE D .连CE ,则线段CE 的长等于_______.解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42 =5,∵CD =DB ,∴AD =DC =DB =52, ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125, ∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=75 .。