当前位置:文档之家› 煤气化技术及煤气化废水处理技术.doc

煤气化技术及煤气化废水处理技术.doc

摘要

煤气化是减少燃煤污染的有效途径,但气化过程中产生的废水会对环境造成污染。本文针对废水中主要污染物的不同,对其处理方法、治理技术、工艺分别进行了论述,并提出了建议。分别介绍了煤气化废水中有用物质的回收,生化处理方法以及深度处理方法。具体介绍了废水中酚和氨的回收,采用活性污泥法、生物铁法,炭—生物铁法、缺氧—好氧(A—O)法对废水进行处理,采用活性炭吸附法和混凝沉淀法对废水进行深度处理。

关键词:煤气化,废水处理,活性污泥法

前言

煤化工是以煤为原料,经过化学加工使煤转化为气体,液体,固体燃料以及化学产品的过程,主要分为煤炭焦化、煤气化、煤气化合成氨、煤气化合成其他产品及直接液化等。

煤气化是煤化工产业发展最重要的单元技术,采用空气、氧气、CO2和水蒸气为气化剂,在气化炉内进行煤的气化反应,可以产生不同组分不同热值的煤气。主要用于生产各种燃料气,是干净的能源,有利于提高人民生活水平和环境保护;还可以合成液体燃料和很多化工产品。

煤气化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水,属于焦化废水的一种。水质成分复杂,污染物浓度高。废水中含有大量的酚类、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,属较难生化降解的高浓度有机工业废水。对煤气化废水的处理,单纯靠物理、物理化学、化学的方法进行处理,难以达到排放标准,往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。因此煤气化废水的处理,一直是国内外废水处理领域的一大难题。

1

1

(1)常压固定床煤气化技术

常压固定床煤气化是以空气、蒸汽、氧气为气化剂,在常压下将煤转化成煤气的过程。由于该技术成熟可靠、操作简单、投资少、建设期短,在国内冶金、建材、机械等行业广泛用于制取燃气;在中小型合成氨厂、甲醇厂用于制取合成气;在用气量较少的小型化工装置中用于制取CO 和H 2。这种煤气化技术的缺点是原料煤要求较高,且单炉生产能力小、渣中残碳较高、气化为常压煤气的压缩功耗高。随着煤气化技术的不断发展,及国家对煤化工准入生产规模要求的提高,在新建的大型煤化工装置中一般不采用此技术。

(2)加压固定床煤气化技术

图1 鲁奇加压气化炉

鲁奇加压[2]气化技术(图1)是加压固定床气化技术的代表,在20世纪30年代已实现工业化,义马气化厂[3]单台炉运行可达172天,是比较成熟的气化模式。20世纪80年代以来,我国已引进4套现代化的Lurgi 气化装置,其中3套用于生产城市煤气,1套用于生产合成氨,在设计、安装和运行方面均已取得丰富经验。该气化技术原料适应范围广,除黏结性较强的烟煤外,从褐煤到无烟煤均可气化,且可气化灰分高的劣质煤。Lurgi 气化炉中煤与气化剂逆向运动,炉温较低,采用固态排渣。Lurgi 固定床气化工艺成熟可靠,包括所副产焦油在内的气化效率、碳转化率、

气化热

效率都较高,氧耗是在各类气化工艺中最低的,且原料制备、排渣处理简单。由于煤气中含有CH4,热值是各类气化工艺中最高的,适合于生产城市煤气。传统观念认为,若选择Lurgi固定床气化工艺制合成气存在以下问题:①煤气成分复杂。合成气中含不直接参与合成的CH4约10%~18%,如果将这些CH4转化成H2、CO,势必投资大、成本高。②大量冷凝污水需处理。污水中含大量焦油、酚、氨等,因此需建焦油回收装置,且酚、氨回收和生化处理装置增加了投资和原材料消耗。③Lurgi 气化技术原料为5mm~50mm块煤,若购原煤则有占总量50%~55%的粉煤需处理。

我国对能源节约日益重视,煤化工装置要求大型化、多联产。Lurgi加压固定床煤气化技术同样适于大型化(多台气化炉并运)、多联产的煤化工装置。如南非萨索尔已使用了97台Lurgi气化炉;新疆广汇新能源有限公司准备建设16台Lurgi气化炉;中国大唐电力公司也将在内蒙古自治区上煤制天然气项目,采用46台Lurgi气化炉。

2.流化床气化技术[3]

图2 沸腾床气化流程图

流化床气化又称为沸腾床气化(图2),以小颗粒煤为气化原料。这些细粒煤自下而上的气化剂吹力作用下,保持着连续不断、无秩序沸腾和悬浮状态的运动,迅

速地进行混和及热交换,使整个床层温度和物料组成均一。为适应装置大型化的要求,流化床煤气化有向高压发展的趋势,但压力增加,会造成进煤和排灰工段的困难。由于其气化温度较气流床低,且气化煤的颗粒比气流床大,使其气化不彻底,飞灰和渣中的残碳均较高;如果气化原料中小于1mm的粉煤太多,也会造成气化炉带出物多、操作困难及增加消耗等问题,所以流化床煤气化技术发展较慢。

(1)美国U-gas煤气化技术

U-gas煤气化工艺由美国煤气化工艺研究所开发。1993年,上海焦化厂引进U-gas 煤气化技术及设备,共有8台气化炉,全套装置于1995年建成投产,由于种种原因,目前这套装置已被拆除。现U-gas煤气化技术归美国综合能源系统有限公司拥有,该公司在山东枣庄建了2台U-gas煤气化炉,气化压力为0.25MPa,现已产出合格煤气。目前该公司正在开发0.5MPa和1.0MPa的气化炉。

(2)灰熔聚流化床煤气化技术

中科院山西煤炭化学研究所进行灰熔聚流化床粉煤气化技术研发已20多年,于1990年完成大规模低压中间试验工作。2001年,常压下单炉处理能力100t/d,配套20kt/a合成氨规模的工业示范装置在陕西省汉中固城化肥厂成功运行,该技术的工业化应用,引起了国内外产业界的重视和关注。但该技术的规模、压力等级等技术指标与化工合成或未来发电的要求还有一定差距,因此研究组近10年来着力进行了加压气化工艺的研发。2005年~2006年设计并建立了可获得工业放大数据和经验的大型加压灰熔聚流化床粉煤气化半工业装置。2007年初完成建设,经半年的设备调试和完善,2007年12月完成了1.0MPa的长周期试验,取得了较好的数据并积累了一定的运行经验。现能够达到的操作压力为0.03MPa~0.6MPa,单台气化炉处理煤的能力为100t/d~300t/d,可配套20kt/a~60kt/a合成氨或甲醇。目前正在实施的工业项目有:(1)山西晋城无烟煤矿业集团有限公司6台0.6MPa灰熔聚流化床粉煤气化装置生产100kt/a汽油所需的化工合成气;(2)内蒙古霍煤双兴煤气化有限责任公司0.6MPa气化装置生产60km3/h煤气;(3)河北石家庄金石化肥厂0.6MPa灰熔聚流化床粉煤气化装置生产50kt/a合成氨等。

3

3.气流床气化技术[3]

(1)水煤浆气化技术

①德士古气化技术

德士古气化技术(图3)是由美国德士古开发公司开发的。它是将煤磨成水煤浆,加入添加剂、助熔剂等形成黏度为0.8Pa·s~1.0Pa·s、煤浆质量分数为60%以上的浆状物,加压后喷入炉内,与纯氧进行燃烧和部分氧化反应,在1300℃~1400℃下气化,生产合成原料气。该技术在世界上已有几十套工业化装置正在运行,其中有二十几套在我国,包括陕西渭河化肥厂、上海焦化厂三联供装置、山东鲁南化肥厂和安徽淮南化肥厂等。鲁南化肥厂用于生产合成氨原料气,采用激冷流程,操作压力为3.0MPa;淮南化肥厂年产合成氨30万t,尿素52万t,气化压力6.5MPa,采用激冷流程,气化炉3台,目前运行良好;上海焦化厂三联供装置气化压力4.0MPa,气化炉4台,激冷流程,用于生产甲醇。由于其专利费较高,而国内有自主知识产权的水煤浆气化技术也成功开发,预计未来新建水煤浆气化装置会更多采用国内技术。

图3 德士古气化炉

5 ②多喷嘴对置式水煤浆气化技术

多喷嘴对置式气化炉(图4)是由华东理工大学开发的一种水煤浆气化技术。2005年10月,兖矿国泰化工有限公司建成2台处理能力为1150t/d 的多喷嘴对置式水煤浆气化炉(4.0MPa ),并投入运行。多喷嘴对置式气化技术和德士古气化技术相比优势在于:(a)比煤耗和比氧耗分别降低2.2%和7.9%;(b)负荷调节速度快、范围大、适应力强,烧嘴可实现在另一对烧嘴正常工作情况下投运,增加了系统的稳定性;(c)由于单个烧嘴处理的煤量相对较少,烧嘴的运行时间更长。目前国内已投产和在建的装置有十几套,这将是近一段时间我国大型煤化工的主选煤气化技术之一。

图4 多喷嘴对置式水煤浆气化技术工艺原理简图

(2)干煤粉气化技术

①壳牌(Shell )气化技术[5]

Shell 气化工艺是由壳牌国际石油公司开发的干法粉煤加压气流床气化技术。1993年在荷兰Buggenum 建成日投煤2000t 大型商业化装置,用于联合循环发电,目前运行良好,发电效率达到43%,排放物完全满足苛刻的环保要求。Shell 煤气化采用废锅流程,可生产较多的蒸汽,适于联合循环发电,如用于生产化工产品,还要加蒸汽变换,所以废锅流程在化工行业优势并不明显。我国目前建成和在建

Shell

炉有十几台,根据双环、安庆、洞氮、枝江4家单位的运行情况来看,虽连续运行时间也在慢慢增加,但都存在一些问题,要想长时间连续稳定运行还需继续完善。

②GSP气化技术

GSP气化技术是德国未来能源公司开发的气化技术。1984年在德国黑水泵建成了130MW气化装置(投褐煤量720t/d~750t/d,设计压力为3.0MPa,工作压力2.5MPa,产气量为50000m3/h,气化炉内径1.9m,压力容器外壳内径2.4m),气化原料是德国东部的褐煤。采用激冷流程,高温煤气在激冷室上部被若干水喷头激冷至200℃左右,然后用文丘里除尘器将煤气含尘量降低到1mg/m3以下。目前国内宁煤集团的甲醇制烯烃(MTO)装置采用的是GSP煤气化技术,现尚未投产。

③HT-L气化技术

中国航天集团十一所跟踪国际先进的煤气化技术的发展,开发了HT-L粉煤加压气化技术。该技术具有煤种适应性广、洁净高效、建设和运行费用低等优点,且具有完全的自主知识产权,所有设备均可国产化,非常适应我国对煤炭利用技术的要求。HT-L粉煤加压气化技术充分借鉴吸收了当今世界两大先进煤气化技术的优点,备煤、输煤、燃烧调节系统、气化炉辐射段采用粉煤气流床气化技术,灰渣水、洗涤、净化系统则采用水煤浆工艺的急冷流程技术。濮阳市甲醇厂20万t/a甲醇改扩建工程已采用HT-L气化技术,若濮阳甲醇厂使用状况良好,该技术将会有较快发展。

④两段式干煤粉加压气化技术[6]

西安热工研究院有限公司开发了两段式干煤粉加压气化技术,气化炉(图5)采用水冷壁炉膛、液态排渣。运行时,向下炉膛内喷入粉煤、水蒸气和氧气,向上炉膛喷入少量粉煤和水蒸气。利用下炉膛的煤气显热进行上炉膛煤的热解和气化反应,以提高总的冷煤气效率;同时显著降低热煤气温度,使得炉膛出口的煤气降温至灰熔融性温度以下,从而省去冷煤气激冷流程。2004年,建成了处理煤量36t/d~40t/d (10MW)的干煤粉加压气化中试装置。2000t/d级两段式干煤粉加压气化炉(废锅流程)已经应用于华能集团“绿色煤电”项目;1000t/d级两段式干煤粉加压气化炉(激冷流程)也已应用于内蒙古世林化工有限公司年产30万t甲醇项目。与国外先

进的干粉煤气化技术相比,冷煤气效率可提高2%~3%,比氧耗低10%~15%。随着该技术的工业化应用,基于其冷煤气效率高、比氧耗低等优势,将会有更大的发展。

图5 干煤粉加压气化中试装置

二、煤气化废水处理技术

(一)煤气化废水处理技术[7]

煤气化废水处理通常可分为一级处理、二级处理和深度处理。这里的一级、二级处理的划分与传统的城市污水处理的概念上有所不同,这里所述的一级处理主要是指有价物质的回收,二级处理主要是生化处理,深度处理普遍应用的方法是臭氧化法和活性炭吸附法。

一级处理包括沉淀、过滤、萃取、汽提等单元,以除去部分灰渣、油类等。一级处理中主要重视有价物质的回收,如用溶剂萃取、汽提、吸附和离子交换等脱酚并进行回收。这不仅避免了资源的流失浪费,而且对废水处理有利。煤气化废水通

7

常萃取脱酚和蒸汽提氨后,废水中挥发酚和挥发氨分别能去除99%和98%以上,COD 也相应去除90%左右。

二级处理主要是生化法,一般经二级处理后,废水可接近排放标准,生化法主要有活性污泥法和生物过滤法等。

煤气化废水普遍应用的深度处理方法是臭氧氧化法和活性炭吸附。

1.煤气化废水有价物质的回收[8]

煤气化废水中有机物质的回收一般指的是对酚和氨的回收,常用方法有溶剂萃取脱酚、蒸氨等。

(1)酚的回收

回收废水中酚的方法很多,有溶剂萃取法、蒸汽脱酚法和吸附脱酚法等。新建焦化厂大都采用溶剂萃取法。对于高浓度含酚废水的处理技术趋势是液膜技术、离子交换法等。

①蒸汽脱酚。蒸汽脱酚(图6)是将含酚废水与蒸汽在脱酚塔内逆向接触,废水中挥发酚转入气相被蒸汽带走,达到脱酚的目的。含酚蒸汽在再生塔中与碱液作用生成酚盐而回收。该操作方法简单,不影响环境。但脱酚效率仅为80%,效率偏低,而且耗用蒸汽量大。

图6 蒸汽脱酚工艺流程图

②吸附脱酚。吸附脱酚是采用一种液固吸附与解吸相结合的脱酚方法,将废水与吸附剂接触,发生吸附作用达到脱酚的目的,但采用吸附法(如活性炭吸附)回收酚存在一些困难,因为有色物质的吸附是不可逆的,活性炭吸附有色物质后,极难

再生将有色物质洗脱下来,从而影响活性炭的使用寿命。随着廉价、高效、来源广的吸附剂的开发,吸附脱酚法是一种很有前途的脱酚方法。

③萃取脱酚。萃取脱酚(图7)是一种液-液接触萃取、分离与反萃再生结合的方法。酚回收工段利用精馏操作脱除酸性气体CO、HS、HCN ,又利用精馏侧提出15 %浓度的氨溶液,使水得到净化。该方法简单,成本低,便于操作,回收率高。同时侧汽提的氨利用氨精馏得到90 %以上浓度的高纯液氨。

图7 溶剂萃取脱酚法工艺流程简图

(2)氨的回收

目前对氨的回收主要采用水蒸气汽提-蒸氨(图8)的方法。污水经汽提,析出可溶性气体,再通过吸收器,氨被磷酸氨吸收,从而使氨与其他气体分离,再将此富氨液送入汽提器,使磷酸氨溶液再生,并回收氨。精馏操作利用酚水中各物质挥发度的差异使各组分实现连续的高纯度的分离。由解析塔接受槽来的131℃、含氨20%左右的氨液送入精馏塔中部精馏。塔顶得99. 98%纯氨汽,经冷却后部分作为回流送往塔顶,控制塔顶温度在33~34℃,其余部分作为产品。精馏塔操作压力

1.7MPa,冷凝冷却水温为30℃,精馏塔底排出的废水含氨<0.1%(W),塔底通入直接蒸汽,操作温度约为194℃。在精馏塔进料层附近送入20%(W)NaOH水溶液,将进料中微量的CO2, H2S等酸性组分除去,以防止产生铵盐而引起堵塞。另外,在精馏塔进料层附近可能会积聚油分,必须在适当高度从侧线引出,返回到吸收塔煤

9

气中去。

图8 水蒸气汽提-蒸氨法回收氨工艺流程图

2.煤气化废水处理方法[9]

煤气化废水在进行预处理前根据不同的水质特点设置调节池以调节水质水量,设置隔油池或气浮池进行除油,经以上的预处理后可采用下面的方法进一步进行处理。

(1)活性污泥法

活性污泥法(图9)是采用人工曝气的手段,使得活性污泥均匀分散并悬浮于反应器中和废水充分接触,并在有溶解氧的条件下,对废水中所含的有机底物进行着合成和分解的代谢活动。在活动过程中,有机物质被微生物所利用,得以降解、去除。同时,亦不断合成新的微生物去补充、维持反应器中所需的工作主体——微生物(活性污泥),与从反应器中排除的那部分剩余污泥相平衡。

活性污泥法处理的关键是保证微生物正常生长繁殖,为此须具备以下条件:一是要供给微生物各种必要的营养源,如碳、氮、磷等,一般应保持BOD5:N:P=100:5:1(质量比)。煤气化废水中往往含磷量不足,一般为0.6~1.6mg/L,故需向水中投加适量的磷;二是要有足够氧气;三是要控制某些条件,如pH值以6.5~9.5、

水温以10~25℃为宜。另外应将重金属和其他能破坏生物过程的有害物质严格控制在规定范围之内。

图9 活性污泥法处理废水工艺流程

(2)生物铁法

生物铁法是在曝气池中投加铁盐,以提高曝气池活性污泥浓度为主,充分发挥生物氧化和生物絮凝作用的强氧化生物处理方法。工艺包括废水的预处理、废水生化处理和废水物化处理三部分。预处理包括重力除油、均调、气浮除油;生化处理过程包括一段曝气、一段沉淀、二段曝气、二段沉淀;物化处理工艺流程包括旋流反应、混凝沉淀和过滤等工序。

在生物与铁的共同作用下能够强化活性污泥的吸附、凝聚、氧化及沉淀作用,达到提高处理效果、改善出水水质的目的。生物铁法的生产运行工艺条件包括:营养素的需求、适量的溶解氧、温度和pH值控制、毒物限量及污泥沉降比等。

(3)炭—生物铁法

目前,国内一些厂家的处理装置由于超负荷运行或其他原因,处理后的水质不能达标,炭—生物铁法是在原传统的生物法的基础上再加一段活性炭生物吸附、过滤处理。老化的活性炭采用生物再生。

该工艺流程简便,易于操作,设备少,投资低。由于炭不必频繁再生,故可减少处理费用。对于已有生物处理装置处理水后不符合排放标准的处理厂,采用炭—生物铁法进一步处理以提高废水净化程度也是一种有效的方法。

11

(4)缺氧—好氧(A—O)法

用常规的活性污泥处理煤气化废水,对去除酚、氰以及易于生物降解的污染物是有效的,但对于COD中难降解部分的某些污染物以及氨氮与氟化物就很难去除。

A—O法内循环生物脱氮工艺(图10),即缺氧—好氧工艺,其主要工艺路线是缺氧在前,好氧在后,泥水单独回流,缺氧池进行反硝化反应,好氧池进行硝化反应,废水先流经缺氧池后进入好氧池。与传统生物脱氮工艺相比,A—O工艺具有流程简短、工程造价低;不必外加投入碳源等优点。同时也存在着脱氮率不高(85%左右)等不足。

图10 A—O法内循环生物脱氮流程图

3.高新技术处理煤气化废水的研究[10]

目前,国内在处理煤气化废水的新技术主要有以下几种:

(1)新物化法

新物化法是指在常温下利用废水中有害物质与专门为处理废水而开发的药剂(污水灵)发生反应,经过4次不同加药处理过程和处理设施,最终实现COD、BOD、NH3-N、SS均达到排放要求。该技术最大的缺陷是废水中有毒有害物质只是形态的转移,另外该技术的成熟性还需要经工程实践的考验。

(2)HSB 法处理焦化废水

HSB(High Sotution Bacteria)是高分子均群的英文缩写。目前国内初步试验得出以下结论:HSB耐受废水中有毒有害物质性好;处理后污泥少、出水色度好;加

碱量为传统方法的1/3~1/5,运行费用较低,但对种菌特性,生存条件、净化功能尚未完全了解,有待进一步研究与实践。(图11)

图11 焦化废水工艺设计流程图

(3)三相气提升循环流化床处理技术

蔡建安经试验研究证明:用三相气提升内循环流化床反应器(AZLR)处理污水比活性污泥法效果好,其处理负荷高。它对酚、氰等污染物的耐受力强,去除效果好,并具有较低的曝气能耗,其COD去除率为54.4%~76%,酚的去除率为95%~99.2%,氰的去除率为95%~99.2%。

(4)芬顿试剂处理技术

芬顿试剂对有机分子的破坏是非常有效的,其实质是二价铁离子加过氧化氢之间的链反应催化生成·OH自由基,三价铁离子催化剂(芬顿类试剂)也能激发这个反应。这两个反应生成的·OH自由基能有效地氧化各种有毒的和难处理的有机化合物。K.Banerjeek等经试验证明,采用过氧化氢添加铁盐能有效的减少废水中COD

浓度。

(5)微波与超声波处理技术

利用微波与超声波降解水中化学污染物,尤其是难降解的有机污染物,是近几年来发展起来的一项新型处理技术。对液体而言,微波仅对其中的极性分子起作用,微波电磁场能使急性分子产生高速旋转碰撞而产生热效应,降低反应活化能和化学

13

键强度;在微波场中,剧烈的极性分子震荡,能使化学键断裂,故可用于污染物的降解。超声波由一系列疏密相间的纵波构成,并通过液化介质向四周传播,今年研究表明,包括卤代脂肪烃、单环和多环芳香烃及酚类物质等都能被超声波降解。

4.煤气化废水深度处理[11]

经过酚、氨回收,预处理及生化处理后的煤气化废水,其中大部分污染物质得到了去除,但某些主要污染指标仍不能达到排放标准,因此需要进一步的处理——深度处理,来使这些指标达到排放标准。

(1)活性炭吸附法

煤气化废水经以上步骤处理后COD的去除率效果不是很理想,出水浓度较大,有时高达601mg/L左右,很难达标排放,为使废水达标排放,可使用活性炭降低废水中COD的浓度。

废水处理中活性炭吸附主要对象是废水中用生化法难以降解的有机物或用一般氧化法难以氧化的溶解性有机物,包括木质素、氯或硝基取代的芳烃化合物、杂环化合物、洗涤剂、合成燃料、除萎剂、DDT等。当用活性炭吸附处理时,不但能够吸附这些难分解有机物,降低COD,还能使废水脱色、脱臭。因此吸附法在废水的深度处理中得到了广泛的应用。

(2)混凝沉淀法

图12 混凝沉淀法设备简图

混凝是给水处理中一个重要的处理方法。混凝法(图12)可以降低废水的浊度、色度,去除多种高分子物质、有机物、某些重金属毒物和放射性物质等,去除导致富营养化的物质如磷等可溶性无机物,并且它能够改善污泥的脱水性能。具有设备简单,操作简便,便于运行,处理效果好的优点;缺点是运行费用高,沉渣量大。

三、实例分析

(一)鲁奇炉煤气化废水处理

1.水质水量

鲁奇加压气化工艺中,气化1吨煤约产出1.0m3废水。表3-1表示出各部分水量的百分数,其中主要是燕汽冷凝水和煤本身所含的水分。因此,因不同煤质所含水分不同,气化废水的量也大不相同。如沈北褐煤含水量为20.7%~22.2%,而小龙潭褐煤则高达35.6%,官地贫煤仅0.3%。所以,气化1吨煤产生的废水量大致在0.8~1.1%范围内。

由于煤气化废水实质上都是从煤气饱和水分中冷凝下来的。因此,溶解或悬浮有煤气中的多种成份。废水中的污染物会因煤质和气化工艺不同而有所差异但水质组分大致相同,特别是酚的组成基本恒定。

表1 气化废水组成表

2.生化处理

我国的煤气化废水处理,一般也是采用酚氨回收一生化处理工艺,但均不能达到排放要求,故有的采用三级处理。

3.废水特点

鲁奇炉煤气化工艺成熟,但是煤气化温度低,产生废水成分复杂。

COD高,4000-6000mg/l

氨氮高,200-250mg/l

15

总酚800-1000mg/l

色度高20000倍

溶解性固体高3500mg/l

总油200mg/l

4.废水水质

COD:4500—5000mg/l

NH3-N:200-250mg/l

挥发酚:400mg/l

pH:9—10

色度:20000倍以上

(二)鲁奇炉煤气化废水处理工艺

图13 鲁奇炉煤气化废水处理工艺流程图

结语

现代煤气化技术研究开发在IGCC项目的带动下,取得了很大发展。但制氧成本仍然严重制约着煤气化技术的发展,因此一方面应加速高效廉价的大规模制氧技术的开发外,另一方面要注重氧耗低的气化技术的开发。应充分认识各种气化技术的优缺点,发挥其优势,采用过程集成概念,实现技术经济的优化。理论分析和已有研究表明粉煤/块煤双粒级进料液态排渣固定床气化、两段(多段)进料干粉气流床气化、流化床部分气化与气流床气化或CFB燃烧集成技术符合发展规律、具有良好的发展前景。

深入研究煤气化废水的先进处理技术,既是当前经济建设面临的现实问题,也是将来进行技术攻关的重点,只有不断提高现有处理技术的处理能力、增强新技术的经济技术可行性,将各种方法有机地结合起来,取长补短才能找到治理煤气化废水的最佳方法。其中化学氧化法具有去除率高,占地面积小、无二次污染的特点,是煤气化废水处理的发展趋势。吸附法和混凝法是煤气化废水深度处理的可靠方法,应着力进行新型吸附剂和混凝剂的开发。

17

国内外煤炭资源现状及煤化工技术进展和前景解析

国内外煤炭资源现状及煤化工技术进展和前景 摘要:本文就中国能源建设面临着结构的优化与调整,结合中国能源结构以煤为主、石油及相关产品供需矛盾日益突出的现实,对国内外煤炭储量、产量及市场现状进行了较详尽的调研,对煤化工技术进展及前景进行了客观的分析,为我公司未来发展提前寻找了石油和天然气的最佳替代产品,指出了煤化工产业将是今后20年的重要发展方向,这对于我国减轻燃煤造成的环境污染、降低我国对进口石油的依赖,保障能源安全,促进经济的可持续发展,均有着重大意义。可以预见,煤炭的清洁转化和高效利用,将是未来能源结构调整和保证经济高速发展对能源需求的必由之路,现代煤化工在中国正面临新的发展机遇和长远的发展前景。 1 世界煤炭资源概况 据《BP世界能源统计2007》数据统计,2006年年底探明的煤炭可采储量全球总计9090.64亿吨,可采年限为147年。总体上看,世界煤炭资源的分布,北半球多于南半球,煤炭主要集中在北半球。北半球北纬30°- 70°之间是世界上最主要的聚煤带,占世界煤炭储量的70%以上。其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。拥有煤炭资源的国家大约70个,其中储量较多的国家有中国、俄罗斯、美国、德国、英国、澳大利亚、加拿大、印度、波兰和南非地区,它们的储量总和占世界的88%。世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4个国家共占29%。根据2006年全球煤炭探明储量,美国以2446亿吨储量稳坐头把席位,俄罗斯以1570亿吨储量排第二位,中国和印度分别为1145和924亿吨排第三、四位。澳大利亚、南非、乌克兰、哈萨克斯坦、波兰和巴西占据第五到第十位。

壳牌煤气化技术简介

主流煤气化技术及市场情况系列展示(之五) 壳牌煤气化技术 技术拥有单位:壳牌全球解决方案国际私有有限公司 壳牌是世界知名的国际能源公司之一。壳牌煤气化技术可以处理石油焦、无烟煤、烟煤、褐煤和生物质。气化炉的操作压力一般在,气化温度一般在1400~1700摄氏度。在此温度压力下,碳转化率一般会超过99%,冷煤气效率一般在80~83%。对于废热回收流程,合成气的大部分显热可由合成气冷却器回收用来生产高压或中压蒸汽;如配合采用低水气比催化剂的变化工艺,在变换单元消耗少量蒸汽即可保证变换深度要求,剩余大量蒸汽可送入全厂蒸汽管网,获得可观的经济效益。 目前,壳牌全球解决方案国际私有有限公司负责壳牌气化技术的技术许可,工艺设计以及技术支持。2007年壳牌成立了北京煤气化技术中心,2012年初,壳牌更是将其全球气化业务总部也从荷兰移师中国,这充分体现了壳牌对中国现代煤化工蓬勃发展的重视,同时壳牌也能更好地利用其全球气化技术能力,贴近市场,为中国客户提供更加快捷周到的技术支持。目前,在北京的壳牌煤气化技术团队可提供从研发、工程设计、培训、现场技术支持以及生产操作和管理的全方位技术支持和服务。 一、整体配套工艺 根据不同的煤质特性以及用户企业的不同生产需求和规划,壳牌开发了下面3种不同炉型: 壳牌废锅流程是当前工业应用经验最丰富的干粉气化技术。它的效率和工艺指标的先进性已经得到了验证和认可,而且在线率也在不断创造新的世界纪录,大部分客户已实现满负荷、长周期、安全、稳定运转。如果业主比较关注热效率,全厂能效和环保效益的话,采用壳牌废锅流程并配合已成功应用的低水气比变换技术应该是最合适稳妥的方案。 壳牌上行水激冷流程特别适合处理有积垢倾向的煤种;适合大型项目,此外投资低,可靠性高。对于比较关注在线率和低投资的业主,采用壳牌上行水激冷流程应该是最合适稳妥的方案。

煤气化废水深度处理技术

煤气化废水深度处理技术 发表时间:2016-10-19T09:03:06.693Z 来源:《科技中国》2016年7期作者:靳小茜[导读] 所以研究一种新的处理方法,可使气化废水中有机物分解为无机物,降解彻底,是今后气化废水深度处理的发展方向。天津大唐国际盘山发电有限责任公司天津 301907 摘要:煤气化废水属于焦化废水的一种,是在煤气生产和净化过程中产生的,废水排放量大,其中含有酚类、苯类及其衍生物等生物难降解大分子有机物,还有部分焦油及氰化物,CODCr和NH3-N的浓度很高。原有的煤气化废水深度处理方法主要有活性炭吸附法、混凝沉淀法、氧化处理法等,但是这些方法都存在一定的缺点,例如活性炭添加量大、运行费用高或沉渣量大等。本课题研究表明:经SBR (序批式活性污泥法)工艺处理后的煤气化废水经过褐煤活性焦吸附,后续再经过曝气生物滤池处理,不仅使废水达到了排放标准,而且大大降低了用焦量,用来深度处理煤气化废水是经济可行的。 关键词:SBR;褐煤活性焦;曝气生物滤池;COD;吸附 一、煤气化废水的处理方法及研究成果 对煤气化废水的处理,单纯依靠物理、物理化学或化学的方法进行处理,难以达到排放标准,往往需要通过由几种方法组成的处理系统,才能达到处理要求的程度。因此煤气化废水的处理,一直是国内外废水处理领域的一大难题。 2.2.1煤气化废水的处理技术 煤气化废水处理通常可分为一级处理、二级处理和深度处理。这里的一级、二级处理的划分与传统的城市污水处理在概念上有所不同,这里所谓的一级处理主要是指有价物质的回收,二级处理主要是生化处理,深度处理普遍应用的方法是臭氧化法和活性炭吸附法。 一级处理包括沉淀、过滤、萃取、汽提等单元,以除去部分的灰渣、油类等。一级处理中主要重视有价物质的回收,如用溶剂萃取、汽提、吸附和离子交换等脱酚并进行回收。这不仅避免了资源的流失和浪费,而且对废水处理有利。煤气化废水通常萃取脱酚和蒸汽提α氨后,废水中挥发酚和挥发氨分别能去除到99%和98%以上,COD也可相应去除90%左右。 二级处理主要是生化法,一般经二级处理后,废水可接近排放标准,生化法主要有活性污泥法和生物过滤法等。 2.2.1.1煤气化废水的一级处理 煤气化废水中有机物质的回收一般指的是对酚和氨的回收,常用方法有溶剂萃取脱酚、蒸氨等。 1、酚的回收 (2)吸附脱酚。吸附脱酚是采用一种液固吸附与解吸相结合的脱酚方法,将废水与吸附剂两者接触,发生吸附作用而达到脱酚的目的,但采用吸附法(如活性炭吸附)回收酚存在一些困难,因为有色物质的吸附是不可逆的,假如用活性炭吸附有色物质后,很难再将有色物质洗脱下来,从而影响活性炭的使用寿命。随着廉价、高效、来源广的吸附剂的开发,吸附脱酚法是一种很有前途的脱酚方法。 (3)萃取脱酚。萃取脱酚是一种液-液接触萃取、分离与反萃再生结合的方法。该法脱酚效率高,可达95%以上,而且运行稳定,易于操作,运行费用也较低在我国焦化行业废水处理中应用最广。 2、氨的回收 目前对氨的回收主要采用水蒸气汽提-蒸氨的方法。污水经汽提后,析出可溶性气体,再通过吸收器,氨被磷酸氨所吸收,从而使氨与其他气体分离,再将此富氨溶液送入汽提器,使磷酸氨溶液再生,并回收氨。 2.2.1.2煤气化废水的二级处理 煤气化废水在进行初处理前根据不同的水质特点设置调节池以调节水质水量,设置隔油池或气浮池进行除油,经以上的预处理后可采用下面的方法进一步进行处理。 1、活性污泥法 活性污泥法是采用人工曝气的手段,使得活性污泥均匀的分散并悬浮于反应器中和废水充分接触,并在有溶解氧的条件下,对废水中所含的有机底物进行合成和分解的代谢活动。在活动过程中,有机物质被微生物所利用,得以降解、去除。同时,亦不断合成新的微生物去补充、维持反应器中所需要的工作主体——微生物(活性污泥),与从反应器中排除的那部分剩余污泥保持平衡。 2、生物铁法 生物铁法是在曝气池中投加铁盐,以提高曝气池活性污泥浓度,充分发挥生物氧化和生物絮凝作用的强氧化生物处理方法。工艺流程包括废水的预处理、废水的生化处理和废水的物化处理三部分。预处理包括重力除油、均调、气浮除油;生化处理过程包括一段曝气、一段沉淀、二段曝气、二段沉淀;物化处理工艺流程包括旋流反应、混凝沉淀和过滤等工序。 在生物与铁的共同作用下能够强化活性污泥的吸附、凝聚、氧化及沉淀作用,达到提高处理效果、改善出水水质的目的。生物铁法的生产运行工艺条件包括:营养素的需求、适量的溶解氧、温度和pH值控制、毒物限量及污泥沉降比等。 2.2.2煤气化废水的深度处理技术 现阶段针对煤气化废水的深度处理技术主要有活性炭吸附法、氧化处理法和混凝沉淀法三大类。 1、活性炭吸附法 煤气化废水经以上步骤处理后COD的去除效果并不是很理想,出水浓度较大,很难达标排放,为使废水达标排放,可使用活性炭降低废水中COD的浓度。 废水处理中活性炭吸附的主要对象是废水中用生化法难以降解的有机物或用一般氧化法难以氧化的溶解性有机物,包括木质素、氯或硝基取代的芳烃化合物、杂环化合物、洗涤剂、合成燃料、除萎剂、DDT等。当用活性炭吸附处理时,不但能够吸附这些难分解有机物,降低COD,还能使废水脱色、脱臭。因此吸附法在废水的深度处理中得到了广泛的应用。 2、氧化处理法 臭氧的氧化性强,对除臭、杀菌、去除有机物和无机物都有显著效果。臭氧氧化是瞬时反应,无永久性残留,经处理后剩余废水中的臭氧易分解,一般不产生二次污染,且能增加水中的溶解氧。VanLeeuwen等通过实验指出,臭氧对氰化物、硫氰酸盐的去除率可达95%以上,且在处理活性污泥出水时,脱色效果比活性炭要好。煤气化废水中含有较多氰化物和难降解有机物,因此通过臭氧对其废水进行深度处理,可在一定程度上去除这些物质。

煤化工产业概况及其发展趋势

煤化工产业概况及其发 展趋势 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

我国煤化工产业概况及其发展趋势 煤化学加工包括煤的焦化、气化和液化。主要用于冶金行业的煤炭焦化和用于制取合成氨的煤炭气化是传统的煤化工产业,随着社会经济的不断发展,它们将进一步得到发展,同时以获得洁净能源为主要目的的煤炭液化、煤基代用液体燃料、煤气化—发电等煤化工或煤化工能源技术也越来越引起关注,并将成为新型煤化工产业化发展的主要方向。发展新型煤化工产业对煤炭行业产业结构的调整及其综合发展具有重要意义。 1 煤化工产业发展概况 1. 1 煤炭焦化 焦化工业是发展最成熟,最具代表性的煤化工产业,也是冶金工业高炉炼铁、机械工业铸造最主要的辅助产业。目前,全世界的焦炭产量大约为~亿t/a,直接消耗原料精煤约亿t/a 。受世界钢铁产量调整、高炉喷吹技术发展、环境保护以及生产成本增高等原因影响,工业发达国家的机械化炼焦能力处于收缩状态,焦炭国际贸易目前为2500万t/ a。 目前,我国焦炭产量约亿t/a,居世界第一,直接消耗原料煤占全国煤炭消费总量的14%。 全国有各类机械化焦炉约750座以上,年设计炼焦能力约9000万 t/a,其中炭化室高度为4m~5.5m以上的大、中型焦炉产量约占80%。中国大容积焦炉(炭化室高≧6m)已实现国产化,煤气净化技术已达世界先进水平,干熄焦、地面烟尘处理站、污水处理等已进入实用化阶段,焦炭质量显着提高,其主要化工产品的精制技术已达到或接近世界先进水平。 焦炭成为我国的主要出口产品之一,出口量逐年上升,2000年达到1500t/a,已成为全球最大的焦炭出口国。 从20世纪80年代起,煤炭行业的炼焦生产得到逐步发展,其中有的建成向城市或矿区输送人工煤气为主要目的的工厂,有的以焦炭为主要产品。煤炭行业焦化生产普遍存在的问题是:焦炉炉型小、以中小型焦炉为主,受矿区产煤品种限制、焦炭质量调整提高难度较大,采用干法熄焦、烟尘集中处理等新技术少,大多数企业技术进步及现代化管理与其他行业同类工厂相比有较大差距。 1.2 煤气化及其合成技术 1.2.1 煤气化 煤气化技术是煤化工产业化发展最重要的单元技术。全世界现有商业化运行的大规模气化炉414台,额定产气量446×106Nm3/d,前10名的气化厂使用鲁奇、德士古、壳牌3种炉型,原料是煤、渣油、天然气,产品是F-T合成油、电或甲醇等。 煤气化技术在我国被广泛应用于化工、冶金、机械、建材等工业行业和生产城市煤气的企业,各种气化炉大约有9000多台,其中以固定床气化炉为主。近20年来,我国引进的加压鲁奇炉、德士古水煤浆气化炉,主要用于生产合成氨、甲醇或城市煤气。

含酚废水的处理

工业上处理酚类废水的常用方法 Wikinghuang 2006-11-09 14:47 含酚废水的治理方法与处理技术 对含酚废水的治理,最有效的方法是控制污染源,一是合理选择工艺流程、开发无公害工艺、无公害催化剂,使用无公害试剂的反应实现清洗工艺技术,减少废水量或降低废水中的含酚浓度。例如,目前对氨基酚生产主要采用铁还原法老工艺,生产1吨成品出44吨废水,废水量大,污染严重。近年来人们开发用硝基苯催化氧化法生产对氨其基酚新工艺,1吨成品,只排放10吨含酚废水,使污染减少。二是选用有效的操作条件和生产设备,开发密闭循环生产酚类化合物系统尽量避免和减少污染物排入环境,实现“零排放”的清洁生产。三是加强企业的管理,对含酚废水采取有效处理、回收以及综合利用。 由于含酚废水的组成、酸碱性以及浓度的不同,治理方法也不一样,目前工业上治理含酚废水的方法一般分为物化法、化学法、生化法等三大类。主要介绍最常见的方法。 1.物化法 物化法是通过物理化学过程处理废水,除去污染物质的方法,因应用比较广泛,近年来发展很快。其主要方法有:吸附、萃取、反渗透、电渗析、液膜、气提、超过滤等方法。 1.1吸附法 吸附法广泛用于含酚废水的处理。吸附法是利用多孔性固体物质作用为吸附剂,如活性炭、硅藻土、活性氧化铝、交换树脂、磺化煤等,以吸附剂的表面(固相)吸附废水中的酚(液相)污染物的方法,根据吸附剂与酚类化合物之间的作用力不同,其吸附机理兼有物理吸附,化学吸附和交换吸附。在含酚废水处理过程中,主要是物理吸附,有时是几种吸附形式的综合作用。选用吸附性能好,吸附容量大,容易再生,经久耐用的吸附剂是保证-分离效果的关键。 1.2萃取法 萃取法处理含酚废水两种途径,一种是选用高分配系数的萃取法,采用特定的萃取工艺及装置,利用酚类化合物在有机相和水相中不同的溶解度及两相互不溶的原理,达到分离酚的目的,另一种是根据可配位反应原理,经单一萃取操作使废水中的含酚量低于国家排放标准。 1.3液膜法 液膜法是近年发展起来的一种新型废水治理分离技术液膜除酚采用水包油包水(W/0/W)体

现代煤化工产业发展现状分析

现状分析、政策走向及前景预测 一、现代煤化工产业概述 煤化工是以煤为原料,经过化学加工使煤转化为气体、液体、固体燃料及化学品,生产出各种化工产品地工业,是相对于石油化工、天然气化工而言地.从理论上来说,以原油和天然气为原料通过石油化工工艺生产出来地产品也都可以以煤为原料通过煤化工工艺生产出来.煤化工主要分为传统煤化工和现代煤化工两类,其中煤焦化、煤合成氨、电石属于传统煤化工,而目前所热议地煤化工实际上是现代煤化工,主要是指煤制甲醇、煤制乙二醇、煤制天然气、煤制油、煤制二甲醚及煤制烯烃等项目.目前煤化工热地背景源于石油、天然气价格地不断上涨,使得以煤为原料地煤化工产品在生产上具备了巨大地成本优势,从而成为相对石化产品地最具竞争力地替代产品.从煤化工基地建设而言,煤化工产业涉及煤炭、电力、石化等领域,是技术、资金、资源密集型产业,对能源、水资源地消耗大,对资源、生态、安全、环境和社会配套条件要求较高.煤化工地工艺路线主要有三条,即焦化、气化和液化,在煤地各种化学加工过程中,焦化是应用最早且至今仍然是最重要地方法,其主要目地是制取冶金用焦炭,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃;煤气化在煤化工中也占有很重要地地位,用于生产城市煤气及各种燃料气,也用于生产合成气(作为氢气、合成氨、合成甲醇等地原料);煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料(石脑油、汽油、柴油);煤地其他直接化学加工,则生产褐煤蜡、磺化煤、腐植酸及活性炭等,仍有小规模地应用.个人收集整理勿做商业用途 国内外现代煤化工产业发展现状 从全球煤化工发展状况来看,主要集中在南非(公司是世界唯一拥有煤制液化工厂地公司,该公司地个煤基液化厂保证了南非地汽油、柴油供给量)、美国(太平原合成燃料厂是世界上目前唯一运行地大规模煤制天然气商业化工厂地公司,年产亿方天然气和万吨合成氨)和中国,除中国外其他国家并无大规模地发展,国内以煤炭为原料地化工产品在国际上大多是以石油和天然气为原料地,高高在上地国际原油价格是促使煤化工再次得到重视地直接动因.以原油和煤炭地单位热值来衡量,目前煤炭地价格只有原油价格地左右,以煤炭来代替石油作为化工产品地原料具有很好地经济意义.个人收集整理勿做商业用途 “富煤、贫油、少气”是我国能源发展面临地现状,我国能源资源中,煤资源相对丰富,石油资源相对少,而且石油往往受制于国际市场.因此,通过把煤液化替代石油成为我国能源发展地一个明智选择.而且煤液化之后,相对于石油更加环保,符合国家节能环保地要求.未来随着我国经济发展,能源需求将日益扩大,对于煤液化地需求也就越大.这也就是意味着,对于煤化工需求也就越来越大.个人收集整理勿做商业用途 我国是世界上最大地煤化工生产国,煤化工产品多、生产规模较大,当前我国正处于传统煤化工向现代煤化工转型时期,以石油替代为目标地现代煤化工产业刚刚起步.由于国际市场油价高起,我国现代煤化工项目已呈现遍地开花之势,激发了富煤地区发展煤化工产业地积极性.据了解,在煤炭资源丰富地鄂尔多斯、通辽、赤峰、阿拉善盟等地,煤化工产业开始“井喷”.神华集团煤直接液化项目、伊泰集团间接法煤制油项目、神华包头煤制烯烃项目、大唐多伦煤制烯烃项目、通辽乙二醇项目等煤化工重点项目相继建成并投产.目前,全国煤制烯烃地在建及拟建产能达万吨,煤制油在建及拟建产能达万吨,煤制天然气在建及拟建产能接近亿立方米,煤制乙二醇在建及拟建产能超过万吨.这些项目全部建成之后,我国将是世界上产能最大地现代煤化工国家.近五年我国焦炭、电石、煤制化肥和煤制甲醇产量均位居世界首位,成为煤化工产品生产大国.年是现代煤化工爆发地启动之年,预计投资额应该在亿元左右,之后四年投资额将逐增加,年将达到奇峰,预计在亿,五年累计超过万亿,是十一五期间地倍.个人收集整理勿做商业用途 三、国家现代煤化工产业政策

四种煤气化技术及其应用

四种煤气化技术及其应用 李琼玖,钟贻烈,廖宗富,漆长席,周述志,赵月兴 (成都益盛环境工程科技公司,四川成都610012) 摘要:介绍了4种煤气化工艺技术,包括壳牌工艺、德士古水煤浆气化工艺、恩德工艺、灰熔聚流化床气化工艺,对其技术特点、工艺流程、主要设备及应用实例进行了详细阐述,并对4种工艺进行了对比。 关键词:煤气化;壳牌工艺;德士古;恩德工艺;灰熔聚工艺;煤气炉 中图分类号:TQ546文献标识码:A文章编号:1003-3467(2008)03-0004-04 Four Coal Gasification Technologi es and Their Applicati on L I Q iong-ji u,ZHONG Y i-lie,LIAO Zong-fu, QI Chang-xi,ZHOU Shu-zhi,ZHAO Yue-xing (Chengdu Y i s heng Envir on m ent Eng i n eering Techo logy C o.Ltd,Chengdu610012,China) Abst ract:Four coal gasificati o n technologies,inc l u d i n g Shell techno logy,Texaco coa l-w ater sl u rry gasif-i cati o n,Enticknap pr ocess,ash agg l o m erati o n fl u i d ized bed gasification technology are intr oduced,and the technical features,technolog ical process,m ai n equipm ent and app lication exa m p le o f the four techno l o g i e s are descri b ed in detai.l K ey w ords:coal gasification;She ll techno logy;Texaco;Enticknap process;ash agglo m erati o n tech-nology;gas stove 1壳牌粉煤气化制取甲醇合成气 1.1壳牌工艺技术的特点 壳牌煤气化过程(SCGP工艺)是在高温加压下进行的,是目前世界上最为先进的第FG代煤气化工艺之一。按进料方式,壳牌煤气化属气流床气化,煤粉、氧气及蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。一般认为,由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2、CO等)以发生燃烧反应为主;在氧气消耗殆尽之后发生碳的各种转化反应,过程进入到气化反应阶段,最终形成以CO、H2为主要成分的煤气离开气化炉。 壳牌粉煤气化的技术特点:1干煤粉进料,加压氮气输送,连续性好,气化操作稳定。气化温度高,煤种适应性广,从无烟煤、烟煤、褐煤到石油焦均可气化,对煤的活性几乎没有要求,对煤的灰熔点范围比其它气化工艺更宽。对于高灰分、高水分、含硫量高的煤种同样适应。o气化温度约1400~1700e,碳转化率高达99%以上,产品气体相对洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)高达90%以上。?氧耗低,与水煤浆气化相比,氧气消耗低,因而与之配套的空分装置投资可减少。?单炉生产能力大,目前已投入运转的单炉气化压力为3MPa,日处理煤量已达2000t。?气化炉采用水冷壁结构,无耐火砖衬里,维护量少,气化炉内无转动部件,运转周期长,无需备炉。?热效率高,煤中约83%的热能转化在合成气中,约15%的热能被回收为高压或中压蒸汽,总的热效率为98%左右。?气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。气化污水中含氰化合物少,容易处理,必要时可做到零排放,对环境保护十分有利。à壳牌公司专利气化烧嘴可根据需要选择,气化压力2.5~4.0M Pa,设计保证寿命为8000h,荷兰De m ko lec电厂使用的烧嘴在近4年 收稿日期:2007-10-13 作者简介:李琼玖(1930-),男,教授级高级工程师、研究员,长期从事化工设计、建设、生产工程技术工作,主编5合成氨与碳一化学6、5醇醚燃料与化工产品链工程技术6专著,发表论文百余篇,电话:(028)86782889。

煤气化废水处理方法综述

煤气化废水处理方法综述

中国矿业大学(北京) 题目:煤气化废水处理方法综述 学生姓名:赵柯学号:TSP0702005136Q 专业:环境工程 指导教师:王春荣 2007年12月

煤气化废水处理方法综述 摘要:煤气化是减少燃煤污染的有效途径,但气化 过程中产生的废水会对环境造成污染。本文针对废 水中主要污染物的不同,对其处理方法、治理技术、工艺分别进行了论述,并提出了建议。分别介绍了 煤气化废水中有用物质的回收,生化处理方法以及 深度处理方法。具体介绍了废水中酚和氨的回收, 采用活性污泥法、生物铁法,炭—生物铁法、缺氧 —好氧(A—O)法对废水进行处理,采用活性炭吸 附法和混凝沉淀法对废水进行深度处理。 关键词:煤气化;废水处理; 活性污泥法 THE SUMMARY OF WASTEWATER TREATMENT TECHNOLOGY OF COAL GASIFICATION Abstract gasification is an effective way to reduce the coal pollution, but the wastewater caused by the coal gasification process will pollution environmental. According to different main pollutants of wastewater, the disposal methods, treatment technology and techniques are separately discussed, and suggestion is put forward. Useful materials recovered from the wastewater, biological and chemistry treatment, deeply treatment are introduced in this article. Phenol and the ammonia recycled from wastewater and wastewater treated by activated sludge, biological iron, charcoal- biological iron and wastewater deeply treated by acticarbon absorption and Coagulation precipitation are introduced in this paper. Key word: coal gasification, wastewater treatment, activated sludge 1 引言 煤气化废水是煤制焦炭、煤气净化及焦化产品回收过程中产生的高浓度有机废水,属于焦化废水的一种。水质成分复杂,

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

含酚废水处理方法

含酚废水处理方法 一、含酚废水的危害 含酚废水主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、炼油厂和焦化厂等化工企业。它是水体的重要污染物之一。由于工业门类、产品种类和工艺条件不同,其废水组成及含酚浓度差别较大,一般分为酸性、碱性、中性含酚废水和挥发、非挥发性含酚废水。 酚类化合物是一种原型质毒物,所有生物活性体均能产生毒性,可通过与皮肤、粘膜的接触不经肝脏解毒直接进入血液循环,致使细胞破坏并失去活力,也可通过口腔侵入人体,造成细胞损伤。高浓度的酚液能使蛋白质凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的水能引起慢性中毒,出现贫血、头昏、记忆力衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它有害物质相互作用产生协同效应,变得更加有害,促进致癌化。 含酚废水不仅对人类健康带来严重威胁,也对动植物产生危害。 水中含酚含量达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1.5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉农田,则会使农作物减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。毫无疑问,含酚废水排入水体或用于灌溉均需经过治理处理,使之符合达到国家要求的排放标准(见附表)。 附表:中华人民共和国水体中含酚浓度及含酚废水排放最高允许标准(单位:mg/人) 海水地面水渔业水农田灌溉水生活饮用水工业含酚水0.005(一类) 0.001(一级) 0.010(二类) 0.005(二级)0.005 1.0~3.0 0.002 0.500 0.050(三类)0.010(三级) 二、含酚废水处理方法 由于含酚废水的组成、酸碱性以及浓度的不同,处理方法也不一样,目前工业上处理含酚废水的方法一般分为物化法、化学法、生化法等三大类。主要介绍最常见的方法。

国内外煤化工产业技术进展情况

国内外煤化工产业发展情况 刘纳新

目录 1 国际煤气化技术 (2) 1.1 煤炭气化技术 (2) 1.2 煤炭液化技术 (6) 1.3 整体煤气化联合循环(IGCC) (7) 2 国际煤化工产品开发进展情况 (8) 2.1 大型煤气化成为煤炭利用的技术热点 (8) 2.2 车用替代燃料成为煤基替代能源产品开发的重点 (9) 2.3 碳一化学品及其衍生物行业发展势头强劲 (10) 2.4 煤基多联产成为煤炭综合利用的重要方式 (11) 2.5 南非煤化工发展情况 (13) 2.6 美国煤化工发展情况 (14) 2.7 日本煤化工发展情况 (15) 2.8 欧盟煤化工发展情况 (16) 3 国内煤气化技术应用情况 (17) 3.1 多种煤气化技术并存 (17) 3.2 煤炭气化多联产技术 (18) 3.3 山西天脊煤化工集团有限公司煤气化技术的应用与发展 (18) 4 国内煤化工产品开发及项目建设情况 (19) 4.1 国内煤化工产品开发和建设 (19) 4.2 煤制甲醇项目 (20) 4.3 煤制二甲醚项目 (20) 4.4 煤制合成氨项目 (21) 4.5 煤制天然气和煤制烯烃 (21) 5 国内煤化工产业发展趋势 (23)

1 国际煤气化技术 国际煤气化技术主要包括:煤气化、煤液化和整体煤气化联合循环(IGCC)技术。目前新一代煤气化技术的开发和工业化进程中,总的方向是气化压力由常压向中高压(8.5 MPa)提高,温度向高温(1500-1600℃)发展,气化原料多样化,固态排渣向液态排渣发展。 1.1 煤炭气化技术 煤炭气化是在适宜的条件下将煤炭转化为气体燃(原)料的技术,旨在生产民用、工业用燃料气和合成气,并使煤中的硫、灰分等在气化过程中或之后得到脱除,使污染物排放得到控制。煤炭气化近年来在国外得到较大发展,目的是为煤的液化、煤气化联合循环及多联产提供理想的气源,扩大气化煤种,提高处理能力和转换效率,减少污染物排放。在100多年的研究开发于商业化应用中,相继开发出多种气化技术和工艺,按技术特点可粗略地划分为固定床、流化床和气流床气化技术。 1.1.1固定床 1.1.1.1固定床间歇式气化炉(UGI)。以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术目前已属落后的技术,气化率低,原料单一、能耗高,环境污染严重。随着能源政策和对环境要求的提高,该技术正在逐步被新的煤气化技术所取代。 1.1.1.2鲁奇气化炉。20世纪30年代德国鲁奇公司开发成功了固

煤制气废水处理技术

煤制气废水处理技术 我国的煤炭资源十分丰富,其储量远大于天然气和石油等化石燃料。面对石油、天然气资源不足而需求快速增长的现状,煤制气将迅速成为传统煤化工行业的主导产业之一,如烯烃、醇醚、煤制油、合成天然气等的生产,弥补洁净燃料之不足。国家对高效洁净能源的倡导、开发石油替代能源的需求和充分利用劣质煤炭资源以及减少环境污染要求,这些给新一代煤制气产业发展带来了广阔的市场。但是,煤制气属于高耗水的行业,水资源需求量大,其排放的生产废水处理问题己成为制约煤制气产业发展的瓶颈。 煤制气废水主要来自煤气发生炉的煤气洗涤、冷凝以及净化等过程,水质极其复杂,含有大量酚类、长链烯烃类、芳香烃类、杂环类、氰、氨氮等有毒有害物质,是一种典型的高浓度难生物降解的工业废水。寻求投资省、水质处理好、工艺稳定性强、运行费用低的煤制气废水处理工艺,最大限度地实现省水、节水和回用,已经成为煤制气产业发展的迫切需求。目前,根据煤制气废水的水质特点,其治理技术路线主要由物化预处理、生物处理和深度处理三部分组成。

1、物化预处理技术 典型煤化工废水零排放工艺设计 在我国广泛采用的3种先进煤气化工艺一一鲁奇气化工艺、壳牌气化工艺、德士古气化工艺中,以鲁奇气化工艺产生的废水水质最为复杂。某典型的鲁奇煤制气废水中挥发酚含量为2900~3900mg/L,非挥发酚含量为1600~3600 mg/L,氨氯含量为3000~9000mg/L。回收煤制气废水中酚和氨不仅可以避免资源的浪费,而且大幅度降低了预处理后废水的处理难度。煤制气废水物化预处理采用的措施通常有脱酚、脱酸、蒸氨、除油等。 2、生物处理技术 经过物化预处理后,煤制气废水的COD含量仍有2000~5000mg/L。氨氮含量为50~200 mg/L。BOD5/COD范围为0.25~0.35。其中,烷基酚、油类、吡啶、喹啉、萘、硫化物、(硫〉氧化物等污染物是影响煤制气废水生化处理的主要抑制物质。预处理后煤制气废水的生物处理技术主要采用缺氧-好氧(A/O)工艺和多级好氧生物工艺。为了提高生物工艺处理煤制气废水的效能,近些年国内外研究也报道了煤制气废水生物处理过程中所采用的强化生物处理技术,如活性炭

煤化工废水处理的十个经典案例

煤化工废水处理的十个 经典案例 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

煤化工废水处理的十个经典案例 的组分复杂并且含有固体悬浮颗粒、氨氮及硫化物等有毒、有害物质,若处理不当容易造成水污染并演变为水质型缺水,因此,是所有煤化工项目都需要考虑的问题,也在很大程度上决定了整个项目的效益。煤化工水资源消耗量和废水产生量都很大,因此,节水技术和技术成为行业发展的关键。 今天分享神华包头煤制烯烃、神华鄂尔多斯煤直接液化、陕煤化集团蒲城清洁能源化工、兖矿集团陕西未来能源化工兖矿榆林项目、久泰能源甲醇深加工项目等10个煤化工废水处理项目,从项目介绍、项目规模、主要工艺、技术亮点等多个角度进行分析,看看国内大型环保企业是如何对这些煤化工废水进行处理的。 十个煤化工项目污水处理案例项目简介、项目规模、主要工艺、技术亮点1云天化集团 项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案 关键词:煤化工领域水系统整体解决方案典范 项目简介:

呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(BritishGas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。 项目规模: 煤气水:80m3/h污水:100m3/h 回用水:500m3/h除盐水:540m3/h 冷凝液:100m3/h 主要工艺: 煤气水:除油+水解酸化+SBR+混凝沉淀+BAF+机械搅拌澄清池+砂滤 污水:气浮+A/O 除盐水:原水换热+UF+RO+混床 冷凝水:换热+除铁过滤器+混床 回用水:澄清器+多介质过滤+超滤+一级反渗透+浓水反渗透 技术亮点: 1、煤气化废水含大量油类,含量高达500mg/L,以重油、轻油、乳化油等形式存在,项目中设置隔油和气浮单元去除油类,其中气浮采用纳米气泡技术,纳米级微小气泡直径30-500nm,与传统溶气气浮相比,气泡数量更多,停留时间更长,气泡的利用率显着提升,因此大大提高了除油效果和处理效率。 2、煤气化废水特性为高COD、高酚、高盐类,B/C比值低,含大量难降解物质,采用水解酸化工艺,不产甲烷,利用水解酸化池中水解和产酸微生物,将污水在后续的生化处理单元比较少的能耗,在较短的停留时间内得到处理。 3、煤气废水高氨氮,设置SBR可同时实现脱氮除碳的目的。 4、双膜法在除盐水和回用水处理工艺上的成熟应用,可有效降低吨水酸碱消耗量,且操作方便。运行三年以后,目前的系统脱盐率仍可达到98%。 2陕西煤业化工集团

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

(能源化工行业)我国煤化工产业概况及其发展方向

(能源化工行业)我国煤化工产业概况及其发展方向

我国煤化工产业概况及其发展趋势 煤化学加工包括煤的焦化、气化和液化。主要用于冶金行业的煤炭焦化和用于制取合成氨的煤炭气化是传统的煤化工产业,随着社会经济的不断发展,它们将进壹步得到发展,同时以获得洁净能源为主要目的的煤炭液化、煤基代用液体燃料、煤气化—发电等煤化工或煤化工能源技术也越来越引起关注,且将成为新型煤化工产业化发展的主要方向。发展新型煤化工产业对煤炭行业产业结构的调整及其综合发展具有重要意义。 1煤化工产业发展概况 1.1煤炭焦化 焦化工业是发展最成熟,最具代表性的煤化工产业,也是冶金工业高炉炼铁、机械工业铸造最主要的辅助产业。目前,全世界的焦炭产量大约为3.2~3.4亿t/a,直接消耗原料精煤约4.5亿t/a。受世界钢铁产量调整、高炉喷吹技术发展、环境保护以及生产成本增高等原因影响,工业发达国家的机械化炼焦能力处于收缩状态,焦炭国际贸易目前为2500万t/a。 目前,我国焦炭产量约1.2亿t/a,居世界第壹,直接消耗原料煤占全国煤炭消费总量的14%。全国有各类机械化焦炉约750座之上,年设计炼焦能力约9000万t/a,其中炭化室高度为4m~5.5m之上的大、中型焦炉产量约占80%。中国大容积焦炉(炭化室高≧6m)已实现国产化,煤气净化技术已达世界先进水平,干熄焦、地面烟尘处理站、污水处理等已进入实用化阶段,焦炭质量显著提高,其主要化工产品的精制技术已达到或接近世界先进水平。 焦炭成为我国的主要出口产品之壹,出口量逐年上升,2000年达到1500t/a,已成为全球最大的焦炭出口国。 从20世纪80年代起,煤炭行业的炼焦生产得到逐步发展,其中有的建成向城市或矿区输送人工煤气为主要目的的工厂,有的以焦炭为主要产品。煤炭行业焦化生产普遍存在的问题是:焦炉炉型小、以中小型焦炉为主,受矿区产煤品种限制、焦炭质量调整提高难度较大,采用干法熄焦、烟尘集中处理等新技术少,大多数企业技术进步及现代化管理和其他行业同类工厂相比有较大差距。 1.2煤气化及其合成技术 1.2.1煤气化 煤气化技术是煤化工产业化发展最重要的单元技术。全世界现有商业化运行的大规模气化炉414台,额定产气量446×106Nm3/d,前10名的气化厂使用鲁奇、德士古、壳牌3种炉型,原料是煤、渣油、天然气,产品是F-T合成油、电或甲醇等。 煤气化技术在我国被广泛应用于化工、冶金、机械、建材等工业行业和生产城市煤气的企业,各种气化炉大约有9000多台,其中以固定床气化炉为主。近20年来,我国引进的加压鲁奇炉、德士古水煤浆气化炉,主要用于生产合成氨、甲醇或城市煤气。 煤气化技术的发展和作用引起国内煤炭行业的关注。“九五”期间,兖矿集团和国内高校、科研机构合作,开发完成了22t/d多喷嘴水煤浆气化炉中试装置,且进行了考核试验。 结果表明:有效气体成分达83%,碳转化率>98%,分别比相同条件下的德士古生产装置高1.5%~2%、2%~3%;比煤耗、比氧耗均低于德士古7%。该成果标志我国自主开发的先进气化技术取得突破性进展。 1.2.2煤气化合成氨 以煤为原料、采用煤气化—合成氨技术是我国化肥生产的主要方式,目前我国有800多家中小型化肥厂采用水煤气工艺,共计约4000台气化炉,每年消费原料煤(或焦炭)4000多万t,合成氨产量约占全国产量的60%。化肥用气化炉的炉型以UGI型和前苏联的Д型为主,直径由2.2m至3.6m不等,该类炉型老化、技术落后。加压鲁奇炉、德士古炉是近年来引进用于合成氨生产的主要炉型。

相关主题
文本预览
相关文档 最新文档