当前位置:文档之家› 隧道盾构工程反力架结构计算书

隧道盾构工程反力架结构计算书

隧道盾构工程反力架结构计算书
隧道盾构工程反力架结构计算书

隧道盾构工程

计算:

校核:

审核:

钢结构工程有限公司

二〇一〇年八月

隧道盾构工程反力架结构计算书

目录

一、计算简图 (1)

二、几何信息 (3)

三、荷载信息 (6)

(一). (恒、活、风) 节点荷载信息 (6)

四、内力位移计算结果 (8)

(一). 内力 (8)

(二). 位移 (17)

五、设计验算结果 (19)

﹒第1页﹒

xxx隧道衬砌台车结构计算书(建筑助手)

XXXXXXXXXX引水隧道项目衬砌台车计算书 编制: 校核: 审核: 2017年10月

xxxxx项目衬砌台车计算书 1.计算依据 1、《xxxxx施工图设计》 2、《衬砌台车结构设计图》 3、《钢结构设计规范》(GB 50017-2003) 4、《混凝土结构设计规范》(GB 50010-2002) 2. 概况 xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。 衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。本衬砌台车与顶拱支撑焊接为一个整体。进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。侧模支撑系统的螺旋丝杆,每断面设置4个。下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。模板系统及台车构件均采用Q235普通型刚。

交安三类试题教学内容

1. 日最高气温达到37℃以上、40℃以下时,用人单位在气温最高时段()小时内不得安排室外露天作业。 A.6.0 B.5.0 C.4.0 D.3.0 正确答案:D 2. 顶管施工中,管子的顶进或停止,应以()发出信号为准。 A.工具管头部 B.现场指挥 C.安全员 D.其他 正确答案:A 3. .②机械联接的强度由联接中()的强度决定。 A.最强环节 B.最薄弱环节 C.各环节加权平均 D.综合计算 正确答案:B 4. 爆破法破碎冻土,爆破施工要离建筑物( )以外。 A. 30m B. 40m C. 50m D. 100m 正确答案:C 5. 人工开挖土方时,两人应保持()的操作间距。 A.1m B.1~2m C.2~3m D.5~4m 正确答案:C 6. 建筑起重机械安装完毕经自检合格后,()应在验收前委托有相应资质的检验检测机构监督检验。 A.出租单位 B.安装单位 C.使用单位 D.建设单位

正确答案:C 7. 施工现场宿舍、办公室等临时用房建筑构件的燃烧性能等级应为();当采用金属夹芯板材时,其芯材的燃烧性能等级应为()。 A.A级,A级 B.A级,B级 C.B级,B级 D.B级,C级 正确答案:A 8. 剪刀撑:设在脚手架外侧面、与墙面平行的十字交叉斜杆,可增强脚手架的()。 A.纵向刚度 B.竖向刚度 C.横向刚度 D.其他 正确答案:A 9. 摊铺机停放在通车道路上时,周围必须设置明显的安全标志。夜间应设红灯示警,其能见度不得小于()m。 A.50m B.100m C.150cm D.200m 正确答案:C 10. 下列不属于建筑起重机械使用单位安全职责的是()。 A.制定建筑起重机械生产安全事故应急救援预案 B.在建筑起重机械活动范围内设置明显的安全警示标志,对集中作业区做好安全防护 C.设置相应的设备管理机构或者配备专职的设备管理人员,负责起重机械的安全管理工作 D.制定建筑起重机械安装、拆卸工程生产安全 事故应急救援预案 正确答案:D

桁架计算书

罐笼桁架设计计算说明书

一、桁架结构图 1. 桁架结构特点及主要尺寸 桁架为空间桁架结构,由四根圆钢管(外径:Φ75mm ,壁厚7.5mm )做为主肢,加等边角钢的斜腹杆和横腹杆组焊而成。主肢外包尺寸0.65×0.65m ×15m ,根据<<钢结构设计规范>>标准节每节高3 m.标准节,材料均为Q345。抗拉、抗压强度为295,抗剪强度为170,断面承压fce=400 Mpa 。 .整个桁架连接在整块的钻井平台固定支座上。 桁架结构简化模型,主要尺寸见下图。 钻井平台 罐笼 钢丝绳罐道 制动绳 标准架 绞车 滑轮 主绳

桁架各部件重量见表一。 表一:主要性能参数表 2. 计算工况及方位的确定 2.1计算工况 计算按独立式静止工况进行计算。 额定重量见上表,高15m。 3、桁架几何特性 3.1 标准节几何特性 3.1.1 标准节主肢 主肢材料:圆钢管:D=75mm,d=67.5mm

截面积: 惯性矩: 4、单肢强度校核: 一、压杆所受的工作压力:F1=12.5KN 二、强度校核: 【σ】许用压强度:295Mpa 三、稳定性校核:1、回转半径: 2、柔度系数: 其中:μ是长度因数,根据稳定理论取μ=1 单肢计算长度:l=15000mm [λ]是柔度:钢材的柔度大于100是大柔度杆。 3、确定临界力:

4、稳定条件: 【n】是稳定系数: 根据《钢结构稳定理论与设计》钢材的稳定系数是:1.8~3.0。故单肢稳定性不安全,需要加支撑。 5、整体校核 1、整个截面面积: A=4A1=4×10683.75=4275mm2 2、整个截面惯性矩: 整个界面因为是正方形所以x虚轴,y虚轴相等: I X=I Y=4I1=4×533859.5=2135438mm4 3、整体稳定验算:许用临界力: 因为整体许用临界力小于荷载力,故整体也不稳定,需要加支撑。 5、钻井平台压应力计算:

盾构反力架安装专项方案及受力计算书

目录 一、工程概况 (2) 二、反力架的结构形式 (2) 2.1、反力架的结构形式 (2) 2.2、各部件结构介绍 (2) 2.3、反力架后支撑结构形式 (4) 三、反力架安装准备工作 (5) 四、反力架安装步骤及方法 (5) 五、反力架的受力检算 (6) 5.1、支撑受力计算 (6) 5.2、斜撑抗剪强度计算 (8) 六、反力架受力及支撑条件 (8) 6.1、强度校核计算: (10) 6.2、始发托架受力验算 (11)

一、工程概况 东莞市轨道交通R2线2304标土建工程天宝站~东城站盾构区间工程起点位于天宝站,终点位于东城站。盾构机由天宝站南端盾构始发井组装后始发,利用吊装盾构机的260t履带吊安装反力架。 二、反力架的结构形式 2.1、反力架的结构形式 如图一所示。 图一反力架结构图 2.2、各部件结构介绍 (1) 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为

20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。 图二立柱结构图 (2) 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 (3) 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图

(4 )八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。 图四八字撑接头结构图 2.3、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 立柱支撑(以左线盾构反力架为例):线路中心左侧(东侧)可以直接将反力架的支撑固定在标准段与扩大端相接的内衬墙上;线路中心线右侧(西侧)材料均采用直径500mm,壁厚9mm的钢管。始发井东侧立柱支撑是3根直撑(中心线长度为1700mm),始发井西侧立柱是2根斜撑(中心线长度分别为5247mm和3308mm,与水平夹角均为45度)和一根直撑(底部)。如下图所示 1700

台车计算

店子梁隧道台车力学计算书 一、基本情况 店子梁隧道台车,长度为9m。模板面板厚度为10mm,门架面板厚14mm,门架腹板厚12mm。本计算书针对台车的主要受力构件的强度和刚度进行检算,以验证台车的力学性能能否满足要求。本文主要根据《GB50017-2003钢结构设计规范》《路桥施工计算手册》与《结构力学》,借助结构力学求解器来对本台车进行结构检算。 1.计算参数3砼的重力密度为:24kN/m;砼浇筑速度:2m/h;砼入模时的温度取25℃;掺外加剂。3 钢材取Q235钢,重力密度:78.5kN/m;弹性模量为206Gpa,容许拉压应力以及容许弯曲应力为215 Mpa,有部分零件为45钢,容许拉压应力计算取250Mpa(《钢结构设计规范》表3.4.1-1)。本文计算时取2倍安全系数,所以本文计算时Q235钢容许拉压应力以及容许弯曲应力取215 Mpa/2=108Mpa,45钢容许拉压应力以及容许弯曲应力取250Mpa/2=125Mpa。 2.计算载荷21)振动器产生的荷载:4.0kN/m;或倾倒混凝土产生的冲击荷2载:4.0kN/m;二者不同时计算。 2)对侧模产生的压力 砼对侧模产生的压力主要为侧压力,侧压力计算公式为: P=kγh (1) 当v/T<0.035时, h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P-新浇混凝土对模板产生的最大侧压力(kPa); h-有效压头高度(m); v-混凝土浇筑速度(m/h); T-混凝土入模时的温度(℃); 3γ-混凝土的容重(kN/m);

K-外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝剂作用的外加剂时k=1.2; 根据前述已知条件: 因为:v/T=2/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 2最大侧压力为:P=kγh =1.2×24×1.91=55kN/m;2检算强度时载荷设计值为:p=55+1.4×4.0= 60.6kN/m; a3)砼对顶模产生的压力 砼对顶模产生的压力由砼的重力和灌注砼的侧压力组成: 32重力p=γδ=24kN/m×0.7m=16.8kN/m 1其中δ为浇注砼的厚度。 由于圆弧坡度变小,取灌注为1m/h。 因为:v/T=1/20=0.05>0.035 所以 h=1.53+3.8v/T=1.53+3.8×0.05=1.72m 2侧压力为:p=kγh =1.2×24×1.72=49.5kN/m 22 p=49.5+1.4×4.0=55.1kN/m32所以顶模受到的压力 p=p+p=16.8+55.1=71.9kN/m b12可知顶模略大于侧模受到的压力。 4)台车结构自重,影响不大,不计入检算载荷。 二、侧模和顶模的检算 通过对侧模和顶模的面板、弧板以及背肋(8#槽钢)的强度和刚度检算,来验证台车模板的强度和刚度是否满足受力要求。侧模面板和顶模面板的支撑结构相同,因为顶模面板受混凝土重力作用所受压力略大,所以只需检算顶模板的强度和刚度是否能满足要求。

桁架承重架设计计算书

桁架承重架设计计算书 桁架承重架示意图(类型一) 二、计算公式 荷载计算:1.静荷载包括模板自重、钢筋混凝土自重、桁架自重(×; 2.活荷载包括倾倒混凝土荷载标准值和施工均布荷载(×。 弯矩计算: 按简支梁受均布荷载情况计算 剪力计算: 挠度计算: 轴心受力杆件强度验算: 轴心受压构件整体稳定性计算: 三、桁架梁的计算 桁架简支梁的强度和挠度计算 1.桁架荷载值的计算. 静荷载的计算值为 q1 = m. 活荷载的计算值为 q2 = m. 桁架节点等效荷载 Fn = m. 桁架结构及其杆件编号示意图如下: 桁架横梁计算简图 2.桁架杆件轴力的计算. 经过桁架内力计算得各杆件轴力大小如下: 桁架杆件轴力图 桁架杆件轴力最大拉力为 Fa = . 桁架杆件轴力最大压力为 Fb = . 3.桁架受弯杆件弯矩的计算. 桁架横梁受弯杆件弯矩图 桁架受弯杆件最大弯矩为M = 桁架受弯构件计算强度验算= mm 钢架横梁的计算强度小于215N/mm2,满足要求! 4.挠度的计算. 最大挠度考虑为简支梁均布荷载作用下的挠度 桁架横梁位移图 简支梁均布荷载作用下的最大挠度为 V = .

钢架横梁的最大挠度不大于10mm,而且不大于L/400 = ,满足要求! 5.轴心受力杆件强度的计算. 式中 N ——轴心拉力或轴心压力大小; A ——轴心受力杆件的净截面面积。 桁架杆件最大轴向力为, 截面面积为 . 轴心受力杆件计算强度 = mm2. 计算强度小于强度设计值215N/mm2,满足要求! 6.轴心受力杆件稳定性的验算. 式中 N ——杆件轴心压力大小; A ——杆件的净截面面积; ——受压杆件的稳定性系数。 轴心受力杆件稳定性验算结果列 表 ----------------------------------------------------------------- ------------ 杆件单元长细比稳定系数轴向压力kN 计算强度N/mm2 ----------------------------------------------------------------- ------------ 1 -------- 2 -------- 3 4 5 -------- 6 -------- 7 8 9 10 11 12 13 -------- 14 15 -------- 16 --------

盾构机反力架计算书

盾构机反力架计算书 太平桥站盾构始发反力架支撑计算书一、工程情况说明 哈尔滨地铁一号8标工业大学—太平桥区间投入一台德国海瑞克盾构机进行施工,编号S-285,从太平桥站西端头下井。我们对反力架采取水平撑加斜支撑的形式加固,将反作用力传递至车站底板、中板及侧墙。 二、反力架及支撑示意图 12 中板 侧反反 力力 墙 架架 底板底板 12 1-12-2 计算说明: 1、根据以往施工情况,始发盾构机推力按照800T进行计算,其中底部千斤顶油压按照200bar,两侧按照140bar,顶部千斤顶不施加推力; 2、通过管片和基准钢环调节,每组千斤顶所在区域按照均布荷载进行计算; 3、水平支撑采用200mm及250mm宽翼缘H型钢,分别支撑与车站底板及侧墙上,斜撑采用200mm宽翼缘H型钢,45度角撑于车站底板上; 4、反力架经几次始发使用,梁自身抗弯和抗剪无问题,本次不予计算。三、力学模型图

A 44.7t/m44.7t/mBD C 89.4t/m 盾构机在顶推过程中反力架提供盾构向前掘进的反力,通过焊接在反力架上的型钢支撑, 将力传递到车站结构上。为保证反力架能够提供足够的反力,以确保前方地层不会发生较大 沉降。要求型钢支撑强度足够。 四、计算步骤 1、模型简化 假设千斤顶推力平均分配到四个支撑边,即每边承受200t的压力。 2、轴力验算 1)底边 σ,F/A,F/(8,A,2,A),2000000/(8,6428,2,9218),28.6MPa 112 2 200mm H型钢截面面积A=6428mm1 2 250mm H型钢截面面积A=9128mm2 σ,σ,210MPa 1max 2)右侧边 σ,F/A,F/(10,A),2000000/(10,6428),31.1MPa 21 σ,σ,210MPa 2max 3)顶边 σ,F/A,F/(4,A),2000000/(4,6428),77.8MPa 31 σ,σ,210MPa 3max

模板台车

模板台车分析介绍 一、在限元计算模型 本计算模型是采用MSC/PARAN有限元分析软件进行建立的,并经过反复完善后得到的。 该12m全液压钢模板台车的有限元模型主要由3部分组成,即:顶模、边模、架体。其中顶模、边模的模型较为简单,主要由平面单元和L型梁单元构成,中间加以必要的连接法兰板,而架体主要由各种截面形状的梁单元组成。其中划分有限元单元62221个划分出节点共80271个,关联节点24356个。 对该模型简单介绍分为以下三个部分: 1、顶模部分 为真实反映L型钢、连接法兰与顶模面板,顶纵梁与顶模台梁的连接关系,L型钢、连接法兰、顶纵梁做了偏置,顶模单元3维加偏置模型。 2、边模部分 与顶模类似,边模的L型钢及连接法兰也做了偏置。对于顶模与边模之间的铰接关系,在有限元模型中用两端处理为单向铰的刚性单元表现。 3、架体模型 架体有限元模型为二维杆件梁单元构成,边模通梁与架体通过丝杆连接,丝杆两端处理为单向铰接。 二、边界的处理 在有限元计算中,对边界与荷载的处理是最为重要的五环节,依据模板台车在实际施工过程中的使用情况,我信计算模型中采用了以下几种边界条件的处理方式。 1、对轨千斤顶与钢轨接触处 对轨千顶在施工过程中作用有限,不约束其高度方向(总体坐标Y向)位移是合理的,所以在实际模型中仅仅约束对丝杆下端X、Z两个方向位移。 2、行走车轮与钢轨接触处的处理 模板台车车轮与钢轨始终保持接触,所以约束其X、Y、Z三向平动位移是合理的; 3、对地丝杆与地面的接触 由于模板台车实际使用中对地丝支撑在混凝土地面上,因此在模型中将地丝杆与地面的接触处处理为约束X、Y、Z平动自由度。 三、载荷的施加 台车在工作时受混凝土的压力,压力由混凝土自重、震捣力,混凝土入仓产生的冲击力组合而成,台车模板所承受的载荷可以按静水压力计算,计算公式为: P=γ*h γ为混凝土比重,h为混凝土灌注高度 四、分析结果 此次分析计算是采用MSC/NASTRAN程序进行的,具体分析结果简介如下: 1、衬砌高度H=3.5m时,模板最大变形为2.38mm。 1、衬砌高度H=4.5m时,模板下部最大变形为1.03mm,边模板最大变形为3.85mm。 1、在台车最后封顶时,最大变形在台梁处,为3.56mm。 第四章技术说明 一、概要: 客运专线模板台车标准高,要求严,各个施工单位对此都比较重视,我们中隧集团多次组织专家对客运专线模板台车进行研讨,制定了中隧集团客运专线模板台车设计制造标准。为了进一步提高衬砌台车的可靠性和经济性,我公司特联合中国航天科技集团第十一研

架桥机计算书

目录 一、设计规范及参考文献 (2) 二.架桥机设计荷载 (2) 三.架桥机倾覆稳定性计算 (3) 四.结构分析 (5) 五.架桥机1号、2号车横梁检算 (7) 六.架桥机0号立柱横梁计算 (9) 七、1号车横梁及0号柱横梁挠度计算 (11) 八.150型分配梁:(1号车处) (13) 九、0号柱承载力检算 (14) 十、起吊系统检算 (15) 十一 .架桥机导梁整体稳定性计算 (16) 十二.导梁天车走道梁计算 (18) 十三.吊梁天车横梁计算 (18)

一、设计规范及参考文献 (一)重机设计规范(GB3811-83) (二)钢结构设计规范(GBJ17-88) (三)公路桥涵施工规范(041-89) (四)公路桥涵设计规范(JTJ021-89) (五)石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》 (六)梁体按30米箱梁100吨计。 二.架桥机设计荷载 (一).垂直荷载 =100t 梁重:Q 1 单个天车重:Q =20t(含卷扬机、天车重、天车横梁重) 2 主梁、桁架及桥面系均部荷载:q=0.67t/m×1.1=0.74t/m =4t 前支腿总重: Q 3 中支腿总重:Q =2t 4 =34t 1号承重梁总重:Q 5 2号承重梁总重:Q =34t 6 =12t 2#号横梁Q 7 梁增重系数取:1.1 活载冲击系数取:1.2 不均匀系数取:1.1 (二).水平荷载 1.风荷载 a.设计取工作状态最大风力,风压为7级风的最大风压: =19kg/m2 q 1 b. 非工作计算状态风压,设计为11级的最大风压; q =66kg/m2 2 (以上数据参照石家庄铁道学院《GFJT-40/300拆装式架桥机设计计算书》) 2.运行惯性力:Ф=1.1

反力架受力计算

反力架受力计算 一、反力架的结构形式 1、反力架的结构形式如图一所示。 图一反力架结构图 2、各部件结构介绍 2.1 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为20mm钢板, 材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。

图二立柱结构图 2.2 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。 2.3 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。 图三下横梁结构图 2.4 八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。

图四八字程接头结构图 二、反力架后支撑结构形式 后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。 1、立柱支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混凝 土提高稳定性。始发井西侧立柱支撑是2根直撑(中心线长度为3875mm),始发井东侧立柱是2根斜撑(中心线长度分别为8188mm和4020mm,与 水平夹角分别是29度和17度)。如下图所示 西侧立柱直撑型式东侧立柱斜撑型式 2、上横梁支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混 凝土提高稳定性,中心线长度分别为4080mm、4141mm、4201mm,其 轴线与反力架轴线夹角为15度。

台车计算书

中铁四局宝兰客专隧道台车设计计算书此份台车结构强度设计计算及校核书是根据中铁四局宝兰客专项目经理部提供的台车设计要求及所附图纸中提供的技术参数进行结构受力演算,其结果仅对该台台车的结构受力有效。 一、工程概况及其对钢模台车设计要求 1、钢模台车的制作和安装需执行《隧道衬砌模板台车设计制造标准规范》和GB50204-92《混凝土结构工程施工及验收规范》中相关要求。 2、钢模台车设计成边墙顶拱整体浇筑的自行式台车形式,并满足施工设备通行要求,最下部横梁距离底板砼面净高不低于4m。 3、对钢模台车的结构设计必须要有准确的计算,确保在重复使用过程中结构稳定,刚度满足要求。对模板变形同样有准确的计算,最大变形值不得超过2mm,且控制在弹性变形范围内。 4、钢模台车设计长度为12米。 5、钢模台车设计时,承载混凝土厚度按0.6m设计校核。 6、钢模台车面板伸缩系统采用液压传力杆,台车就位后采用丝杆承载,不采用行走轮承载。 7、侧模和顶模两侧设置窗口,以便进人和泵管下料。 8、钢模台车两端及其它操作位置需设置操作平台和行人通道,平台和通道均应满足安全要求。

二、设计资料 1、钢模台车设计控制尺寸钢模台车外形控制尺寸,依据隧道设计断面和其他的相关施工要求和技术要求确定。见总图《正视图》。 2、设计衬砌厚度钢模台车设计时,承载混凝土厚度按0.6m设计校核。 3、车下通行的施工机械的控制尺寸最大高度不高于4m; A)台车轨距 7500mm。 B)洞内零星材料起吊重量一般不超过3吨。 C)浇筑段长度浇筑段长12m。 3、钢模台车设计方案 钢模台车的设计如图所视《中铁十六局成兰铁路台车正视图》。该台车特点:采用全液压立收模;电机驱动行走;横向调节位移也采用液压油缸。结构合理,效果良好。 4、钢模板设计控制数据 (1)、模板:控制数据(见下表) 项目所对中心角外沿弧 长(mm) 法兰宽 度(mm) 备注 顶拱模板半径6460 88°9956 300 边拱模板半径6460 63°7170 300 左右各一段边拱小模板半径2300 12°505 300 左右各一段

18米普通钢桁架设计计算书

钢屋架设计 姓名: 班级: 学号: 指导教师:

1.原始资料: 某工业厂房为单跨,无天窗,纵向长度为60m,跨度为18m,采用梯形钢屋架,无檩方案,屋面采用1.5×6m预应力钢筋混凝土屋面板,100mm厚泡沫混凝土保温层,二毡三油改性沥青防水卷材屋面,屋面为上人屋面,坡度为i=1/15。屋架铰支于钢筋砼柱上,柱截面400mm×400mm,砼标号为C25,车间无吊车。屋架采用的钢材为Q345钢,手工焊。 2.屋架形式和几何尺寸确定 屋架计算跨度(每端支座中线缩进150mm): l o=18-2×0.15=17.7m 跨中及端部高度 桁架的中间高度:h=2250mm 在17.7m的两端高度:h=1650mm 桁架跨中起拱50mm 图1 桁架形式及几何尺寸 桁架支撑布置图如图2所示:

图2

4.荷载和内力计算 4.1荷载计算: 4.11屋面永久荷载标准值: ①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为单位,q为屋架及支撑自 重,以kN/m2为单位; ②屋面活荷载:施工活荷载标准值为2.0kN/m2,雪荷载的基本雪压标准值为S0=0.35kN/m2,施工 活荷载与雪荷载不同时考虑,而是取两者的较大值。 积灰荷载标准值:0.5kN/m2。 ③屋面各构造层的荷载标准值: 二毡三油改性沥青防水层 0.40kN/m2 水泥砂浆找平层 0.40kN/m2 保温层 0.60kN/m2 预应力混凝土屋面板 1.50kN/m2 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。沿屋 α=换算为沿水平投影面分布的荷载。桁架沿水面斜面分布的永久荷载应乘以1/cos 1.005 P=+?支撑) 平投影面积分布的自重(包括支撑)按经验公式(0.120.011 W 计算,跨度单位m。 永久荷载标准值: 二毡三油改性沥青防水层 1.002×0.4kN/m2=0.4008kN/m2水泥砂浆找平层 1.002×0.4 kN/m2=0.4008kN/m2保温层 1.002×0.6 kN/m2=0.6012kN/m2 预应力混凝土屋面板 1.002×1.5 kN/m2=1.503 kN/m2桁架和支撑自重 0.12 KN/m2+0.011×18 kN/m2=0.318kN/m2 总计:3.2kN/m2可变荷载标准值:

反力架计算书汇总

目录 一、设计、计算总说明 (1) 二、计算、截面优化原则 (1) 三、结构计算 (1) 3.1 反力架布置形式 (1) 3.2力学模型 (2) 3.3 荷载取值 (3) 3.4力学计算 (3) 四、截面承载能力复核 (6) 4.1 截面参数计算 (6) 五、截面优化分析 (8) 六、水平支撑计算 (9) 七、螺栓连接强度设计 (10) 7.1计算参数确定 (10) 7.2 弯矩设计值Mmax和剪力设计值Vmax (10)

一、设计、计算总说明 该反力架为广州市地铁21号线11标[水西站~长平站]盾构区间右线盾构机始发用。 反力架外作用荷载即盾构机始发的总推力乘以动荷载效应系数加所有不利因素产生的荷载总和,以1600吨水平推力为设计值。 反力架内力计算采用中国建筑科学研究院开发的PKPM2005版钢结构STS 模块为计算工具。对于螺栓连接、角焊缝连接处的设计,仅仅计算其最大设计弯矩和剪力值,而不作截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。 二、计算、截面优化原则 1、以偏向于安全性的原则。所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。 2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。 3、参照以往施工项目的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。 4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。 三、结构计算 3.1 反力架布置形式 由两根立柱和两根横梁以及水平支撑组成。立柱与横梁采用高强螺栓连接,为加强整体性一般按照以往施工项目的施工经验另需在连接处焊接,故

隧道台车计算书

隧道台车计算书 (一)概述: 根据贵单位承建的隧道工程可知:贵方所需台车是全液压边顶拱砼衬砌钢模台车(以下简称台车)。此台车是以电机驱动行走机构带动台车移动,利用液压油缸和螺旋千斤进行模板立模和脱模来进行隧洞砼浇注的设备。根据对隧道衬砌长度的要求,台车设计为12米,总重量126T,全液压边顶拱砼具有结构合理可靠、操作方便、成本较低、衬砌速度快、隧道砼成形面好等优点。 (二)台车的结构设计: 台车主要由模板部份、台架部份、平移机构、门架部份、行走机构、液压系统、支承千斤、电气控制系统等组成。 1、模板部份: 模板部份由两块顶模和两块侧模组成一个砼横向断面,两块顶模 用螺栓连接两侧模与顶模用铰耳销轴连接,8块模板的宽度均为 1.5米,,纵向由8块组成12米的模板总长,每块模板之间用螺 栓连接,模板面板厚度为δ12mm,模板加强筋用槽钢[12B和槽 钢[16A做成,加强筋的间距为250m m,其弧板宽度为300 m m。 模板连接梁采用槽钢[20b合成.。 2、台架部份:台架由4根上纵梁,9根弦梁和63根小立柱组成。主要是承受顶 模上部砼及模板的自重。其上纵梁由钢板δ=14mm/δ=12mm焊成 工字截面,横梁采用工字钢I25b.小立柱采用工字钢I20b制成。 3、平移机构:平移机构在前后门架横梁各安装一套,平移油缸4个(HSGK02— B100/55)。平移油缸的作用是利用其左右移动来调整模板中心线

与隧洞中心线相吻合,其工作压力为16 MPa,最大推力为20吨, 水平移动行程为左右各100 m m。 4、门架部份:门架由下纵梁、立柱、横梁及纵向连接梁组成。各横梁及立柱用 连接梁和斜拉杆连接,各构件均用螺栓连接成一个整体。是整个 台车的主要承重结构件。门架下纵梁用δ14mm和δ12m m钢板 焊成箱形截面。立柱和横梁采用δ14mm和δ12mm钢板焊接成工 字截面,以增加门架抗砼的侧压力。 5、行走机构:台车行走机构由2套主动机构,2套从动机构组成。主动机构由2 台5.5KW同步电机驱动摆线减速器,再通过链条、链轮减速驱动 门架行走。利用电机的正反转可实现台车的前进与后退,其行走 速度为6m/min,行走轮直径为φ300mm。从动机构不安装电机和 减速器。起支撑和行走作用。 6、液压系统:液压系统由4个竖向油缸(前已作叙述)、6个侧向油缸(HSGK— B100/55 mm)、4个平移油缸(前面已作叙述)和一套泵站组成。 侧模板的立模和脱模由侧模油缸来完成。同时起着支承侧模板及 侧墙砼压力的作用,其工作压力为16MPa,推力为30吨。泵站系 统利用一个三位四通换向阀进行换向,控制各油缸的伸缩。4个 竖向油缸各由一个换向阀控制,侧模每边3个油缸由一个换向阀 控制,4个平移油缸前后各2个由一个换向阀控制。每个竖向油 缸安装1个液压锁紧阀来锁定每个竖向油缸,确保台车在浇注时 不致下降.液压油泵流量为10L/ min,电机功率为4KW,液压系 统工作压力为16M Pa。 7、支承千斤:支承千斤由台架千斤、侧向千斤和门架支承千斤三部份组成。侧 向千斤主要用来支承砼的侧向压力和调整侧模板位置,螺杆直径

桁架梁承重架计算书

梁模板扣件钢管高支撑架计算书 计算依据《建筑施工模板安全技术规范》(JGJ162-2008)。 计算参数: 模板支架搭设高度为9.2m , 梁截面 B ×D=600mm ×2000mm ,立杆的纵距(跨度方向) l=0.50m ,立杆的步距 h=1.00m , 梁底增加1道承重立杆。 面板厚度10mm ,剪切强度1.4N/mm 2,抗弯强度15.0N/mm 2,弹性模量6000.0N/mm 2。 木方40×80mm ,剪切强度1.7N/mm 2,抗弯强度17.0N/mm 2,弹性模量10000.0N/mm 2。 梁两侧立杆间距 1.00m 。 梁底按照均匀布置承重杆3根计算。 模板自重0.50kN/m 2,混凝土钢筋自重25.50kN/m 3,施工活荷载2.00kN/m 2。 扣件计算折减系数取1.00。 922

图1 梁模板支撑架立面简图 按照规范4.3.1条规定确定荷载组合分项系数如下: 由可变荷载效应控制的组合S=1.2×(25.50×2.00+0.50)+1.40×2.00=64.600kN/m 2 由永久荷载效应控制的组合S=1.35×24.00×2.00+0.7×1.40×2.00=66.760kN/m 2 由于永久荷载效应控制的组合S 最大,永久荷载分项系数取1.35,可变荷载分项系数取0.7×1.40=0.98 采用的钢管类型为48×3.5。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照多跨连续梁计算。 作用荷载包括梁与模板自重荷载,施工活荷载等。 1.荷载的计算: (1)钢筋混凝土梁自重(kN/m): q 1 = 25.500×2.000×0.500=25.500kN/m (2)模板的自重线荷载(kN/m): q 2 = 0.500×0.500×(2×2.000+0.600)/0.600=1.917kN/m (3)活荷载为施工荷载标准值与振捣混凝土时产生的荷载(kN): 经计算得到,活荷载标准值 P 1 = (0.000+2.000)×0.600×0.500=0.600kN 考虑0.9的结构重要系数,均布荷载 q = 0.9×(1.35×25.500+1.35×1.917)=33.311kN/m 考虑0.9的结构重要系数,集中荷载 P = 0.9×0.98×0.600=0.529kN 面板的截面惯性矩I 和截面抵抗矩W 分别为: 本算例中,截面惯性矩I 和截面抵抗矩W 分别为: W = 50.00×1.00×1.00/6 = 8.33cm 3; I = 50.00×1.00×1.00×1.00/12 = 4.17cm 4; A 计算简图 0.080 弯矩图(kN.m)

模板台车设计计算书

隧道衬砌台车设计 计算书 中煤第三建设(集团)有限责任公司二O一二年四月二十七日

隧道衬砌台车设计计算书 一、台车系统结构概述 本台车适用于中煤第三建设(集团)有限责任公司,大连市地铁2号线工程项目,湾家站至红旗西路站区间、红旗西路至南松路区间隧道衬砌的模筑混凝土施工。 台车系统由模板系统、门架支撑系统、电液控制系统组成。支收模采用液压控制,行走采用电动自动行走系统。 模板结构: 台车模板长度为9m,共5榀支撑门架,门架间距为2.05m;上上纵连梁3根,单侧支撑连梁4根(结构见台车设计图)。 面板Q235,t=10mm钢板; 连接法兰-12*220钢板; 背肋,[12#槽钢,间距300mm; 门架采用H2940*200*8*12型钢; 底梁采用H482*300*11*15型钢; 上纵连梁采用H200*200*8*12型钢; 侧面模板支撑连梁采用双拼[16a#槽钢。 顶升油缸4个,侧向油缸4个,平移油缸2个;行走系统为两组主动轮系和两组被动轮系组成。电液控制系统一套。 二、设计计算依据资料 1、甲方提供的台车性能要求及工况资料、区间断面图纸;

2、《钢结构设计规范(GB50017—2003)》 3、《模板工程技术规范(GB50113—2005)》 4、《结构设计原理》 5、《铁路桥涵施工规范(TB10230—2002)》 6、《钢结构设计与制作安装规程》 7、《现代模板工程》 三、结构计算方法与原则 台车的主受力部件为龙门架、底粱、上部纵联H钢及钢模板,只需进行抗弯强度或刚度校核。 根据衬砌台车结构形式,各主要受力部件均不需要进行剪切强度校核和稳定性校核。 四、计算荷载值确定依据 泵送混凝土施工方式以20立方米/小时计。 混凝土初凝时间为t=4.5小时。 振动设备为50插入式振动棒和高频附着式振动器。 混凝土比重值取r=2.4t/m3=24kN/m3 ; 坍落度16—20cm。 荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。 钢材容许应力(单位;N/mm2)

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

钢结构桁架设计计算书

renchunmin 一、设计计算资料 1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。 2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。 3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =1 4.3N/mm 2 。 抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。 4. 钢材用 Q235-B ,焊条用 E43系列型。 5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。 6. 该办公楼建于苏州大生公司所 属区内。 7. 屋盖荷载标准值: (l) 屋面活荷载 0.50 kN/m 2 (2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表 (6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。 二、屋架几何尺寸的确定 1.屋架杆件几何长度 屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mm H 15000=跨中高度为mm 1943H ,5.194220 217700 150020==?+ =+=取mm L i H H 。跨中起拱高度为60mm (L/500)。梯形钢屋架形式和几何尺寸如图1所示。

始发架反力架基座结构受力计算书

始发架、结构受力检算书编制: 审核: 审批: 1

附件8 始发基座结构承载能力计算书 始发基座结构受力检算书 一、设计资料 始发架主受力结构为纵梁、横梁、并与连接杆焊接成一个整体,形成整体受力结构,盾构作用在轨道梁上,通过轨道传力到底座上,最后传递到始发架井底地基,轨道梁和支架采用螺栓、焊接形式连接,其结构图如下: 支承架主视图 支承架侧视图 二、受力分析 2.1如上图所示,盾身重力荷载作用在轨道上,通过支架传递到底座基础,斜纵梁是受力主体,横梁把荷载传递到基础。 2.2受力验算 盾构总重G=377t 其中:盾构刀盘重量G1=60t 长度L1=1.645m 前盾总成重量G2=

110t L2=2.927m 中盾重量G3=110t 长度L3=3.63m,盾尾重量G4=35t,长度L4=4.045m, 由上面盾构节段位置的重量和长度,可知结构最不利位置在前盾总成,因此只需检算盾构前盾总成下方的支承架是否满足受力要求即可。 取荷载分项系数取 1.2,动载系数取 1.25,则盾构前盾总成下方每根钢轨荷载为:P=1.2x1.25x1100/(2x2.927)=281.86kN/m, 假设钢轨荷载均匀分布传递到支承架纵梁,则纵梁荷载q=281.86kN/m; 取支架单元支架计算: 纵梁受力检算: 按简支梁计算 Mmax=ql2/8=281.86× 0.892 /8=27.91kN/m max max 6 27910 48.1579.810x M Mpa W -σ= ==? 满足刚度要求 2.3底横梁检算: F =P ×cos62.32°=130.94t,平均分配到4根横梁上,则每根横梁拉力T1=32.74t T=2T1=65.48 465480062.56[]181104.6710F Mpa Mpa A -σ= ==σ=? 满足受力要求 2.4支架横梁中连接螺栓计算:

桁架承重架设计计算书

桁架承重架设计计算书 桁架承重架示意图(类型一) 二、计算公式 荷载计算:1.静荷载包括模板自重、钢筋混凝土自重、桁架自重(X 1.2); 2. 活荷 载包括倾倒混凝土荷载标准值和施工均布荷载(X 1.4)。 弯矩计算:按简支梁受均布荷载情况计算 剪力计算: 挠度计算: 轴心受力杆件强度验算: 轴心受压构件整体稳定性计算: 三、桁架梁的计算 桁架简支梁的强度和挠度计算 1. 桁架荷载值的计算. 静荷载的计算值为 q1 = 62.18kN/m. 活荷载的计算值为q2 = 16.80kN/m. 桁架节点等效荷载 Fn二-39.49kN/m. 桁架结构及其杆件编号示意图如下: 桁架横梁计算简图 2. 桁架杆件轴力的计算. 经过桁架内力计算得各杆件轴力大小如下:桁架杆件轴力图 桁架杆件轴力最大拉力为 Fa = 105.31kN. 桁架杆件轴力最大压力为 Fb = -139.62kN. 3. 桁架受弯杆件弯矩的计算. 桁架横梁受弯杆件弯矩图 桁架受弯杆件最大弯矩为M二2.468kN.m 桁架受弯构件计算强度验算=18.095N/mm 钢架横梁的计算强度小于215N/mrf,满足要求! 4. 挠度的计算. 最大挠度考虑为简支梁均布荷载作用下的挠度桁架横梁位移图 简支梁均布荷载作用下的最大挠度为 V二0.425mm. 钢架横梁的最大挠度不大于10mn,而且不大于L/400 = 1.25mm,满足要求! 5. 轴心受力杆件强度的计算.

式中N ——轴心拉力或轴心压力大小; A ——轴心受力杆件的净截面面积。 桁架杆件最大轴向力为139.622kN,截面面积为14.126cm2. 轴心受力杆件 计算强度■>= 98.841N/mm2. 计算强度小于强度设计值215N/mrf,满足要求! 6. 轴心受力杆件稳定性的验算. 式中N——杆件轴心压力大小; A ——杆件的净截面面积;「一一受压杆件的稳定性系数。 轴心受力杆件稳定性验算结果列表 杆件单元长细比稳定系数轴向压力kN 计算强度N/mm2 1 37.948 0.914 0.000 2 37.948 0.914 105.310 3 37.948 0.91 4 -52.655 40.770 4 40.046 0.907 -139.622 109.010 5 37.948 0.914 0.000 6 40.046 0.90 7 83.774 7 37.948 0.914 -26.327 20.385 8 37.948 0.914 -26.327 20.385 9 37.948 0.914 -39.491 30.577 10 37.948 0.914 -52.65 5 40.770 11 37.948 0.914 -52.65

相关主题
文本预览
相关文档 最新文档